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Silver(II) route to unconventional superconductivity
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The highly unusual divalent silver in silver difluoride (AgF2) features a nearly square lattice of Ag+2 bridged
by fluorides. As a structural and electronic analog of cuprates, its superconducting properties are yet to be
examined. Our first-principles electronic structure calculations reveal a striking resemblance between AgF2

and the cuprates. Computed spin susceptibility shows a magnetic instability consistent with the experimentally
observed antiferromagnetic transition. A linearized Eliashberg theory in the fluctuation-exchange approximation
shows an unconventional singlet d-wave superconducting pairing for bulk AgF2 at an optimal electron doping.
The pairing is found to strengthen with decreasing interlayer coupling, highlighting the importance of the quasi-
two-dimensional nature of the crystal structure. These findings place AgF2 in the category of unconventional
high-TC superconductors, and its chemical uniqueness may help shed light on the high-TC phenomena.
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I. INTRODUCTION

Superconducting properties of high-TC cuprates emerge
from an intricate interplay between electronic, lattice, and spin
degrees of freedom [1,2]. The cuprate crystal structure is gen-
erally derived from the perovskite-type structure, featuring a
few universal themes. Structurally they all contain quasi-two-
dimensional (2D) CuO2 sheets. Their normal state electronic
structure near the Fermi energy is dominated by a single band
derived from Cu-d orbitals [1–6]. In sharp contrast to con-
ventional superconductors based on electron-phonon coupling
assisted Cooper pair formation, superconductivity in cuprates
is believed to be driven largely by strong electronic interac-
tions [6]. The quasi-2D nature of the crystal structure limits
the electronic modes in the out-of-plane direction, resulting
in reduced screening and an enhanced interaction that are es-
sential to high-TC superconductivity. Understanding obtained
from the extensive studies of structural, electronic, and super-
conducting properties of cuprates has led to discoveries of new
superconducting materials [6–8]. Insights into the interplay of
geometric and electronic structures are key to the discovery
of novel superconductors. Clearly, it is then attractive to assay
materials that resemble cuprates, both structurally and elec-
tronically, for potential novel superconductivity.

Materials hosting divalent silver are extremely scarce in
comparison with monovalent silver compounds. Silver diflu-
oride (AgF2) has been synthesized from AgNO3, anhydrous
hydrogen fluoride treated with K2NiF6 and elemental fluorine,
with silver ion Ag(II) in a highly unusual divalent state despite
the relatively large second ionization potential compared to
the first one [9,10]. More interestingly, AgF2 resembles the
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cuprates’s parent phase La2CuO4 in its geometric, electronic,
and magnetic structures. An AgF2 sheet of the bulk crystal is
structurally similar to a CuO2 sheet, with a similar pattern of
out-of-plane displaced anion atoms as shown in Fig. 1(a). The
divalent Ag features a 4d9 valence shell, isovalent to cuprates.
The antiferromagnetic ground state of charge neutral AgF2 is
a charge-transfer insulator, which again is a familiar scenario
in cuprates.

It is then a natural and tempting question to ask whether
AgF2 could be metallized upon doping and become super-
conducting, such as the cuprates. Various theoretical attempts
have been made to study the doping mechanism of carriers
in AgF2 [11–14]. It is therefore the purpose of this work
to study whether an interaction can drive a superconducting
transition in AgF2, and what the ensuing pairing symme-
try will be. We start with an investigation of the crystal
and electronic structure of AgF2 and its resemblance to the
archetypal cuprate, orthorhombic La2CuO4 [6]. A compar-
ison of the crystal and electronic structures obtained from
first-principles calculations establishes a compelling struc-
tural and electronic resemblance between these compounds.
A multiband Hubbard model is constructed from which the
spin susceptibility of AgF2 within the random-phase approxi-
mation reveals an antiferromagnetic instability in accordance
with experiments. Employing the fluctuation-exchange ap-
proximation and solving the linearized Eliashberg equations,
we obtain the superconducting pairing strength (λ) and sym-
metry. A phase diagram is obtained by calculating λ at various
carrier doping levels and Hubbard U values. The strongest
superconducting pairing is obtained at 5% electron doping for
bulk AgF2, with a dominating singlet dxz symmetry. We find
that the superconducting pairing strength is gradually noted to
increase with decreasing interlayer coupling. We attribute this
effect to the renormalization of electron-electron correlations
with decreasing out-of-plane coupling.

2469-9950/2022/105(13)/134519(7) 134519-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1944-718X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.134519&domain=pdf&date_stamp=2022-04-25
https://doi.org/10.1103/PhysRevB.105.134519


LIU, PANDEY, AND FENG PHYSICAL REVIEW B 105, 134519 (2022)

II. METHODOLOGY

A. Density-functional theory calculations

Density-functional theory calculations have been per-
formed using the projector-augmented wave method [15,16],
implemented within the Vienna ab initio simulation package
(VASP) [17]. The Perdew-Burke-Ernzerhof functional [18] is
used for the exchange-correlation functional, and an addi-
tional electron-electron correlation is included statically by
a U = 8 eV within the generalized gradient approximation
(GGA+U ) formalism [19]. The value of U on the Ag-d
orbital is chosen to match the experimentally observed Ag
magnetic moments of 0.7μB/Ag. The results are found to be
well converged with a 6 × 6 × 8 �-centered mesh of k points
and a plane-wave cutoff of 800 eV. The total energy is cal-
culated self-consistently until the energy difference between
successive steps is below 10−5 eV. The experimental lattice
parameters of orthorhombic AgF2 with space group Pbca (No.
61) are |a| = 5.101 Å, |b| = 5.568 Å, and |c| = 5.831 Å [20].
Considering the experimentally observed magnetic ground
state, a full optimization of the lattice parameters has been
performed. The changes in the a and b lattice constants were
found to be less than 1% while the c vector was enhanced by
∼1.7%. Since these values are very close to the experimental
ones, the experimental structure is used for further study.

B. Random-phase approximation and fluctuation-exchange
approximation

To investigate the effect of interaction on the magnetic or-
der and potential superconductivity, we construct a multiband
Hubbard model,

H = H0 + HU =
∑
i jll ′σ

t ll ′
i j c†

ilσ c jl ′σ + U
∑

il

nil↑nil↓, (1)

where i, l , and σ are the lattice, orbital, and spin indices,
respectively, and c and n are the fermion annihilation and
number operators, respectively. The intraorbital Hubbard pa-
rameter U is determined by estimating the Néel temperature
in a random-phase approximation (RPA), as described next.

The low-energy bands are described by a tight-binding
Hamiltonian H0, obtained by projecting the non-spin-
polarized ab initio band structure using the maximally lo-
calized Wannier function approach [21], implemented within
VASP. Mapping is done for the undoped case considering
Ag-dx2−y2 orbitals in the basis and the obtained hopping am-
plitudes are listed in Table I.

Within the RPA [22–26], the charge (χ c) and spin (χ s)
susceptibilities are given by

χ c(q) = [1 + χ0(q)U c]−1χ0(q),

χ s(q) = [1 − χ0(q)U s]−1χ0(q), (2)

where q = (q, ω). U c and U s are the interaction matrices in
the charge and spin channels, respectively, and are written as

(U c/s)l1l2
l3l4

=
{

U, l1 = l2 = l3 = l4,

0, otherwise.
(3)

TABLE I. List of all hopping amplitudes larger than 5 meV in
our Wannier function-based tight-binding model of bulk AgF2. R
and l/l ′ are the translation vector and orbital index, respectively. All
other hoppings not listed here can be obtained by applying symmetry
operations of Pbca, the space group of bulk AgF2.

R l l ′ t (meV)

(0, 0, 0) 1 2 −173.1
(1, −1, 0) 1 1 34.4
(0, 1, 0) 1 1 34.0
(0, 1, −1) 1 1 28.0
(0, −1, 0) 1 3 22.8
(0, 0, −1) 1 2 18.2
(1, 0, −1) 1 1 18.1
(1, 1, 0) 1 1 15.1
(0, 1, 0) 1 3 −11.4
(0, 0, 0) 1 4 7.8
(1, 0, 1) 1 1 7.1
(0, 0, 0) 1 3 −7.0
(1, 0, 0) 1 4 −6.1
(1, −1, −1) 1 1 −5.6
(1, 0, 0) 1 3 5.3
(1, 0, 0) 1 1 5.1

The bare susceptibility χ0(q) is described as

(χ0)l1l2
l3l4

(q, ω) = − 1

N

∑
k,μν

f (εμk − εF ) − f (ενk+q − εF )

ω + εμk − ενk+q + i0+

× [
al2

ν (k + q)al3∗
ν (k + q)al4

μ(k)al1∗
μ (k)

]
, (4)

where N is the number of k points and μ, ν are the band
indices. al

μ(k) is the l component of the wave function of band
μ at the k point and εμk are the corresponding eigenvalues,
obtained from the diagonalization of H0. f (ε) is the Fermi-
Dirac distribution and εF is the Fermi energy.

The scrutiny for potential superconductivity mediated
by spin fluctuations is done by employing the fluctuation-
exchange approximation (FLEX) [27,28] to describe the
effective electron-electron interaction �(q) given by

�(q) = γU sχ s(q)U s − 1
2U cχ c(q)U c + 1

2 (U s + U c), (5)

with γ = 3
2 for the singlet channel and γ = − 1

2 for the triplet
channel. The singlet vertex is symmetrized as

(�s)l1l2
l3l4

(k, k′) ← 1
2

[
(�s)l1l2

l3l4
(k, k′) + (�s)l1l4

l3l2
(k,−k′)

]
, (6)

and the triplet vertex is antisymmetrized as

(�t )l1l2
l3l4 (k, k′) ← 1

2

[
(�t )l1l2

l3l4 (k, k′) − (�t )l1l4
l3l2 (k,−k′)

]
. (7)

Here, �(k, k′) = �(q) with q = k − k′.
An effective pairing between the electrons on the Fermi

surface arising from spin and/or charge fluctuations can result
in the formation of Cooper pairs. To describe the pairing insta-
bility of this type, the linearized Eliashberg equation will then
be solved to obtain the order parameter and superconducting
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transition temperature,

λφl1l3 (k) = −T

N

∑
q

∑
l2l4l5l6

�
l1l2
l3l4

(q)φl5l6

× (k − q)Gl2l5 (k − q)Gl4l6 (q − k). (8)

Here, λ is the eigenvalue indicating the pairing strength. The
eigenvector φl1l2 (k) is the order parameter written in terms of
the orbital indices l1 and l2. Gl1l2 (k) is the Matsubara Green’s
function. The largest eigenvalue λmax becomes unity at super-
conducting TC and can be used to gauge the relative pairing
strength near the TC.

In the weak-coupling regime, the pairing vertex is approxi-
mated to be frequency independent, i.e., �(q) = �(q, ω = 0).
After summing over the Matsubara frequencies, we obtain the
following equation in the band basis,

λφmn(k) = − 1

N

∑
k′

∑
μν

�mn
μν (k, k′)Fμν (k′)φμν (k′), (9)

where

Fμν (k) = − f (εμk − εF ) + f (εν−k − εF ) − 1

εμk + εν−k − 2εF
. (10)

The transformation between the orbital basis and band
basis for the order parameter is

φμν (k) =
∑
l1l2

φl1l2 (k)al1∗
μ (k)al2∗

ν (−k), (11)

and for the vertex,

(�η )mn
μν (k, k′) =

∑
l1l2l3l4

al1∗
m (k)al3∗

n (−k)(�η )l1l2
l3l4

× (k − k′)al2
μ(k′)al4

ν (−k′). (12)

Since φμν (k) is not gauge invariant because of the eigen-
vector al

μ(k) involved in Eq. (11), the trace of φμν (k),
φ(k) = ∑

μ φμμ(k)δ(εμk − εF), taken on the Fermi surface is
used to describe the nature of the order parameter, which is
gauge invariant under the following condition,

al
μ(−k) = al

μ(k)∗, (13)

for the nonmagnetic state [29]. An energy cutoff of 5 meV is
considered for the evaluation of the δ function in our calcula-
tions.

III. RESULTS

A. Crystal and electronic structure

The structure of AgF2 can be viewed as a stack of
Ag-F square-planar networks resembling the cuprate planes
in La2CuO4 [6] as shown in Fig. 1(a). Similar to the
low-temperature polymorph of La2CuO4 [6], AgF2 has an
orthorhombic crystal structure with each Ag(II) in a dis-
torted octahedral crystal field of six nearest-neighbor F− ions
[20,30]. However, unlike in a perfect octahedral coordination,
the out-of-plane Ag-F bonds are elongated by 24% relative to
the in-plane ones as shown by the blue dashed lines on one
of the Ag(II) in Fig. 1(a), leaving Ag(II) 4-coordination in
a AgF2 unit. This again resembles La2CuO4 in which there

FIG. 1. (a) AgF2 crystal structure. Purple and gray balls are F
and Ag, respectively. Blue dashed lines through one of the Ag(II)
indicate out-of-plane Ag-F bonds in a AgF6 octahedron. The black
arrows labeled x, y, z indicate the local coordinates used to describe
the d orbitals on Ag. In (b), the green dash-lined box highlights a
AgF4 unit. +/− indicate out-of-plane displacements of fluoride ions.
The dx2−y2 Wannier orbital on the central Ag is shown.

is a 27% elongation of the out-of-plane Cu-O bonds. These
four F−-coordinated Ag(II) form the AgF4 unit within the
square-planar network, as indicated by the green dash-lined
box in Fig. 1(b). A significant deviation of the AgF2 structure
from La2CuO4 comes from the tilting of this AgF4 unit by a
large angle ∼25◦, and hence the plane is puckered as shown
in Fig. 1. This tilt of CuO4 in La2CuO4 is much gentler
(∼5◦). The TM-anion-TM (TM = Ag or Cu) angles in the
square-planar structure are ∼130◦ for AgF2, which is ∼173◦
in La2CuO4. This distortion from the ideal 180◦ angle is
expected to manifest itself in the superexchange interaction,
and therefore the temperature of magnetic ordering. Indeed,
the Néel temperature (TN) is 300 K for La2CuO4 and 163 K for
AgF2 [31,32]. Given the striking similarities in the structural
and magnetic properties of AgF2 with those of La2CuO4 and
the subtle difference, an investigation of its electronic proper-
ties in the context of superconductivity is warranted.

As discussed earlier, a single dx2−y2 orbital for AgF2 shown
in Fig. 1(b) dominating the low-energy space near the Fermi
level is one of the most prominent characteristic features sim-
ilar to the cuprates. This is schematically shown in Fig. 2(a)
where partially filled dx2−y2 , shown in red, contributes at the
Fermi level. In the octahedral crystal field, the d orbitals are
split into a triply degenerate t2g set and a doubly degener-
ate eg set. The deviation from perfect octahedral symmetry
described earlier lifts the degeneracy of eg orbitals with dz2

being lower in energy than the in-plane dx2−y2 . The occupied
anion 2p orbitals are situated deep below the Fermi level.
The calculated orbital-projected band structure in spin-up and
spin-down channels within the GGA+U formalism for the
antiferromagnetic arrangement of AgF2 is shown in Fig. 2(b).
The valence band near the Fermi level has a dominant contri-
bution from dx2−y2 orbitals which are occupied in the majority
spin channel at Ag sites following the magnetic ground state
shown in Fig. 3(d).

The band structure of nonmagnetic AgF2, calculated within
GGA formalism without U , shown in Fig. 3(a) exhibits
features akin to cuprates. The low-energy excitations are dom-
inated by the half-filled dx2−y2 on Ag, and are well separated
from all other bands. Thus when constructing a tight-binding
model, it is justified to include simply one dx2−y2 -like Wannier
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FIG. 2. (a) Schematic energy level diagram of Ag(II) in the crys-
tal field of F atoms. (b) The band structure of antiferromagnetic AgF2

in spin-up and spin-down channels. Contributions of dx2−y2 orbital
from different Ag sites (1–4) are color coded with solid dots. The
indices of Ag sites can be found in Fig. 3(d). The Fermi energy is set
to 0 and indicated by the gray dashed line.

orbital per Ag. The resultant band structure of the tight-
binding model is also shown in Fig. 3(a), where the four dx2−y2

bands (four Ag per unit cell) fit the first-principles bands well.
Once the Coulomb interaction is included, AgF2 becomes
a charge-transfer antiferromagnetic insulator similar to the
cuprates in a scenario discussed also by Jakub et al. [9].

FIG. 3. (a) The band structure of nonmagnetic AgF2 from first-
principles calculation (DFT) and the Wannier interpolation-based
tight-binding model (TB) shown near the Fermi energy. (b) Diagonal
elements of the bare susceptibility (χ 0)ll

ll (q, 0) and the spin suscepti-
bility (χ s )ll

ll (q, 0) along the high-symmetry path, where l = 1–4 is
the orbital index. The four curves coincide. (c) η(q) for undoped
bulk AgF2 with isovalue 0.5 (cyan), 0.7 (yellow), and 0.9 (red).
Here, U = 0.44 eV and T = 14 meV. (d) Magnetic structure of AgF2

obtained from RPA. Red arrows represent the magnetic moment on
Ag atoms.

B. Spin susceptibility

The onset of spin instability is detected by the condi-
tion |1 − χ0(q, 0)U s| = 0, which occurs when the maximum
eigenvalue of χ0(q, 0)U s [denoted by η(q)] becomes unity
at any q. The ensuing divergence of χ s leads to a magnetic
phase transition. The vector q∗ and temperature TN at which
η(q∗) = 1 are the Néel temperature and propagation vector of
the spin pattern, respectively. The spin pattern corresponding
to a q∗ is determined by diagonal elements of the eigenvector
ξ (q∗) corresponding to η(q∗). We use a mesh of 48 × 48 × 48
for Brillouin zone sampling in all our calculations on the
Hubbard model.

Figure 3(b) shows the diagonal elements of the bare sus-
ceptibility (χ0)ll

ll (q, 0) and the spin susceptibility (χ s)ll
ll (q, 0)

along the high-symmetry paths in the reciprocal space. The
smooth variation of these susceptibilities in the plot highlights
the good convergence of our results. To determine the Hub-
bard U , we tune the value of U to match the experimental Néel
temperature (∼163 K) of AgF2 with the RPA estimated tran-
sition temperature. This leads to U = 0.44 eV, which will be
used in the following calculations on bulk AgF2. We note that
this U value is lower than the screened Hubbard U = 2.7 eV
from a constrained RPA [33–35] implemented within VASP

[17]. But since the latter contains double counting and does
not reproduce the experimental TN, we use the former value
for subsequent FLEX calculations.

Isosurfaces of η(q) drawn in Fig. 3(c) for undoped bulk
AgF2 at T = 14 meV (∼163 K) show a strong anisotropy cor-
responding to strong intralayer and a weak interlayer magnetic
exchange interactions. Henceforth, we focus on the qz = 0
plane in the current analysis. The maximum value of η(q)
is found to lie along the qz axis. Thus, for a weak interlayer
coupling when restricted only in the qx-qy plane, the maxi-
mum value of the spin susceptibility is attained at q = 0. The
computed eigenvectors ξll (q = 0) yield an antiferromagnetic
order shown in Fig. 3(d), consistent with the experimentally
established Néel state in AgF2 [32].

C. Interaction-mediated superconductivity

When doped with a carrier concentration that readily sup-
presses the magnetism, a cuprate goes metallic, exhibiting
various kinds of instabilities such as charge and spin fluctua-
tions at low temperatures due to Fermi-surface reconstruction.
The Hubbard models have been used extensively to explain
the superconductivity in doped cuprates [7]. Keeping the strik-
ing resemblance of AgF2 with cuprates, a similar approach
of metallization by carrier doping applies in AgF2 as well.
Thus, having a model capable of describing the magnetic
instability and order of AgF2, we go on to search for potential
superconductivity mediated by spin fluctuation employing the
fluctuation-exchange approximation (FLEX) as discussed in
the methodology section.

Equation (9) is solved for various doping levels and U
values at T = 30 meV. Figure 4(a) shows the contour plot
for λmax in the U − δn parameter space. As observed in
Fig. 4(a), the superconducting pairing strength increases with
increasing U at a given doping, underlining the importance
of electronic correlations for potential superconductivity in
this compound. The symmetry of pairing can be identified by
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FIG. 4. (a) Contour plot of λmax of the linearized Eliashberg
equation at T = 30 meV. The blue dashed line corresponds to η(q)
reaching unity at any q. (b) Doping dependence of λi

max for several
pairing symmetries of bulk AgF2 at U = 0.44 eV and T = 30 meV.
The squares and triangles represent the singlet and triplet channels,
respectively. (c) Three-dimensional and (d) projection on the kx-kz

plane, of the order parameter φ(k) at the Fermi surface of one of the
AgF2 layers with δn/Ag = 0.05 for bulk AgF2.

assigning each solved φmn(k) to an irreducible representation
of the D2h point group [36], the symmetry group of the bulk
AgF2. Corresponding to each irreducible representation i, the
largest eigenvalue is denoted by λi

max. Figure 4(b) shows the
doping dependence of λi

max for various pairing symmetries at
U = 0.44 eV. One can find that the singlet d-wave pair-
ings have a significantly higher strength than triplet p-wave
pairings and the leading pairing symmetry is a singlet dxz-
type wave throughout the U − δn parameter space shown
in Fig. 4(a). Moreover, the hole doping readily decreases λ,
while the electron doping tends to increase λ at first, reaching
a peak value at an optimal doping of 5% beyond which further
doping tends to reduce λ.

To describes the nature of the order parameter on the
Fermi surface, we plot the real part of the order parameter
φ(k) corresponding to λmax for one of the AgF2 layers with
U = 0.44 eV and an optimal doping of 5%. This is shown in
Fig. 4(c) in the three-dimensional Brillouin zone, and Fig. 4(d)
shows a projection onto the kx-kz plane. One encounters nodes
crossing the kx = π or kz = π planes indicating a dxz-wave
pairing. Hence, it can be concluded that the bulk AgF2 crys-
tal becomes unstable to a d-wave pairing induced by a spin
fluctuation.

D. Interlayer coupling

As discussed in the beginning, the quasi-2D nature of the
crystal structure of cuprates is one of the factors favoring its
high TC [37,38]. In the case of AgF2, although Ag-F layers

resemble copper oxide sheets, the separation of these planes
is 2.91 Å, much smaller than what is observed for La2CuO4

(6.6 Å) as well as other cuprates. Consequently, the effect of
interlayer coupling on the superconducting properties of AgF2
clearly warrants further study. In other words, AgF2 provides
a good platform to investigate the role of the quasi-2D nature
of the crystal structure in superconducting properties. Addi-
tionally, monolayer or few-layer samples are more prone to
doping by techniques such as field or electrolytic gating [39],
which is a clear experimental advantage.

To study the effect of interlayer coupling on the supercon-
ducting properties of AgF2, we interpolate between the bulk
and monolayer limits as follows,

H0 = H intra + αH inter. (14)

Here, H intra is a tight-binding model within a single layer of
AgF2, while H inter is the interlayer hopping term, which is
scaled by α ∈ [0, 1]. Bulk AgF2 can be obtained with α = 1,
and α = 0 corresponds to a single layer of AgF2. In the case
of the monolayer, the reduced screening leads to a divergent
pairing vertex if the bulk U value is used. This is an arti-
fact of the linearized Eliashberg theory that occurs when the
calculations are performed at temperatures much lower than
the TC, and one cannot get any sensible information about the
superconducting behavior in this case. However, a qualitative
estimation of the pairing symmetry can be obtained by slightly
reducing the U value which helps in achieving the numerical
convergence when moving away from the bulk to monolayer
limit. Hence, we use U = 0.37 eV, the closest usable value to
the bulk one, in the following calculations.

In Fig. 5(a), λ
dxy
max and λ

dxz
max are shown as functions of dop-

ing concentrations for different interlayer coupling strengths
α. It can be seen that the interlayer coupling tends to sup-
press the superconducting pairing in both hole and electron
doping because a stronger interlayer coupling amounts to
weaker electronic correlations as discussed earlier. Evidently
the quasi-2D nature of the crystal structure is one of the crucial
factors in favor of high-TC superconductivity, which again
confirms the resemblance to cuprates. The optimal electron
doping concentration remains unchanged as of bulk AgF2,
which indicates that the Fermi-surface nesting responsible for
the divergence of spin susceptibility mainly occurs within a
single layer without any significant interlayer contribution. In
the absence of interlayer coupling, the separated monolayers
have the same leading pairing symmetry of dxy type. These
two degenerate dxy waves then split into dxz and dxy imme-
diately after the interlayer coupling was switched on. The
difference in pairing strength between the leading dxz wave
and competing dxy was also found to increase with an increase
of α.

For single-layer AgF2, the symmetry reduces to the C2h

point group [36] from the D2h of bulk AgF2. Performing a
similar analysis to that for the bulk, we show the doping
dependence of λi

max for several pairing symmetries for a single
layer in Fig. 5(b). As seen previously in Fig. 5(a), the leading
pairing symmetry is dxy followed by a dx2−y2 wave. The real
part of the φ(k) corresponding to the λmax at the optimal
doping concentration is shown in Fig. 5(c), which clearly
reveals dxy pairing symmetry in the monolayer limit.
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FIG. 5. (a) Doping dependence of λ
dxy
max and λdxz

max for different
interlayer couplings α at U = 0.37 eV and T = 30 meV. (b) Doping
dependence of λi

max of various pairing symmetries in single-layer
AgF2. (c) Plot of order parameter φ(k) in the kx-ky plane at the Fermi
surface in single-layer AgF2 with δn/Ag = 0.05.

IV. CONCLUSION AND OUTLOOK

Our calculations indicate AgF2 not only is chemically
exotic, but also harbors unconventional superconductivity
in a way very similar to high-TC cuprates. Our multiband
Hubbard model reveals a magnetic instability in accordance

with the experimentally obtained magnetic ground state. In
the fluctuation-exchange approximation, we find a supercon-
ducting ground state with a singlet d-wave pairing for the
bulk AgF2 at an optimal electron doping of 5%. By varying
the strength of the interlayer interaction, we show that the
superconducting pairing strength increases with decreasing
interlayer coupling, highlighting the crucial role played by
quasi-2D crystal structures on the superconducting properties
of such materials.

Drawing hints from cuprates, the metallization of
bulk AgF2 can be achieved by synthesizing it with
a modified composition as is done in the case of
La2−xBaxCuO4/La2−xSrxCuO4 [1,40], leading to the doping
of extra charge carriers in the transition metal–anion plane.
Another route to metallization is electric gating [41]. A mono-
layer of AgF2 may be realized by epitaxial growth [42], whose
metallization can be achieved during the deposition process.
The idea of liquid-gating-induced superconductivity in thin
films [43] can also be applied to monolayer AgF2. Interest-
ingly, a monolayer sample on a substrate [42] or in a quantum
well may offer unique opportunities for tuning the dielectric
environment of the sample, allowing for investigations of the
effects of varying interactions on, especially, the proposed
superconductivity.
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