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Spontaneous edge and corner currents in s + is superconductors
and time reversal symmetry breaking surface states
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We present a study of the basic microscopic model of a s-wave superconductor with frustrated interband
interaction. When frustration is strong, such an interaction gives raise to a s + is state. This is a s-wave super-
conductor that spontaneously breaks time reversal symmetry. We show that in addition to the known s + is state,
there is additional phase where the system’s bulk is a conventional s-wave state, but superconducting surface
states break time reversal symmetry. Furthermore, we show that s + is superconductors can have spontaneous
boundary currents and spontaneous magnetic fields. These arise at lower-dimensional boundaries, namely, the
corners in two-dimensional samples. This demonstrates that boundary currents effects in superconductors can
arise in states which are not topological and not chiral according to the modern classification.
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I. INTRODUCTION

The most common type of superconductivity occurs where
electrons form spin-singlet Cooper pairs. Such a supercon-
ductor spontaneously breaks local U(1) symmetry. Recent
experiments reported the discovery of the so-called s+
is superconductor Ba;_,K,Fe,As, [1-3]. The s+ is su-
perconductor [4-7] is a spin singlet superconductor, that
spontaneously breaks an additional time reversal symme-
try, so the total broken symmetry becomes U(1l) x Z,. The
evidence of such states comes from spontaneous magnetic
fields observed in the system’s bulk in muon spin relaxation
experiments [4-6,8]. Previous theoretical studies, based on
Ginzburg-Landau models, predicted such fields to arise due
to certain types of defects, present in the bulk of an s+ is
superconductor [9—15].

Superconducting states that break time reversal symme-
try have been sought after for decades. Previously, the
research was almost exclusively focused on different kinds
of superconductors with broken time reversal symmetry
(BTRS) U(1) x Z,, i.e., the topological and chiral p+ip
superconductors. A hallmark of chiral superconductors that
spontaneously break time reversal symmetry are surface cur-
rents producing magnetic fields near surfaces [16-19]. By
contrast, by the standard symmetry and topology arguments,
s + is superconductors should not have surface currents.
Namely, these are superconductors with Cooper pairing in
different bands, described by several complex fields | A, |el%,
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which serve as order parameters. The time reversal symme-
try breaking is associated with a nontrivial phase difference
locking between different bands 6, — 6g # 0, 7, so that a
time reversal operation, i.e., complex conjugation of the or-
der parameters, brings the system into a different state from
which, one cannot rotate back to the original state by a gauge
transformation. The standard argument for the existence of a
surface current is as follows: Let us assume there is a spon-
taneous surface current in the superconductor. Since there is
no chirality in real space in a s + is state, flipping the sample
does not change the chirality of the state and should not invert
the current direction. Thus, one would conclude that the edge
currents should be absent.

The physics of the boundary of superconductor is subtle,
and it was recently shown that there are effects which are
missed by quasiclassical approaches [20-23].

In this paper, we investigate in a fully microscopic model,
the physics of the boundary of a superconductor with frus-
trated interband interaction that under certain conditions gives
rise to the s + is superconducting state in the bulk.

We find superconducting surface states that can break
time reversal symmetry locally near the sample’s boundaries,
specifically, in correspondence with the corners. These are
counterparts of nontopological boundary states recently re-
ported in non-BTRS systems [20-23]. Next we show that
nontopological nonchiral BTRS superconducting states, such
as s + is states, do have spontaneous currents and spontaneous
magnetic fields. These fields and currents have dipolar struc-
tures and are allowed by symmetry.

II. THE MODEL

We obtain self-consistent solutions in a three-band
Bogoliubov—de Gennes model with a gauge field, describ-
ing a three-band s-wave superconductor in real space. For
a two-dimensional N-sites square lattice, the mean-field
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Hamiltonian we consider reads

H=—>""exp(igAij)cl,,cjo

oo {ij)

+ Z(Aiac’;iaclia + A} CliaCria) (D
104

The indices i, j label the lattice sites, and the sum over (i, j)
is restricted to the nearest neighbors. cqs, c_;, are the annihi-
lation and creation operators for a particle with spin o € 1, |
at site i € [0, N — 1] and in band « € [1, 3]. Moreover, the
Hamiltonian is rescaled such that all energies are expressed
in units of the hopping energy, which, therefore, becomes
unitary, and the spatial coordinates are expressed in units of
the lattice spacing. Finally, in this paper, the Fermi energy for
each band is set to zero. The phase factor exp (igA;;) intro-
duces the coupling to the vector potential, with g as coupling
constant, through the Peierls substitution. A;; is defined as

Ajj =/ A-dt, 2)
J

where A is the vector potential, which is related to the mag-
netic field by V x A = B. Finally, A, = |A|e" are the
superconducting gaps, which are obtained through the self-
consistency equations,

3
(Aa)i =Y Vaplcirpcisp). 3)
B=1

where Vyp =V, is the matrix containing the intraband
V11, Vo, V33) and interband couplings (Vi2, Vi3, V23). The
boundary conditions that we utilize correspond to lattice
termination (see a more detailed discussion of boundary
conditions in, e.g., Refs. [21,22]). We neglect the effect of
interband scattering at the boundary that leads to the effects
studied in Refs. [24,25]. At each iteration for A,; we compute
the current density from site j to i,

,o__|?H
Y\ a4y

= —2¢ Y _Im[(c},,Cjoa) exp (igAi)]. @

oo

which is defined, together with A;; on the links connecting
lattice sites. The current density is then used to recompute
the vector potential, as we outline below. First, we discretize
the vector potential A using a finite difference method, where
Ax = Ay = 1 so that it becomes identically equal to the quan-
tities in the phase factors of Eq. (1). Following this scheme,
the magnetic field B, is defined on the lattice plaquettes as
shown in Fig. 1 and is related to the vector potential by a
discrete curl operation. The magnetic field energy is

1
Eng = 5 > B Q)
plaquettes

Then, we solve the discrete version of Maxwell equation V x

V x A =], namely,
0Emsy | OH

—_— — ) =0. 6
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FIG. 1. The discretized vector potential A;; is defined on the links
connecting lattice points, whereas the magnetic field is defined on the
plaquettes. They are related by the discrete curl operation, which in
this case results B, = Ay; + Az; — Azq — Ayt

In the computation of the vector potential, we utilize the
boundary conditions which set the magnetic field on the sam-
ple’s edges equal to zero, maintaining gauge invariance.

We solve self-consistently for the gaps and the vector
potential. To compute A,; we use Chebyshev polynomial
expansion method [26-28] with a polynomial up to order 700,
which is sufficient in the considered temperature range. To
calculate the vector potential at each iteration, we perform
a gradient descent step, adapting A to the changing current
density distribution. Then, we use the new vector potential
to update all the phase factors in Eq. (1). We iterate this
fully self-consistent procedure until a specific convergence
criterion is achieved. In our paper, we consider a simulation
converged when the mean relative variations of the individual
gaps and the vector potential components are smaller or equal
to 1078,

We consider two-dimensional square lattice samples of
size N,N, = 100 x 100, and unless specified otherwise, we
fix the temperature to 7 = 0.44 and and the coupling constant

to the vector potential to ¢ = —0.5. The intra- and interband
interactions are given by the coupling matrix,
1.92 -1.0 -1.0
Vep =1 —-1.0 1.95 -1.0] . @)
-1.0 -1.0 1.9/, p

In s + is superconductors, the interband couplings yield phase
frustration. To fully minimize the energy, a phase difference
of m between each band would be preferred, which is not
achievable in the three bands’ case. The s + is state arises
where the disparity of the coupling is not too significant so
that there are two energetically equivalent interband phase-
difference locking 6, — 0 # 0, w. Whereas, when the phase
differences are 7, 0 the system is in the so-called s, _ or s,
states, respectively. The choice of relatively strong coupling
is motivated by the fact that we perform a fully self-consistent
simulation of a two-dimensional system. Larger characteristic
lengths, arising for inhomogeneous solutions at weak cou-
pling, require computationally inaccessible system sizes.

III. THE RESULTS

We begin by analyzing the case of a square sample. First,
we find that at elevated temperature, the system has a new

134518-2



SPONTANEOUS EDGE AND CORNER CURRENTS IN ...

PHYSICAL REVIEW B 105, 134518 (2022)

Al .‘i

\¢2—¢1

FIG. 2. Superconducting gaps and phase differences for a three-
band two-dimensional superconductor with time reversal symmetry
breaking. We observe that the interband phase differences are not
spatially uniform: Whereas in the bulk the phase differences are 7, 0,
resulting in a s _ state, near the boundary there is a local time rever-
sal symmetry breaking resulting in a local s 4 is state. This situation
yields spontaneous countercurrents in different bands, arising near
the corners. The parameters used in the simulation are T = 0.44 and
g = —0.5 and Eq. (7) for what concerns inter/intraband coupling.

phase, in addition to the phases discussed for the same model
in Refs. [4-6]. In that state, the bulk of the system is in
a s;_ state, but the system breaks time reversal symmetry,
locally, near the boundaries, where 8, — 0 # 0, . The re-
sulting gaps absolute values and phase differences are shown
in Fig. 2.

Second, our solutions show the presence of a spontaneous
magnetic field, localized near sample corners shown in Fig. 3.
The modulus of the supercurrent generating the magnetic
field is displayed in Fig. 4. Both effects originate from the

B
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X

FIG. 3. A spontaneous magnetic field in the corners of a square
superconducting sample with local s + is state, obtained via a self-
consistent solution of Bogoliubov—de Gennes model. The value of
the magnetic flux associated to each red (positive) peral of magnetic
field is ®/®y = 3.4 x 107>, whereas the blue (negative) petals have
opposite flux. The parameters used in the simulation are 7 = 0.44
and g = —0.5 and Eq. (7) for what concerns inter/intraband cou-
pling. The spatial extent of the magnetic flux is macroscopic as it is
determined by coherence and magnetic-field penetration lengths.
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FIG. 4. Modulus of the spontaneous supercurrent generating the
magnetic field in Fig. 3. We can note a substantial localization of
the currents near the sample’s corners. The parameters used in the
simulation are 7 = 0.44 and ¢ = —0.5 and Eq. (7) for what concerns
inter/intraband coupling.

simultaneous enhancement of the density of states near the
sample’s boundaries [21,23] and by the s + is state localized
at the corners. We find that the effect of spontaneous field
in our model is not generic but exists when there is a slight
disparity in the couplings of different bands. In each corner,
the spontaneous magnetic field has a dipolar structure, and,
therefore, it carries zero net flux through the whole system.
The field configuration respects the rotation symmetry of the
lattice. The origin of the spontaneous magnetic field can be
understood as follows. First, in a s + is superconductor, the
normal modes are a mixed linear combination of the gap
amplitudes and phase differences [5], which means that even
a tiny variation of relative densities results in a variation of
relative phases. This is in contrast with ordinary multiband
superconductors where minor spatial variations of the gap
amplitudes do not produce variations in the phase difference.

In the present system, the gradients of relative densities
and relative phases induce supercurrents. Let us consider, for
example, a Ginzburg-Landau model for a two-dimensional
three-band superconductor. The expression for magnetic field
B, can be written by taking the curl of the vector potential,
expressed as a function of the supercurrent. For a three-band
superconductor with standard gradient terms, the expression
reads [29]

B o -
Y
: T\ e|w?

zs,j
e|w|*

This is a three-component generalization of the results in [30],
where WV = (1, Y2, ¥3) is a vector with the three order pa-
rameters as components and modulus |¥|> = WTW. J; is the
ith spatial component of the Ginzburg-Landau current den-
sity, and g;; is the two-dimensional version of the Levi-Civita
symbol. The first term in Eq. (8) is the standard contribution,
generic for London’s magnetostatics. The second term is spe-
cific for three-band superconductors and describes currents
originating from the cross gradients of the relative phases and

— I (wPowto,w + Wi w o, wtw).  (8)
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FIG. 5. Temperature dependence of the absolute values of the
phase differences |¢yp| = | — Pg| with o, B = 1-3 in the system’s
bulk |¢° 5| and in the system’s corners |¢;,|. The figure also reports
the maximal spontaneous field B,, which exhibits a nonmonotonic
behavior as a function of the temperature 7. The effect is the
strongest at the transition point in which the system’s bulk turns
from s + is (blue background) to s,_ (white background); at this
point, time reversal symmetry is locally broken in the vicinity of
the corners. Furthermore, we observe that the TRSB state persists
in the corners even after it disappears from the bulk. This result
illustrates that spontaneous magnetic signatures significantly depend
on the system parameters and, in this example, are best detectable at
a higher temperature. It is important to note that this effect occurs
below the system’s bulk critical temperature 7. The parameters used
in the computations are ¢ = —0.5 and Eq. (7) for what concerns
inter/intraband coupling.

relative amplitudes of the gaps in different bands. It has the
form of C P? skyrmionic topological charge density [29],

i€;::
)= [ —L(WPeVT9,¥ + Wi 9,wd,wiw)d .
QW) jLz2nP¥ﬁ(| | ¥+ VW

C))

T e T

50 50 0 50 -

Note that the second term is identically zero if there is no
disparity in the variations of the gaps in different bands.

Near the surfaces and corners, Friedel oscillations of the
density of states produce disparities in the gap amplitudes
of the different bands [21,23]. However, when the gradients
of these quantities are collinear, the second term in Eq. (8)
remains zero and, thus, one would not see any currents in the
vicinity of the edges. Our microscopic solutions show that,
in the corners, the spatial profile of the gaps exhibits non-
collinear gradients in the amplitude and phase difference and,
therefore, generates spontaneous currents. The gap enhance-
ment was demonstrated also to arise at various boundaries
in higher dimensions in single-component systems [21]. We,
therefore, expect a similar effect to be present near the edges
and vertices of a three-dimensional superconductor.

Let us consider now how the spontaneous magnetic field
B, varies as the temperature 7 changes. Figure 5 displays
the maximum value of B, for temperatures in the range
of T €[0.39,0.455] in a square superconducting sample.
Figure 5 also depicts the absolute values of the phase differ-
ences |¢pop| = | — Pl With o, B = 1-3 in the bulk (|¢35|)
and in the corners (|¢ 1) The time reversal symmetry break-
ing superconductivity survives at slightly higher temperature
than the bulk critical temperature in the vicinity of the corners.

The result in Fig. 5 suggests that the presence of spon-
taneous magnetic signatures is not a universally detectable
property of three-band superconductors breaking time reversal
symmetry, and it may be easier to detect at elevated tem-
peratures. However, it is peculiar to note that the maximal
spontaneous magnetic signature occurs at the same temper-
ature at which the bulk is no longer in the s + is state.

For a square geometry, the flux in each corner locally adds
up to zero, which may compromise the detection process
due to the resolution in scanning superconducting quantum
interference device (SQUID) probes. To make the effect more
observable, one may break the spatial symmetry by consider-
ing different shapes.

By cleaving a corner of a square, one obtains the ge-
ometry with five corners shown in Fig. 6 where the gray

= 50

FIG. 6. Superconducting gaps and phase differences (on the left) and spontaneous magnetic field (on the right) for a three-band two-
dimensional superconductor with time reversal symmetry breaking. Differently from Fig. 2, the sample presents a diagonal cut along which
the three order parameters undergo enhancement compared to the horizontal sides. The gray color indicates the vacuum. We can note that in
the corners formed with the diagonal edge, the magnetic field is enhanced and does not have a locally dipolar profile, in contrast to the squared
sample of Fig. 3. The parameters used in the simulation are 7 = 0.44 and ¢ = —0.5 and Eq. (7) for what concerns inter/intraband coupling.
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color indicates the vacuum. In which case, the total flux is
still zero. However, the corner states inherently depend on
the corner geometry, and the resulting flux fractionalization
pattern becomes different: now there are well-separated cor-
ners with nonzero local flux. In this configuration, we note
how the magnetic field (left panel) maintains the same spatial
profile of Fig. 3 in the 90° corner but substantially changes
near the diagonal edge. The magnetic flux in the lower left
and upper right corners of the sample is on the order of
~10~* flux quanta and does not have a locally dipolar struc-
ture. We expect such magnetic fields to be more easily
detectable by SQUID techniques.

IV. CONCLUSIONS

In conclusion, we considered boundary effects in the ba-
sic microscopic model of a three-band superconductor with
repulsive interband interaction. We find that, in the minimal
model, that does not include interband impurity scattering at
the boundaries, the critical temperature of the time reversal
symmetry breakdown is different for the boundaries of a su-
perconductor and its bulk due to the presence of boundary
states. An interesting followup investigation would combine
the effect of the interband surface scattering, considered at the
level of a quasiclassical theory in Ref. [25], with the boundary
effects considered in our paper, that appear in a fully micro-
scopic theory beyond the usual quasiclassical approximation.

Our second finding is that s 4 is superconducting states
localized near the sample’s boundaries for certain parameters
give rise to spontaneous boundary currents. This occurs at
lower-dimensional boundaries: Near the corners in the two-

dimensional case, and we expect in the vicinity of the edges
of three-dimensional samples. The origin of these fields is
the existence of surface states [21-23,31] and the mixing
of gap amplitude and phase-difference modes [5] occur-
ring in superconductors breaking time reversal symmetry.
This phenomenon is different in its origin and form from
the surface currents in topological chiral superconductors
[16-19].

In our example, we find that the spontaneous fields are
sufficiently strong and can be detected by scanning SQUID
techniques [32], scanning Hall [33], or single-atom magnetic
resonance [34]. Since the spontaneous fields originate from
the interband phase-difference gradients, they are expected to
persist and, thus, to serve as a probe of the Z, bosonic metal
phase [35,36] that was recently reported in Ba;_,K,Fe,As, at
x ~ 0.8 [3].

This superconducting state is nonchiral and nontopological
within the common classification framework. That shows that
the boundary currents is a more general phenomenon that
can exist in nontopological systems. We note, however, that
our simulations show that the effect exists and is detectable,
only within certain parameter rages and, therefore, is not
generic.
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