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We theoretically study potential unconventional superconductivity in doped AB-type IV-VI semiconductors,
based on a minimal effective model with interaction up to the next-nearest neighbors. According to the experi-
mental implications, we focus on the spin-triplet channels and obtain the superconducting phase diagram with
respect to the anisotropy of the Fermi surfaces and the interaction strength. Abundant nodal and nodeless states
with different symmetry breaking appear in the phase diagram, and all the states are time-reversal invariant and
topologically nontrivial. Specifically, the various nodal superconducting ground states, dubbed as the topological
Dirac superconductors, are featured by Dirac nodes in the bulk and Majorana arcs on the surface; among the
full-gap states, there exist a mirror-symmetry-protected second-order topological superconductor state favoring
helical Majorana hinge cones, and different first-order topological superconductor states supporting four surface
Majorana cones. The experimental verification of the different kinds of superconducting ground states is also
discussed.
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I. INTRODUCTION

Since the discovery of topological insulators [1–3], the
study of topological phases in condensed matter systems has
been rapidly developing. After efforts of a decade, numerous
novel topological phases have been proposed [4–7] and a large
number of topological materials identified experimentally
[8–21]. In recent years, topological superconductors (TSCs),
which are the superconducting analogy of the topological in-
sulators, have become the research frontier [22–38]. The TSCs
are expected to host the Majorana modes which are believed
to play an essential role in fault-tolerant topological quantum
computing [39–41]. In the pursuit of topological supercon-
ductivity, one proposal is to introduce superconductivity into
the surface Dirac cone of a topological insulator, such that
each superconducting vortex is expected to bind a single
Majorana zero mode [42]. Evidences for the vortex bound Ma-
jorana zero modes have been observed in the Bi2Te3/NbSe2

heterostructure [29,43], β-Bi2Pd [44], the transition metal
dichalcogenide 2M WS2 [45,46], and some iron-based super-
conductors [31,47–55].

In the above proposal the topological defect, i.e., the vor-
tex, plays an essential role in realizing the Majorana modes,
considering that the Majorana modes cannot appear in the
absence of the vortex. Different from the vortex proposal,
the Majorana modes exist on the natural physical boundary
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in the intrinsic TSCs. In the intrinsic TSCs, exotic pairing
structures, such as the p-wave and (p + ip)-wave pairing
on the Fermi surfaces, are vital. For instance, the Majorana
modes were predicted to emerge at the ends of 1D p-wave
SCs [56]; the chiral superconductivity and chiral Majorana
modes have been discussed a lot in the heavy-fermion SCs
[57–60] and the superconducting quantum Hall systems [61];
the Rashba semiconductors in proximity to conventional su-
perconductors applied with an external magnetic field have
also been predicted to host Majorana modes [62–65]. The
recently discovered doped superconducting topological ma-
terials [6,66] provide another chance. Among them the most
famous may be Bi2Se3 [67–70], which has been confirmed to
be superconducting [71–75] when doped with T m = Cu, Sr,
Nb, Tl. Moreover, experimental measurements, such as ther-
modynamic [76], nuclear magnetic resonance [77], scanning
tunneling microscopy [78] (STM), etc. [79–81], reveal that the
superconductivity is nematic, suggesting T mxBi2Se3 (T m =
Cu, Sr, Nb) an odd-parity SC [82,83]. While further experi-
mental evidences are still needed, the progress in T mxBi2Se3

stimulates more enthusiasms in the doped superconducting
topological materials.

Here, we turn our attention to the AB-type IV-VI semi-
conductors, typified by SnTe which is well known as the
first topological crystalline insulator [11,84]. Different from
the topological insulators, even number of Dirac cones ex-
ist on the (001) surface in SnTe [84], which are protected
by the mirror symmetry. With carrier doping, superconduc-
tivity has been confirmed in the series of materials ex-
perimentally [85,86]. Recent soft point-contact spectroscopy
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measurements reveal a sharp zero-bias peak in supercon-
ducting Sn1−xInxTe [87]. High-resolution scanning tunneling
microscopy provides more evidences for the gapless exci-
tations on the surface of superconducting Pb1−xSnxTe [88].
These experiments indicate possible unconventional super-
conductivity in the doped IV-VI semiconductors.

In this paper, motivated by the experimental progress we
perform a theoretical study on the superconductivity in un-
derdoped AB-type IV-VI semiconductors. Our analyses are
carried out based on an effective model capturing the Fermi
surfaces in the strong spin-orbit coupling condition, and we
consider the density-density interaction restricted up to the
next-nearest neighbors. We first classify the superconducting
orders according to the irreducible representations (irreps) of
the symmetry group, i.e., the point group Oh. It turns out
that the leading-order spin-singlet pairings are always topo-
logically trivial without excitations in superconducting gaps.
Therefore, we focus on the spin-triplet channels according
to the experimental implications [87,88]. We obtain the su-
perconducting phase diagram by calculating the free energy
on the mean-field level, with respect to the anisotropy of
the Fermi surfaces and different interaction strength. We find
that the superconductivity belonging to the A1u, A2u, Eu, T1u,
and T2u irreps can appear in different regions in the phase
diagram. Among these states, the A1u and A2u channels keep
the symmetry group Oh; for the ground states belonging to the
high-dimensional irreps, there exist different kinds of symme-
try breaking. The Eu channel is symmetry breaking from the
cubic Oh group to the tetragonal D4h group, the T2u channel
has two different ground states respecting the point group D4h

or D3d , and the T1u channel supports three different states
with symmetry breaking to D4h, D2h, or D3d . All these states
are topologically nontrivial. Specifically, it is in a topological
Dirac SC state with symmetry-protected nodal gap structures
in the A2u and T1u states, and there exist Majorana arcs on
the surfaces; while the A1u, Eu, and T2u (T2u respecting the
D3d group) states are first-order topological superconductors
favoring four surface Majorana cones; for the T2u channel,
there also exists a second-order TSC state (T2u respecting the
D4h group) supporting helical Majorana hinge modes. The
gapless surface or hinge modes and the point-group sym-
metry breaking can be detected in experiments, serving as
signatures for the topological superconductivity in the series
of materials.

II. MODEL AND METHOD

We start with a brief review of the crystal and electronic
structures of the AB-type IV-VI materials. This series of
materials crystallize in the rocksalt structure which respects
the Oh point group together with translational symmetry of
face-centered-cubic lattice as shown in Fig. 1(a) (space group
No. 225). The corresponding first Brillouin zone (BZ) is
a truncated octahedron, as shown in Fig. 1(b). In the BZ,
there are four L points related by the C4 rotational symme-
try. At each Ln (n = 1, 2, 3, 4), the residual little group is
D3d which can be generated by the inversion symmetry, the
C3 rotation along the �-L direction and the mirror reflec-
tion parallel to the �ZLn plane. First-principle calculations
show that the AB-type IV-VI materials are semiconductors

FIG. 1. (a) The lattice structure of the IV-VI semiconductors.
The red and blue balls represent the A, B sublattices. U1 and U2

are the strength of the p-orbital density-density interaction between
the nearest neighbors and next-nearest neighbors, respectively. a0

is the lattice constant of the conventional unit cell. (b) The first BZ of
the IV-VI semiconductors. Upon carrier doping, small Fermi surfaces
(the claret shells) appear near the four L points which are related by
C4 rotation. The transparent brown plane represents the surface BZ
on the (001) surface. Notice that X̄ in the surface BZ is the projecting
point of the L1 and L3 points in the bulk BZ. To describe the Fermi
surfaces conveniently, aside from the global reference frame (kX , kY ,
kZ ) we introduce a set of local reference frames at the four L points.
We use (kx , ky, kz) to denote the coordinates in the local reference
frame at L1, shown at the right bottom of the figure. The kz axis
goes along the �-L1 direction and kx goes along the �-K direction
in the figure. The other three local reference frames can be obtained
by taking C4 rotation along the kZ axis on the local reference frame
at L1.

with a narrow direct gap near the four L points. Around
the gap, the conduction bands and the valence bands are
contributed by the p orbitals of the A-type elements and B-
type elements, and the ordering of the bands determines the
topological property [84]. If the conduction band bottom (va-
lence band top) is contributed by the B-type (A-type) element,
the semiconductor is a topological crystalline insulator with
even mirror Chern number; if the band ordering reverses, the
semiconductor is topologically trivial. Upon carrier doping,
four small Fermi pockets appear around the four L points,
as sketched in Fig. 1(b), and superconductivity shows up
below the transition temperature in the IV-VI semiconduc-
tors.

A. Normal-state Hamiltonian

We focus on the low-doping condition of the IV-VI semi-
conductors and give a general discussion on the normal bands
at first. Since the four small Fermi surfaces are related by the
C4 rotation, for simplicity we can focus on the one located
at L1. Considering the symmetry constraints of the D3d point
group, the Fermi surface can be captured by a simple single-
band model

H0 =
∑
k,s

(
k2

x + k2
y

2m
+ ξk2

z

2m
− μ

)
ĉ†

k,sĉk,s, (1)

where m is the effective mass and μ is the chemical potential,
with m, μ > 0 for the conduction bands and m, μ < 0 for
the valence bands. In the following analysis, it makes no
difference for the conduction and valence bands, and we take
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m, μ > 0 for simplicity. The other symbols in Eq. (1) are
explained as below. (i) kx, ky, and kz are the momenta defined
in the local reference frame at L1, as shown in Fig. 1(b). (ii)
Since the Fermi surface respects D3d point-group symmetry, a
parameter ξ has been introduced to characterize the anisotropy
in different directions (based on the first-principle results, we
estimate ξ for different kinds of IV-VI semiconductors and
show it in Appendix A). (iii) The subscript s =↑,↓ labels
angular momentum jz = ± 1

2 defined according to the C3 ro-
tation along the �-L1 direction rather than the real spin since
the spin-orbit coupling in the IV-VI semiconductors cannot
be neglected [84]. (iv) Although the single-band Hamiltonian
cannot describe the nontrivial topology in the IV-VI semi-
conductors, it is a good approximation in the low-doping
condition, considering that the orbital character on the Fermi
surfaces is dominated by either the p orbitals of the A-type
elements or the B-type elements.

B. Interaction

To generate superconductivity, we consider the density-
density interaction between the p orbitals. In general, the
interaction between different types of atoms needs to be taken
into account. However, as mentioned above, in our consid-
eration, i.e., the low-doping condition, the orbital characters
on the Fermi surfaces are dominated by the p orbitals either
from the A-type element or the B-type element, depending on
whether the dopants are electrons or holes. Therefore, we can
merely consider the interaction between the p orbitals in one
sublattice in Fig. 1(a), and we restrict the interaction to the
next-nearest neighbors

Hint = U0

∑
i

n̂in̂i + U1

2

∑
〈i, j〉

n̂in̂ j + U2

2

∑
〈〈i, j〉〉

n̂in̂ j, (2)

where U0, U1, and U2 are onsite, the nearest-neighbor, and the
next-nearest-neighbor interactions, respectively, as indicated
in Fig. 1(a). In the above equation, n̂i is the density oper-
ator on the ith site defined as n̂i = ∑

l n̂i,l with l denoting
the freedom of spin and atomic orbitals, and 〈i j〉 and 〈〈i j〉〉
denote the nearest neighbors and the next-nearest neighbors,
respectively.

By doing a Fourier transformation, we can get the interact-
ing Hamiltonian in the reciprocal space

Hint =
∑

q

Hint(q) = 1

N

∑
q

[U0 + U1 f1(q) + U2 f2(q)]n̂qn̂−q,

(3)
where N is the number of the sites in the system and
n̂q = ∑

K,l ψ̂
†
l (K + q)ψ̂l (K ) and fα (q) = ∑

δα
eiq·δα with δα

the bonds between the nearest (next-nearest) neighbors for
α = 1 (α = 2). In the weak-coupling limit, only the inter-
action between electronic states on the Fermi surfaces is
essential. Therefore, we restrict the momentum K and K + q
in the density operator within an area near the Fermi sur-
faces and have K = Ln + k, K + q = Lm + k′, |Ek − μ| <

δμ, |Ek′ − μ| < δμ. In the above expression, Lm is the vector
from the � point to Lm point, Ek is the kinetic energy of the
states with momentum L1,2,3,4 + k, μ is the chemical poten-
tial, and δμ is the cutoff energy in the summation with δμ �
μ. We can derive |k|, |k′| ∼ kF � |L1,2,3,4| and q = Lm −

TABLE I. The expansion of fi(q) in Eq. (3) at q = 0 and q = Li j .
q̃ has the same magnitude as the Fermi momentum and it is small
compared with Li j , the vector from point Li to Lj . We use q̃‖ to denote
the component of q̃ parallel to Li j .

Coefficient function Expansion

f1(q̃) 6 − 1
2 a2

0q̃2

f2(q̃) 3 − 1
2 a2

0q̃2

f1(Lmn + q̃), m 
= n −2 + 1
2 a2

0q̃2
‖

f2(Lmn + q̃), m 
= n 3 − 1
2 a2

0q̃2

Ln + k′ − k = Lmn + q̃, with Lmn = Lm − Ln and q̃ ≡ k′ −
k, |q̃| � |Lmn|. We substitute the relation ψ̂

†
l (K + q)ψ̂l (K ) =

ψ̂
†
l (k + q̃ + Lm)ψ̂l (k + Ln) into Eq. (3) and obtain

Hint = 1

N

∑
q̃,m,n

[U0 + U1 f1(Lmn + q̃)

+ U2 f2(Lmn + q̃)]ρ̂q̃,mnρ̂−q̃,mn. (4)

In the above equation, ρ̂q̃,mn is the newly defined density oper-
ator ρ̂q̃,mn = ∑̃

k,l ψ̂
†
l (k + q̃ + Lm)ψ̂l (k + Ln), where we use∑̃

k to denote the summation with a cutoff on the kinetic en-
ergy Ek and Ek+q̃. When m = n, the interaction is contributed
by the electrons within the same Fermi surface, otherwise by
the electrons from different Fermi surfaces. The coefficients
fi(Lmn + q̃) are calculated to the second order of q̃ (details in
Appendix C) and are listed in Table I.

To further simplify the interaction in Eq. (4) which includes
all the p orbitals from atom A or B, we project the states
ψ̂

†
l (k + Lm) from the orbital basis to the band basis, and

only the states on the Fermi surfaces will be preserved in
the weak-coupling limit. We take the following three steps to
accomplish such goal.

(i) In the low-doping limit, we use the wave functions at
the L points to label the states on Fermi surfaces. In the above
analysis, the orbital l in ψ̂l (k + Lm) is defined in the global
reference frame (the p orbitals are defined along the axis of the
reference frame), where Z is taken along the [001] direction
as shown in Fig. 1(b). In the following, for convenience, we
adopt a set of local reference frames with the L1,2,3,4 point as
the origin, respectively. For instance, the local reference frame
at L1 is shown at the right bottom in Fig. 1(b). We take kz along
�L1 and kx along �X . The other three reference frames can be
obtained by taking the C4 rotation along kZ on the one at L1.
We use φ̂†

m,w(k) [φ̂m,w(k)] to denote the creation (annihilation)
operator in the mth local reference frame and the orbital w is
defined in the local frame (kx, ky, kz). The transformation from
the global frame to the mth local frame can be accomplished
by Ûm, ψ̂

†
l (k + Lm) = Ûmφ̂

†
m,l (k)Û †

m = ∑
w Um

wl φ̂
†
m,w(k), and

ψ̂l (k + Lm) = Ûmφ̂m,l (k)Û †
m = ∑

w Um∗
wl φ̂m,w(k), where Um is

the transformation matrix. We derive the density operator
under the new basis as

ρ̂q̃,mn =
∑̃
k,l

ψ̂
†
l (k + q̃ + Lm)ψ̂l (k + Ln)

=
∑̃
k,l

Ûmφ̂
†
m,l (k + q̃)Û †

mÛnφ̂n,l (k)Û †
n
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TABLE II. Relations between the orbital basis and the basis
labeled by angular momentum. All the states are defined in the local
reference frame.

Angular momentum Atomic orbitals and spin

|J = 1
2 , jz = 1

2 〉 − 1√
3
|pz, ↑〉 − 1√

3
|px, ↓〉 − i√

3
|py,↓〉

|J = 3
2 , jz = 1

2 〉
√

2
3 |pz, ↑〉 − 1√

6
|px, ↓〉 − i√

6
|py,↓〉

|J = 1
2 , jz = − 1

2 〉 1√
3
|pz, ↓〉 − 1√

3
|px, ↑〉 + i√

3
|py, ↑〉

|J = 3
2 , jz = − 1

2 〉
√

2
3 |pz, ↓〉 + 1√

6
|px,↑〉 − i√

6
|py, ↑〉

=
∑̃

k,l,w,v

Um
wlUn∗

vl φ̂†
m,w(k + q̃)φ̂n,v (k)

=
∑̃
k,w,v

Dmn
wvφ̂

†
m,w(k + q̃)φ̂n,v (k). (5)

In Eq. (5), Dmn = UmUn† is an identity matrix for the in-
trapocket interaction, i.e., m = n; and the matrix form of
Dmn for the interpocket interaction (m 
= n) is presented in
Appendix D.

(ii) The first-principle calculation shows that the bands
near the Fermi level are contributed by the states with the
angular momentum jz = ± 1

2 with jz defined according to the
rotation along �L [84]. Therefore, we transform the orbital
basis |px,y,z,↑ (↓)〉 in the local reference frames to |J, jz〉, and
the results are shown in Table II. Here, we only preserve the
states with jz = ± 1

2 .
(iii) As SO(3) symmetry is not respected in the real sys-

tem, J is not a good quantum number, and the states at the L
points must be the mix between |J = 1

2 , jz = ± 1
2 〉 and |J =

3
2 , jz = ± 1

2 〉. Moreover, at the L points the effective Hamil-
tonian describing the hybridization between these states takes
the following form:

Hmix = h0 cos θσ0τ3 + h0 sin θσ3τ1, (6)

where the Pauli matrices σ and τ act on the basis of jz
{ jz = 1

2 , jz = − 1
2 } and J {J = 1

2 , J = 3
2 }, respectively. In the

above Hamiltonian, h0 cos θ depicts the energy split between
the states with J = 1

2 , J = 3
2 , and h0 sin θ is their hybridization

arising from the crystal field, with θ a dimensionless parame-
ter and h0 the coefficient with the dimension of energy. Based
on the first-principle results, we estimate θ for different

TABLE III. The projection from the orbital basis to the band
basis at the L points. We list the orbital in the left column and its
projection on the bands near the Fermi energy in the right column.

Original basis After projection

|px, ↑〉 [ 1√
3

cos( θ

2 ) + 1√
6

sin( θ

2 )]| jz = − 1
2 〉2

|py, ↑〉 −i[ 1√
3

cos( θ

2 ) + 1√
6

sin( θ

2 )]| jz = − 1
2 〉2

|pz,↑〉 [
√

2
3 sin( θ

2 ) − 1√
3

cos( θ

2 )]| jz = 1
2 〉2

|px, ↓〉 −[ 1√
3

cos( θ

2 ) + 1√
6

sin( θ

2 )]| jz = 1
2 〉2

|py, ↓〉 −i[ 1√
3

cos( θ

2 ) + 1√
6

sin( θ

2 )]| jz = 1
2 〉2

|pz,↓〉 [
√

2
3 sin( θ

2 ) − 1√
3

cos( θ

2 )]| jz = − 1
2 〉2

kinds of IV-VI semiconductors and show it in Appendix A.
We obtain four eigenstates by diagonalizing Hmix and list in
the following:∣∣∣∣ jz = 1

2

〉
1

=
(

− sin
θ

2
, cos

θ

2
, 0, 0

)ᵀ
,∣∣∣∣ jz = 1

2

〉
2

=
(

cos
θ

2
, sin

θ

2
, 0, 0

)ᵀ
,∣∣∣∣ jz = −1

2

〉
1

=
(

0, 0, sin
θ

2
, cos

θ

2

)ᵀ
,∣∣∣∣ jz = −1

2

〉
2

=
(

0, 0,− cos
θ

2
, sin

θ

2

)ᵀ
. (7)

Here, we consider the states with the lower energy, i.e., | jz =
± 1

2 〉2, which is near the Fermi energy in the conduction bands.
At last, we project the states φ̂†

w(k)|0〉 in each local ref-
erence frame onto | jz = ± 1

2 〉2 for the corresponding Fermi
surface based on the results in Table II and Eq. (7), and the
final results are listed in Table III.

C. Mean-field superconducting orders

So far, we have projected the orbital basis in the global ref-
erence frame to the band basis (more details in Appendix D).
We use ĉm†

k,↑(↓) to denote the creation operator for | jz = 1
2 〉2

(| jz = − 1
2 〉2) on the mth Fermi surface and ĉm

k,↑(↓) to denote
the annihilation operator. For superconductivity, the pairing
occurs between the states on the same Fermi surface with
opposite momentum. Therefore, we project the interaction in
Eq. (4) onto the Fermi surfaces and in the superconducting
channel it becomes

Hint =
∑
m,n

∑
d1,d2,g1,g2

∑̃
k1,k2

f ′
d1d2g1g2

(Lmn + k1 − k2)ĉm†
k1,d1

ĉm†
−k1,d2

ĉn
−k2,g2

ĉn
k2,g1

+ non-SC, (8)

where d1(2) and g1(2) indicate pseudospin indices with the up and down directions defined along its own kz direction in the
local frame in Fig. 2(b) for each of the four Fermi pockets, and f ′

s1s2
is the interaction strength between the four Fermi pockets.

In our approximation, f ′
d1d2g1g2

(Lmn + k1 − k2) is expanded to the second order of k1 − k2. As a result, the interaction can be
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rewritten as

Hint =
∑
m,n

∑
d1,d2,g1,g2

∑̃
k1,k2

(
g0,mn

d1d2g1g2
+ g2,mn

d1d2g1g2

(
k2

1 + k2
2 − 2k1 · k2

))
ĉm†

k1,d1
ĉm†
−k1,d2

ĉn
−k2,g2

ĉn
k2,g1

, (9)

where g0(2),mn
d1d2g1g2

is the expanding coefficient to the zeroth
(second) order of f ′

d1d2g1g2
(Lmn + k1 − k2) in Eq. (8) at k1 −

k2 = 0. ĉm†
k,d1

ĉm†
−k,d2

, kx(y,z)ĉ
m†
k,d1

ĉm†
−k,d2

, and k2ĉm†
k,d1

ĉm†
−k,d2

can be
decomposed according to the irreps basis of the D3d group.
We list the irreps basis δ̂i(k) in the zeroth and first order of
k in Table IV. The irrep bases from different pockets take
the same form if we use the local reference frame defined
at each pocket, and we suppress the superscript m in ĉm

k,↑(↓)
to indicate any of the four pockets. The pairing in the second
order of k is not in consideration (we discuss it in the later cal-
culations). The C4 rotation relates different Fermi pockets to
each other and induces the symmetry group from point group
D3d to Oh. The detailed procedure of the inducing is shown in
Appendix E. The basis obtained from the direct summation
of the D3d irreps basis δ̂i(k) on the four pockets is always
reducible in the group Oh. However, we can decompose the
reducible representation to the irreps of group Oh and obtain
the irreps basis of Oh composed of δ̂i(k) defined on the four
pockets (details in Appendix E). We use δ̂i(m, k) to represent
δ̂i(k) on the mth pocket and list the induced irreps basis of
the group Oh in Table V. Based on the results in Tables IV
and V, we can decompose ĉm†

k,d1
ĉm†
−k,d2

, kx(y,z)ĉ
m†
k,d1

ĉm†
−k,d2

, and

k2ĉm†
k,d1

ĉm†
−k,d2

according to the irreps basis of the group Oh and

TABLE IV. The irreps basis of group D3d . We use δ̂i(k) to rep-
resent the notation for the irreps basis of group D3d . To simplify the
expression, ↑ and ↓ stand no longer for the real spin defined above,
but for the pseudospin | jz = 1

2 〉2 and | jz = − 1
2 〉2 in Eq. (7). The sym-

metry of each basis is listed in the right column. For i = 1, 2, 3, 4, the
irreps are one dimensional and only have one component; while for
i = 5, 6, 7, the eu irrep is two dimensional and we use δ̂i,1(2)(k) to
denote the first (second) component of the basis.

Irreps basis Symmetry

δ̂1(k)
√

2
2 (ĉk,↑ĉ−k,↓ − ĉk,↓ĉ−k,↑) a1g

δ̂2(k)
√

2
2 kz(ĉk,↑ĉ−k,↓ + ĉk,↓ĉ−k,↑) a1u

δ̂3(k) 1
2 [(ikx + ky )ĉk,↑ĉ−k,↑ + (−ikx + ky )ĉk,↓ĉ−k,↓] a1u

δ̂4(k) 1
2 [(ikx + ky )ĉk,↑ĉ−k,↑ − (−ikx + ky )ĉk,↓ĉ−k,↓] a2u

δ̂5,1(k)
√

2
2 (ikx + ky )ĉk,↓ĉ−k,↓ eu

δ̂5,2(k)
√

2
2 (−ikx + ky )ĉk,↑ĉ−k,↑

δ̂6,1(k) kzĉk,↓ĉ−k,↓ eu

δ̂6,2(k) kzĉk,↑ĉ−k,↑

δ̂7,1(k) 1
2 (−ikx + ky )(ĉk,↑ĉ−k,↓ + ĉk,↓ĉ−k,↑) eu

δ̂7,2(k) 1
2 (−ikx + ky )(ĉk,↑ĉ−k,↓ + ĉk,↓ĉ−k,↑)

the interaction turns out to be

Hint =
∑

ε,κ,ζ ,k,k′

1

N
f̃ ε
κ (U0,U1,U2, θ )�̂ε

κ,ζ (k)†�̂ε
κ,ζ (k′)

+ non-SC, (10)

where f̃ ε
κ (U0,U1,U2, θ ) is the coefficient. In the equa-

tion, ε represents the symmetry of the irreps with ε =
A1g(u), A2g(u), Eg(u), T1g(u), and T2g(u), κ stands for the κth
basis in irreps ε, and ζ means the ζ th component in a given
basis. For instance, for ε = Tu we have κ = 1, 2 and ζ =
1, 2, 3 (in Table V, there are two different T2u and the T2u

representation is three dimensional, i.e., each T2u has three
components). We assume the strength of the onsite interaction
is much bigger than the other two, |U0| � |U1|, |U2|. When
U0 is negative, the ground state is the BCS type which is
topologically trivial. When U0 is positive, the irreps with even
parity cannot be the ground states (details in Appendix F).
Therefore, in the following we set U0 > 0 and only focus on
the odd-parity superconductivity induced by U1 and U2. We
have in total 15 channels in 5 pairing symmetries: 2A1u, 1A2u,
3Eu, 4T1u, and 5T2u. After taking the mean-field approxima-
tion

∑
k

1
N 〈 f̃ ε

κ (U0,U1,U2, θ )�̂ε
κ,ζ (k)†〉 = λε

κ,ζ , we obtain the
following Hamiltonian:

HBdG = H0 +
∑

ε,κ,ζ ,k

(
λε

κ,ζ �̂
ε
κ,ζ (k) + λε∗

κ,ζ �̂
ε
κ,ζ (k)†

− N
∣∣λε

κ,ζ

∣∣2
f̃ ε
κ (U0,U1,U2, θ )

)
+ non-SC, (11)

where H0 is the normal-state Hamiltonian in Eq. (1). Then,
we calculate the free energy for each of the irreps (details in
Appendix G) and obtain the superconducting ground states.

III. RESULTS

As shown in the former section, for each pairing symmetry
there can be multiple linearly independent channels for the
Cooper pairs. For example, there are three Eu channels and
five T2u channels, as shown in Table V. For channels of higher
than one-dimensional irreps, there are multiple components
in each channel. If a pairing symmetry ε has κ channels and
each channel is a ζ -dimensional irrep, we need a complex vec-
tor (rε

1, . . . , rε
κ ) ⊗ (t ε

1 , . . . , t ε
ζ ) to describe the superconducting

ground states. For instance, the Eu state can be described
as (rEu

1 , rEu
2 , rEu

3 ) ⊗ (tEu
1 , tEu

2 ) in general. Obviously, the above
vector satisfies rε

κt ε
ζ = λε

κ,ζ with λε
κ,ζ being the coefficients in

Eq. (11) for irrep ε. By calculating and minimizing the mean-
field free energy, which is shown in detail in Appendix G, we
can get the irrep and the corresponding coefficients r and t for
the superconducting ground states. The topological properties
of the ground states can be analyzed accordingly.
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TABLE V. The irreps of the Oh group denoted as A1u, A2u, Eu, T1u, and T2u are induced from the irreps of the D3d group a1u, a2u, and eu.
Here, we use δ̂i( j, k) to label the irreps basis δ̂i(k) of group D3d on the jth Fermi pocket, whose forms in their corresponding local reference
frames are all the same and are listed in Table IV.

Irreps of Oh Induced from Combination of irreps of D3d

A1u a1u
1
2 (δ̂i(1, k) + δ̂i(2, k) + δ̂i(3, k) + δ̂i(4, k)) i = 2, 3

T2u
1
2 (δ̂i(1, k) − δ̂i(2, k) − δ̂i(3, k) + δ̂i(4, k))
1
2 (δ̂i(1, k) + δ̂i(2, k) − δ̂i(3, k) − δ̂i(4, k))
1
2 (δ̂i(1, k) − δ̂i(2, k) + δ̂i(3, k) − δ̂i(4, k))

A2u a2u
1
2 (δ̂i(1, k) − δ̂i(2, k) + δ̂i(3, k) − δ̂i(4, k)) i = 4

T1u
1
2 (δ̂i(1, k) − δ̂i(2, k) − δ̂i(3, k) + δ̂i(4, k))
1
2 (δ̂i(1, k) + δ̂i(2, k) − δ̂i(3, k) − δ̂i(4, k))
1
2 (δ̂i(1, k) + δ̂i(2, k) + δ̂i(3, k) + δ̂i(4, k))

Eu eu
1
2 (δ̂i,1(1, k) + δ̂i,1(2, k) + δ̂i,1(3, k) + δ̂i,1(4, k)) i = 5, 6, 7
1
2 (δ̂i,2(1, k) − δ̂i,2(2, k) + δ̂i,2(3, k) − δ̂i,2(4, k))

T1u

√
3

4 (δ̂i,1(1, k) + δ̂i,1(2, k) − δ̂i,1(3, k) − δ̂i,1(4, k)) + 1
4 (δ̂i,2(1, k) − δ̂i,2(2, k) − δ̂i,2(3, k) + δ̂i,2(4, k))

√
3

4 (−δ̂i,1(1, k) + δ̂i,1(2, k) + δ̂i,1(3, k) − δ̂i,1(4, k)) + 1
4 (δ̂i,2(1, k) + δ̂i,2(2, k) − δ̂i,2(3, k) − δ̂i,2(4, k))

− 1
2 (δ̂i,2(1, k) + δ̂i,2(2, k) + δ̂i,2(3, k) + δ̂i,2(4, k))

T2u
1
4 (δ̂i,1(1, k) − δ̂i,1(2, k) − δ̂i,1(3, k) + δ̂i,1(4, k)) +

√
3

4 (δ̂i,2(1, k) + δ̂i,2(2, k) − δ̂i,2(3, k) − δ̂i,2(4, k))
√

3
4 (δ̂i,1(1, k) + δ̂i,1(2, k) − δ̂i,1(3, k) − δ̂i,1(4, k)) + 1

4 (−δ̂i,2(1, k) + δ̂i,2(2, k) + δ̂i,2(3, k) − δ̂i,2(4, k))
1
2 (−δ̂i,2(1, k) + δ̂i,2(2, k) − δ̂i,2(3, k) + δ̂i,2(4, k))

A. Phase diagrams

We study the ground states with respect to the Fermi-
surface anisotropy ξ introduced in Eq. (1) and the nearest-
and next-nearest-neighbor interaction U1,U2 in Eq. (2). In the
calculation, we parametrize U1,U2 as U1 = V sin φ and U2 =
V cos φ. For other parameters, we set m = 0.5, μ = 16, and
V = 1.0, and focus on the two conditions with θ = −0.08π

and θ = −0.66π with θ defined in Eq. (6) (a more systematic
study is presented in Appendix B). Notice that if both U1 and
U2 are repulsive, i.e., 0 < φ < π/2, superconductivity will
not be favored in the mean-field level, as shown in the phase
diagram in Fig. 2.

1. θ = −0.08π

In the θ = −0.08π scenario, according to Eq. (7) the elec-
tronic states on the Fermi surfaces are mainly contributed by
|J = 1

2 , jz = ± 1
2 〉 in Table II whose wave function is nearly

isotropic with respect to the px, py, and pz orbitals. The
corresponding phase diagram is shown in Fig. 2(a), where
there exist the A1u, A2u, Eu, and T2u states. The Eu state is
characterized by a vector (rEu

1 , rEu
2 , rEu

3 ) ⊗ (1, 0), and there
are two different T2u states including T2u,[001] and T2u,[111],
which are featured by (rT2u

1 , rT2u
2 , rT2u

3 , rT2u
4 , rT2u

5 ) ⊗ (0, 0, 1) and
(rT2u

1 , rT2u
2 , rT2u

3 , rT2u
4 , rT2u

5 ) ⊗ (1, 1, 1), respectively. Among the
ground states in the phase diagram, the A2u state is nodal, and
the other states are fully gapped. We present the corresponding
superconducting gap structures obtained from numerical cal-

culations in Figs. 3 and 6. It can be noticed that both the A1u

and A2u states respect all the symmetries in the point group
Oh, the Eu and T2u,[001] states break the threefold rotational
symmetry along the �-L direction and preserve the D4h point
group, and the T2u,[111] state only respects the D3d symmetry
group with the main rotation axis along the �-L direction.
This symmetry-breaking information can be read out from
Table VI: for instance, on the Eu row only operations that are
diagonal can preserve t = (1, 0), thus remaining symmetries
in the ordered phase.

FIG. 2. Phase diagrams for the Hamiltonian in Eq. (11). The left
(right) corresponds to the θ = −0.08π (θ = −0.66π ) condition.
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FIG. 3. (a), (c), (e) Show the superconducting gap on the Fermi
surfaces and (b), (d), (f) sketch the surface modes on the (001)
surface for the A1u, A2u, and Eu states, which are presented in the
phase diagrams in Fig. 2. (a), (b) Correspond to the A1u state, (c),
(d) the A2u state, and (e), (f) the Eu state. The different colors on
the Fermi surfaces in (a), (c), and (e) indicate the magnitude of
superconducting gap, and the meaning of the colors is represented
by the color bar at the bottom. In (b) and (f), the red cones are the
Majorana cones; and in (d), the blue points are the projecting points
of the bulk Dirac nodes and the purple lines represent the Majorana
zero-energy arcs. Notice that the Majorana zero-energy arcs are all
fourfold degenerate since L1 and L3 (L2 and L4) project onto the same
X̄ point on the (001) surface. �̄, X̄ , and M̄ are the high-symmetry
points in the surface BZ shown in Fig. 1(b).

One major feature in the θ = −0.08π condition is that
the A1u state occupies a large area in the phase diagram, as
shown in Fig. 2(a). This is closely related to the fact that U1 is
highly anisotropic (isotropic) for the interpocket (intrapocket)
interaction while U2 is isotropic for both the interpocket and
intrapocket interactions, as indicated in Table I. When U1 and
U2 are projected onto the Fermi surfaces, the isotropic and

anisotropic properties are expected to be inherited. Therefore,
in the region dominated by U2 (φ is around π ) the nearly
isotropic A1u state shown in Fig. 3(a) is favored. In the region
with more anisotropic parameters, i.e., the U1 dominated area
and |ξ − 1| � 0 area, the states with more anisotropic gap
structures are preferred (we treat the nodal state as the most
anisotropic one). Moreover, it is worth pointing out that the
nodal A2u state merely appears in the large-ξ region. This is
because (i) the condition ξ > 1 (ξ < 1) corresponds to a larger
(smaller) Fermi velocity along the �-L direction, and (ii) to
lower the free energy it tends to open a larger superconducting
gap on the part of the Fermi surface where there is larger
density of states [89].

2. θ = −0.66π

For the θ = −0.66π scenario, in addition to the A1u,
A2u, Eu, and T2u states, three different kinds of T1u

states, including T1u,[001], T1u,[110], and T1u,[111], also ap-
pear in the phase diagram as shown in Fig. 2(b).
The A1u, A2u, Eu, and T2u states here have qualita-
tively the same gap structures and symmetry breaking as
those presented in the θ = −0.08π case. The T1u,[001],
T1u,[110], and T1u,[111] states can be characterized by the
vectors (rT1u

1 , rT1u
2 , rT1u

3 , rT1u
4 ) ⊗ (0, 0, 1), (rT1u

1 , rT1u
2 , rT1u

3 , rT1u
4 ) ⊗

(1, 1, 0), and (rT1u
1 , rT1u

2 , rT1u
3 , rT1u

4 ) ⊗ (1, 1, 1), respectively.
The three T1u states are all nodal and the corresponding gap
structures on the Fermi surfaces are shown in Fig. 4. Accord-
ing to gap structures, one can notice that the T1u,[001] state
is symmetry breaking from the point group Oh to D4h, the
T1u,[110] state respects the D2h group, and the T1u,[111] state is
D3d symmetric.

Compared to the θ = −0.08π case, in the phase diagram
for θ = −0.66π the states whose superconducting gap is more
anisotropic are more favored, and the nearly isotropic A1u

state only occupies a small region, as shown in Fig. 2(b).
This may arise from the fact that the Fermi surfaces in this
condition, according to the results in Eq. (7), are dominated by
|J = 3

2 , jz = ± 1
2 〉 in Table II which is more anisotropic with

respect to the px, py, and pz orbitals; this may lead to more
anisotropic effective interactions on the Fermi surfaces. Cor-
respondingly, the anisotropic superconducting ground states
are more favored.

TABLE VI. Irreps of group Oh. C2a, C2b, and C2c are the three twofold rotations. The axis of C2a goes along the x axis in the local reference
frame. The axes of C2b and C2c can be obtained from the axis of C2a by C3 rotation.

C3 C2
3 C2a C2b C2c C4 C2

4

A1g(A1u) 1 1 1 1 1 1 1

A2g(A2u) 1 1 −1 −1 −1 −1 1

Eg(Eu)
(− 1

2 −
√

3
2√

3
2 − 1

2

) (− 1
2 −

√
3

2√
3

2 − 1
2

) (1 0
0 −1

) ( − 1
2

√
3

2

−
√

3
2 − 1

2

)
(
− 1

2

√
3

2√
3

2
1
2

) (1 0
0 −1) (1 0

0 1

)

T1g(T1u)
(0 0 1

1 0 0
0 1 0

) (0 1 0
0 0 1
1 0 0

) ( 0 −1 0
−1 0 0
0 0 −1

) (−1 0 0
0 0 −1
0 −1 0

) ( 0 0 −1
0 −1 0

−1 0 0

) (0 −1 0
1 0 0
0 0 1

) (−1 0 0
0 −1 0
0 0 1

)

T2g(T2u)
(0 1 0

0 0 1
1 0 0

) (0 0 1
1 0 0
0 1 0

) (0 1 0
1 0 0
0 0 1

) (0 0 1
0 1 0
1 0 0

) (1 0 0
0 0 1
0 1 0

) (0 −1 0
1 0 0
0 0 −1

) (−1 0 0
0 −1 0
0 0 1

)
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FIG. 4. (a), (c), (e) Show the superconducting gap on the Fermi
surfaces and (b), (d), (f) sketch the surface modes on the (001) sur-
face for the T1u,[001], T1u,[110], and T1u,[111] states, which are presented
in the phase diagrams in Fig. 2. (a), (b) Correspond to the T1u,[001]

state, (c), (d) the T1u,[110] state, and (e), (f) the T1u,[111] state. Similar
to Fig. 3, the blue points are the projecting points of the bulk Dirac
nodes and the purple lines represent the Majorana zero-energy arcs in
(b), (d), and (f). Notice that in (b), the Majorana zero-energy arcs are
fourfold degenerate similar to Fig. 3(d); however, in (f) the Majorana
zero-energy arcs along �̄-X̄ are fourfold degenerate near the BZ
boundary but twofold degenerate inside the BZ, which is because the
bulk Dirac nodes on the L1 and L3 Fermi surfaces no longer project
onto the same points on the surface BZ in the T1u,[111] state.

B. Topological property of the ground state

In this section, we present an analysis on the topological
properties of the superconducting ground states in the phase
diagrams in Fig. 2, and more detailed analysis can be found
in Appendix H. Since all the states in the phase diagrams are
time-reversal invariant, the SC belongs to class DIII accord-
ing to the Altland-Zirnbauer classification [90,91]. We take
the following strategy in the analysis. We first analyze the
topological property of the superconductivity on each Fermi
surface. Then, taking all the Fermi surfaces into account, we
know the topological property of the whole system for each
ground state in the phase diagrams in Fig. 2. To study the
topological properties of the ground states, it is convenient to
write the odd-parity superconductivity in the vector form, i.e.,
�(k) = d(k) · σiσ2 with d(k) = (d1(k), d2(k), d3(k)). Ac-
cording to Eq. (11), it is easy to obtain ĉ†

k(d(k) · σiσ2)ĉ†
−k =∑

κ,ζ λ∗
ε,κ,ζ �̂

†
ε,κ,ζ (k) for each irrep channel labeled by ε.

1. A1u

We start with the A1u state. The A1u state is fully gapped
and it respects the full symmetry of the Oh point group,
as indicated in Fig. 3(a). The topological property of such
SCs is featured by the 3D winding number [90–92]. On the

FIG. 5. (a), (b) Show the surface modes for the gapless and full-
gap states on the (001) surface, in the condition with merely one
single Fermi surface taken into account. �̄, X̄ , and M̄ are the high-
symmetry points in the surface BZ shown in Fig. 1(b).

L1 Fermi surface, this state can be described by a vector
d(k) = (αkx, αky, βkz ) (α, β are coefficients determined by
the parameters in the mean-field calculations). Obviously, the
superconductivity on the L1 Fermi surface is topologically
equal to the famous 3He-B phase [93] which is featured by a
three-dimensional (3D) winding number w1 = sgn(αβ ) with
sgn the sign function, and this leads to a Majorana cone on
the surface as shown in Fig. 5(b) (only the L1 Fermi surface
in consideration). Since the A1u pairing order is C4 even,
we can conclude that the winding numbers contributed by
the superconductivity on the four Fermi surfaces are all the
same, and the whole system is characterized by a winding
number w = 4w1. Therefore, in total four Majorana cones are
expected on the surfaces. Specifically, on the (001) surface,
we sketch the Majorana cones in Fig. 3(b).

2. A2u

As shown in Fig. 3(c), the A2u state also preserves the Oh

point group. However, different from the A1u state it possesses
robust superconducting nodes on the Fermi surfaces along the
�-L direction, making the A2u state the so-called topological
Dirac SCs [94]. On the L1 Fermi surface, the superconduc-
tivity can be described by a vector d(k) = (−αky, αkx, 0).
Namely, in the local frame on the L1 Fermi surface the
pairing takes the form �̂(k) ∼ (ikx + ky)ĉk,↑ĉ−k,↑ + (ikx −
ky)ĉk,↓ĉ−k,↓. This is similar to the planar phase of the 3He
superfluid [93], where the pairing occurs between electrons
with the same spin and carries opposite angular momentum
for Cooper pairs with opposite spin. The Dirac nodes lead
to Majorana zero-energy arcs on the surfaces on the sur-
face, which are guaranteed by both the mirror symmetry and
the chiral symmetry. To be more specific, the Dirac nodes
are protected by the 1D mirror-symmetry-protected winding
number and more details are presented in Appendix H. On
the (001) surface the superconductivity on each Fermi surface
results in surface modes in Fig. 5(a), and taking all the four
Fermi surfaces into account, we can get the zero-energy arcs
illustrated in Fig. 3(d). Notice that the zero-energy arcs in
Fig. 3(d) are fourfold degenerate. This phenomenon arises
for the following reasons. (i) The eight Dirac nodes on the
four Fermi surfaces have four projecting points on the (001)
surface because the two Dirac nodes are related by the mirror
symmetry Mh which maps (kX , kY , kZ ) �→ (kX , kY ,−kZ ) in
the global frame must project onto the same point on the
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(001) surface (the L1 and L3 Fermi surfaces are related by Mh,
and so do the L2 and L4 Fermi surfaces). (ii) The zero-energy
arcs from the L1 and L3 Fermi surfaces (the L2 and L4 Fermi
surfaces) which are related by the C2Z = C2

4 symmetry are
located at the same position in the surface BZ. (iii) The super-
conducting order is even under C2Z leading to the zero-energy
arcs from the L1 and L3 Fermi surfaces cannot hybridize (more
details in Appendix H).

Before going to the next state, it is worth pointing out
that for a spin-triplet SC, its superconducting gap is node-
less only when its superconducting order is odd under the
mirror symmetry crossing the Fermi surfaces. This constraint
arises from the fact that in the superconducting order �(k) =
d(k) · σiσ2, d(k) transforms as a vector while σiσ2 trans-
forms as a pseudovector under the crystalline symmetries.
The above statement can be directly verified by comparing
the A1u and A2u states. For instance, we consider the mir-
ror symmetry Ma which crosses the L1 Fermi surface and
maps (kX , kY , kZ ) �→ (kY , kX , kZ ) in the global frame and
(kx, ky, kz ) �→ (−kx, ky, kz ) in the local frame defined at the
L1 point in Fig. 1(b) (Ma = iσ1 in the local frame). It is easy
to check that on the L1 Fermi surface in the kx = 0 plane
Ma transforms the superconducting order as Ma�(k)MT

a =
−�(Mak) for the A1u state while Ma�(k)MT

a = �(Mak) for
the A2u state.

3. Eu

The Eu state in Fig. 3(e) is fully gapped with symmetry
breaking from point group Oh to D4h. Despite the symme-
try breaking, the Eu state shares similar topological property
with the A1u state. On the L1 Fermi surface, it can be de-
scribed by a vector d(k) = (αkx,−αky + βkz, γ ky), which
contributes a winding number w1 = −sgn(αβγ ). Moreover,
the C4 rotational symmetry preserves in the Eu state and
the superconducting order remains invariant under the C4

rotational symmetry. Hence, the superconductivity on the
four Fermi surfaces contributes the same winding number
and the whole system has a total winding number w =
4w1. The surface modes for the Eu state are expected
to be similar to that in the A1u state, as indicated in
Fig. 3(f).

4. T1u

In the phase diagram in Fig. 2, the three T1u states are all
nodal and they respect different symmetry groups, as illus-
trated in Fig. 4. As pointed out, the T1u,[001] state in Fig. 4(a)
is a symmetry-breaking state from point group Oh to D4h,
the T1u,[110] state in Fig. 4(c) from point group Oh to D2h,
and the T1u,[111] state in Fig. 4(e) from point group Oh to D3d .
The nodal gap structure in the three states is guaranteed by the
mirror symmetries.

The analysis for the T1u,[001] state is similar to the A2u state.
Specifically, the T1u,[001] state preserves the mirror symmetry
Ma, and on the L1 Fermi surface, the T1u,[001] state can be
depicted by the vector d(k) = (αky + βkz, γ1kx, γ2kx ). One
can check that the superconducting order is even under Ma,
leading to nodes on the L1 Fermi surface. As the C4 symmetry
is preserved in the T1u,[001] state and the four Fermi surfaces
are related by the C4 symmetry, we can immediately get the

superconductivity on the other Fermi surfaces and the gap
structure in Fig. 4(a). The T1u,[001] has similar surface modes
with the A2u state as shown in Fig. 4(b), and the analysis is also
similar. The similarity between the two states can be naively
understood from the fact that compared to the A2u state, the
T1u,[001] state only breaks the threefold rotational symmetry
which can never be preserved on the (001) surface.

In the T1u,[111] state, similar to the T1u,[001] state on each
Fermi surface there are two Dirac nodes, as presented in
Fig. 4(e). On the L1 and L3 Fermi surfaces, the Dirac nodes
are protected by the mirror symmetry Ma (Ma is defined
in the A2u part); and the superconductivity on the L2 and
L4 Fermi surfaces can be obtained by taking the threefold
rotational symmetry C3 into account, as C3 is preserved in
the T1u,[111] state and the L2 ∼ L4 Fermi surfaces are related
by C3. The T1u,[111] state possesses different surface modes
on the (001) surface compared to the T1u,[001] state, as illus-
trated in Fig. 4(f). One feature for the T1u,[111] state is that
the eight Dirac nodes in the bulk energy spectrum project
onto eight different points on the (001) surface since there
are no symmetry-enforced degenerate projecting points here
(the T1u,[111] state respects the D3d point group and breaks the
mirror symmetry Mh which is vital for the surface modes for
the T1u,[001] state). Another feature for the T1u,[111] state is that
the zero-energy arcs survive only along one direction in the
surface BZ shown in Fig. 4(f) because the mirror symme-
try protecting the bulk Dirac nodes on the L1 and L3 Fermi
surfaces (which is in fact Ma) preserves but the mirror symme-
tries protecting the bulk Dirac nodes on the L2 and L4 Fermi
surfaces cannot be maintained on the (001) surface. Here,
it is worth mentioning that the zero-energy arcs in Fig. 4(f)
are obtained by analyzing the topological invariant based
on the numerical mean-field results because the L1 and L3

Fermi surfaces are not related by any symmetry in the T1u,[111]

state.
Compared to the above two states, the T1u,[110] state is

more special. Based on the numerical results, we find that the
superconductivity on the L1 and L3 Fermi surfaces are nodal
with two Dirac nodes on each Fermi surface, and on the L2

and L4 Fermi surfaces the superconducting gap is full gap,
shown in Fig. 4(c). In fact, this can be understood from the
following two aspects. (i) The T1u,[110] state merely respects
the D2h symmetry group, under which the L1 and L3 Fermi
surfaces (L2 and L4 Fermi surfaces) are related with each other
but the L1(3) and L2(4) Fermi surfaces are not related. (ii)
The superconducting order is even under the mirror symmetry
Ma (as mentioned, Ma crosses the L1 and L3 Fermi surfaces),
which makes the superconductivity nodal on the L1 and L3

Fermi surfaces; however, the superconducting order is odd
under the mirror symmetry C4MaC

−1
4 (C4MaC

−1
4 is the mirror

symmetry crossing the L2 and L4 Fermi surfaces, i.e., the
�L2L4 plane), and this leads to the nodeless gap structures
on the L2 and L4 Fermi surfaces. The surface modes on the
(001) surface for the T1u,[110] state are sketched in Fig. 4(d).
One can notice that in the T1u,[110] state the Dirac nodes on the
L1 and L3 Fermi surfaces cannot result in zero-energy arcs
between the projecting points of the Dirac nodes [the four
Dirac nodes have two projecting points on the (001) surface
due to the mirror symmetry Mh]. This is because, though
the Dirac nodes on each of the Fermi surfaces (the L1 and
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L3 Fermi surfaces) do lead to zero-energy arcs on the (001)
surface shown in Fig. 5(a), the zero-energy arcs from the
two Fermi surfaces will hybridize and gap out on the (001)
surface, which is different from the condition in the T1u,[001]

state shown in Fig. 4(b). The difference arises from the fact
that the L1 and L3 Fermi surfaces are related by C2Z = C2

4 ,
and in the T1u,[110] (T1u,[001]) state the superconducting order
is odd (even) under C2Z . The full-gap superconductivity on
the L2 and L4 Fermi surfaces leads to two Dirac cones on the
(001) surface, which is protected by a mirror Chern number
|CM | = 2 (a more detailed analysis for the mirror Chern num-
ber is presented in Appendix H). The mirror Chern number is
defined as CM = (C+i − C−i )/2, where C+i (C−i) is the Chern
number in the C4MaC

−1
4 invariant subspace with mirror eigen-

value +i (−i) the eigenvalues of Ma in the �L2L4 plane. Here,
we can consider the mirror Chern number because for the
mirror odd superconductivity in each of the mirror-invariant
subspaces in the �L2L4 plane the particle-hole symmetry
preserves [95] while neither the time-reversal symmetry nor
the chiral symmetry (the chiral symmetry is the product of
the time-reversal symmetry and the particle-hole symmetry)
maintains. Moreover, the two mirror-invariant subspaces are
related by the time-reversal symmetry, which means that the
Chern numbers in the two subspaces are always opposite
with each other and the mirror Chern number satisfies CM =
C+i = −C−i. It is easy to check the superconductivity on the
L2 Fermi surface contributes mirror Chern number 1 or −1.
Aside from the L2 Fermi surface, the L4 Fermi surface which
is related to the L2 Fermi surface by C2Z contributes the same
mirror Chern number. Therefore, the SC has |CM | = 2 on the
�L2L4 plane. Based on the above analysis, the surface modes
for the T1u,[110] state on the (001) surface are expected as that
in Fig. 4(d).

5. T2u

As mentioned, the two T2u states in the
phase diagram in Fig. 2 are characterized by
the vectors (rT2u

1 , rT2u
2 , rT2u

3 , rT2u
4 , rT2u

5 ) ⊗ (1, 1, 1) and
(rT2u

1 , rT2u
2 , rT2u

3 , rT2u
4 , rT2u

5 ) ⊗ (0, 0, 1), respectively. Both of
the two states are featured by a nodeless and strongly
anisotropic gap structure, as shown in Fig. 6.

The T2u,[001] state is a symmetry-breaking state from point
group Oh to D4h. We still begin with the superconductiv-
ity on the L1 Fermi surface, which can be described by
a vector d(k) = (αkx, β1ky + β2kz, γ1ky + γ2kz ). Obviously,
the L1 Fermi surface contributes a winding number w1 =
sgn(αβ1γ2 − αβ2γ1). As mentioned, the T2u state keeps the
C4 rotational symmetry. However, in this case, the supercon-
ducting order is C4 odd, namely, there is a π phase difference
between the pairing amplitude on the L1 and L3 Fermi sur-
faces and the superconducting orders on the L2 and L4 Fermi
surfaces. Therefore, the winding numbers contributed by the
four Fermi surfaces have the following relation w1 = −w2 =
w3 = −w4, and the whole system has a total winding num-
ber w = 0. Although the T2u,[001] state has a total winding
number zero, it belongs to a second-order TSC state [19,96–
109]. Moreover, the second-order topological superconduc-
tivity here thoroughly stems from the pairing on the Fermi
surfaces and is protected by the mirror symmetry intrinsi-

FIG. 6. (a), (c) Show the superconducting gap on the Fermi sur-
faces for the T2u,[001] and T2u,[111] states, respectively. (d) Sketches the
surface modes on the (001) surface for the T2u,[111] state. (b) Illustrates
the surface modes and hinge modes for the T2u,[001] state. It sup-
ports four Majorana cones on the (001) surface which are protected
by the mirror symmetries Ma: (kX , kY , kZ ) �→ (kY , kX , kZ ) and Mb:
(kX , kY , kZ ) �→ (−kY , −kX , kZ ); on the (100) and (010) surfaces no
Majorana cones are supported, but there exists one pair of Majorana
helical hinge modes at each intersection between the (100) and (010)
surfaces.

cally. This is different from the previous studies where the
second-order topological superconductivity is realized by in-
troducing external mass domain into the edge modes of a
topological insulator[103–106]. Specifically, the second-order
topological superconductivity is protected by the even mirror
Chern number defined according to the Ma and C4MaC

−1
4

mirror symmetries, namely, the mirror Chern numbers in
the �L1L3 plane and �L2L4 plane. The analysis for the two
mirror Chern numbers is similar to that in the T1u,[110] state
in the above, and it turns out the mirror Chern number in
the �L1L3 plane (the �L2L4 plane) is |CM | = 2 (|CM | = 2).
A more detailed discussion on the mirror Chern number is
listed in Appendix H. For a SC with an even mirror Chern
number, it must be a second-order TSC protected by the
mirror symmetry [101,110]. Correspondingly, in our case two
Majorana cones are expected on the Ma (C4MaC

−1
4 ) invariant

line in the surface BZ on the (001) surface, and there will
be one pair of helical Majorana modes localized on each
hinge respecting the mirror symmetry Ma (C4MaC

−1
4 ) such

as the intersection between the (100) and (010) surfaces. Ac-
cording to the above analysis, we can sketch the topological
surface states and hinge states for the T2u,[001] state as shown
in Fig. 6(b).

For the T2u,[111] state, it has symmetry breaking from Oh to
D3d , as shown in Fig. 6(c). Since the L2 ∼ L4 Fermi surfaces
are related by the C3 rotational symmetry and the supercon-
ducting order is even under C3, the superconductivity on the
L2 ∼ L4 Fermi surfaces contributes the same winding number.
As to the L1 Fermi surface, there is no symmetry operation
which maps it to the other Fermi surfaces. According to the
numerical results, we find that it contributes the same winding
number with each of the other three Fermi surfaces. Therefore,
the T2u,[111] state is a first-order topological SC with total
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winding number w = 4, and we sketch its surface modes in
Fig. 6(d).

IV. DISCUSSION AND CONCLUSION

Our theory may account for the interesting results in the
typical IV-VI semiconductor such as SnTe in recent exper-
iments, including the zero-bias peak in In-doped SnTe in
the soft point-contact spectroscopy measurements [87] and
the gapless excitations on the surface of superconducting
Pb1−xSnxTe revealed by the high-resolution STM measure-
ments [88] where both of the measurements are done on
the (001) surface. The penetration depth and the STM mea-
surements [88,111] indicate a nodeless superconducting gap
in Sn1−xInxTe and Pb1−xSnxTe. As indicated in the phase
diagram in Fig. 2, the A1u, Eu, T2u,[001], and T2u,[111] super-
conductivity can be candidates for the ground states. This is
different from the previous study [112], where SnTe has been
predicted to be in the A1u state. According to our theory, all
of the three states are fully gapped and support gapless exci-
tations on the (001) surface. To distinguish the three states,
the upper critical field measurements can provide important
information. The T2u,[111] state can be distinguished from oth-
ers by measuring the upper critical field applied along the
[001] direction, since among the fully gapped states only
it breaks the fourfold rotational symmetry. As the Eu and
T2u,[001] states preserve the fourfold rotation but break the
threefold rotational symmetry along the [111] direction, the
upper critical field is expected to break the threefold rotational
symmetry accordingly, if the field is applied perpendicular to
the [111] direction. The T2u,[001] state can be distinguished
from the Eu state by measuring the surface modes on different
surfaces. Since the T2u,[001] state is a second-order TSC, it
only supports gapless surface modes on certain surfaces, as
illustrated in Fig. 6(b); the Eu state is a first-order TSC with
winding number 4, which supports Majorana cones on every
surface. Therefore, if the soft point-contact spectroscopy mea-
surements are done on the (111) surface, a zero-bias peak
is expected in the Eu state while it is absent for the T2u

state; similarly, if we take the high-resolution quasiparticle
interference measurements on the (111) surface, the gapless
excitations can be observed only in the Eu state. Moreover, the
helical Majorana modes at the intersection between the (100)
and (010) surfaces can provide smoking-gun evidence for the
T2u,[001] state, which can be detected by the high-resolution
STM measurements.

Although the A2u and T1u states seem not to be the ground
state for SnTe, it may be favored in other doped supercon-
ducting IV-VI semiconductors or systems with similar crystal
and electronic structures. Therefore, we also discuss its ex-
perimental characteristics here. Due to the Dirac points in
its energy spectrum, the specific heat would scale with T 3

at low temperature; and the zero-energy arcs on the surface
can provide further evidences in the quasiparticle interference
measurements.

In summary, the superconductivity in underdoped AB-type
IV-VI semiconductors has been studied theoretically. We start
from a spin-orbit-coupled p-orbital model with interaction
restricted to the next-nearest neighbors. By projecting the p
orbitals onto the Fermi surfaces, a single-band effective model

TABLE VII. The anisotropic coefficient ξ for the AB-type IV-VI
semiconductors. ξ has been fit for both the conduction band bottom
and valence band top based on the first-principle results.

ξ SnTe PbTe PbSe

Valence band 0.417724 0.0940988 0.798178

Conduction band 1.64083 0.110617 0.790197

is derived. We solve the model at the mean-field level and
study the possible spin-triplet superconductivity systemati-
cally. We find that various superconducting states, including
the A1u, A2u, Eu, T1u, and T2u states, appear in the phase
diagram with respect to the anisotropy of the Fermi surface
and the interaction strength. All the states are time-reversal
invariant. Symmetry breaking and topological properties of
the ground states are discussed. The corresponding edge states
are presented. The experimental detections for the ground
states are suggested.
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APPENDIX A: PARAMETERS FOR THE AB-TYPE
IV-VI SEMICONDUCTORS

Based on the first-principle calculations on the electronic
structures of the AB-type IV-VI semiconductors, including
SnTe, PbTe, and PbSe, we fit the parameters ξ and θ in the
main text for these materials, as listed in Tables VII and VIII
in the following. The anisotropic parameter ξ is obtained by
fitting the bands along the [11̄0] and [111] directions (both
directions are defined in the global frame). The parameter
θ featuring the mix between the |J = 3

2 , jz = ± 1
2 〉 and |J =

1
2 , jz = ± 1

2 〉 states on the Fermi surfaces is obtained based
on the bands at the L1 point (we focus on the small-Fermi-
surface limit) in the presence of spin-orbit coupling from the
first-principle simulations.

APPENDIX B: SUPERCONDUCTING PHASE DIAGRAMS

Based on the numerical method presented in the following
sections, we solve the mean-field Hamiltonian and get the su-
perconducting phase diagrams. In the main text, we only show
the results for the two cases with θ = −0.25 = −0.08π and
θ = −2.0735 = −0.66π . Here, we present a systematic study
with respect to different values of θ , and the results are shown

TABLE VIII. The mixing angle θ for the AB-type IV-VI semi-
conductors at the L1 point.

θ SnTe PbTe SnSe

Valence band −0.780014 −2.5244 −1.48254

Conduction band −2.2809 −0.251672 −2.05523
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FIG. 7. The phase diagrams with respect to different θ .

in Fig. 7. The detailed phase diagrams for the SnTe condition,
θ = −0.78 = −0.248π and θ = −2.28 = −0.726π , are pre-
sented in Fig. 8. Notice that the superconducting ground states
appearing in phase diagrams for SnTe are the same as those in
the phase diagrams in the main text.

Aside from the phase diagrams with respect to the different
values of θ , we also present the results for the PbTe in Fig. 9,
whose Fermi surfaces are highly anisotropic. As shown in
Fig. 9(a), if the Fermi energy lies in the conduction bands,
only the full-gap superconducting states are supported; and if
the Fermi energy lies in the valence bands, the condition is
more complicated as shown in Fig. 9(b). Notice that in the
phase diagrams, except for the Eu,[01] state, other states are
all the same as those in the main text. In fact, the Eu,[01] state
has similar gap structures and topological properties with the

FIG. 8. The phase diagrams for SnTe, where θ = −0.726π cor-
responds to the conduction band and θ = −0.248π corresponds to
the valence band.

A2u state since their superconducting orders transform in a
similar way under the crystalline symmetries (compared to the
A2u state, the Eu,[01] state only breaks the threefold rotational
symmetry) which can be seen from Table VI in the main
text.

APPENDIX C: MOMENTUM DEPENDENCE OF
INTRAPOCKET AND INTERPOCKET INTERACTIONS

The lattice structure and Brillouin zone are shown in Fig. 1
in the main text. We introduce the density-density interaction
in the paper written as below:

Hint = U0

∑
i

n̂in̂i + U1

2

∑
〈i j〉

n̂in̂ j + U2

2

∑
〈〈i j〉〉

n̂in̂ j . (C1)

FIG. 9. The phase diagrams corresponding to the anisotropy co-
efficient ξ = 0.1.
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We take the Fourier transformation to Eq. (C1) and obtain

Hint = 1

N

∑
K1,K2,q,l1,l2

ψ̂
†
K1+q,l1

ψ̂K1,l1ψ̂
†
K2−q,l2

ψ̂K2,l2

×
(

U0 + U1

2

∑
〈i j〉

e−iri j ·q + U2

2

∑
〈〈i j〉〉

e−iri j ·q
)

, (C2)

where N is the number of the sites. We restrict the electronic
states involved in the interaction within an area near the Fermi
surfaces and set K = Ln + k, K + q = Lm + k′, |Ek − μ| <

δμ, |Ek′ − μ| < δμ, where Lm is the vector from the � point
to Lm point; Ek is the kinetic energy of the states with mo-
mentum L1,2,3,4 + k; μ is the chemical potential and δμ is
the cutoff energy in the summation δμ � μ. We can derive
|k|, |k′| ∼ kF � |L1,2,3,4|, q = Lm − Ln + k′ − k = Lmn + q̃
with Lmn = Lm − Ln and q̃ ≡ k′ − k, |q̃| � |Lmn|. We define
a new density operator ρ̂q̃,mn = ∑̃

k,l ψ̂
†
l (k + q̃ + Lm)ψ̂l (k +

Ln), where we use
∑̃

k to denote a cutoff on both the kinetic
energy Ek and Ek+q̃ in the summation. Then, the Hamiltonian
becomes

Hint = 1

N

∑̃
q̃,m=n

ρ̂q̃,mmρ̂−q̃,mm

(
U0 + U1

2

∑
〈i j〉

e−iri j ·q̃ + U2

2

∑
〈〈i j〉〉

e−iri j ·q̃
)

+ 1

N

∑̃
q̃,m,n

ρ̂q̃,mnρ̂−q̃,mn

(
U0 + U1

2

∑
〈i j〉

e−iri j ·(q̃+Lmn ) + U2

2

∑
〈〈i j〉〉

e−iri j ·(q̃+Lmn )

)
. (C3)

From Fig. 1(a) we can obtain r〈i j〉 = a0
2 (±1,±1, 0)ᵀ, a0

2 (±1, 0,±1)ᵀ, a0
2 (0,±1,±1)ᵀ, and r〈〈i j〉〉 = a0(±1, 0, 0)ᵀ, a0(0,±1, 0)ᵀ,

a0(0, 0,±1)ᵀ. From Fig. 1(b) we can obtain Lmn = 2π
a0

(±1, 0, 0)ᵀ, 2π
a0

(0,±1, 0)ᵀ, 2π
a0

(0, 0,±1)ᵀ. We substitute r〈i j〉, r〈〈i j〉〉, and
Lmn into Eq. (C3) and obtain the intrapocket and interpocket interactions from different neighbors as follows,

a. Intrapocket the nearest neighbors:

Hint-intra-n = 1

N

U1

2

∑
q̃,m

ω 
=ω′∑
ω,ω′=x,y,z

ρ̂q̃,mmρ̂−q̃,mm
(
e−i a0

2 (q̃ω+q̃ω′ ) + e−i a0
2 (q̃ω−q̃ω′ ) + e−i a0

2 (−q̃ω+q̃ω′ ) + e−i a0
2 (−q̃ω−q̃ω′ )

)
= 1

N
U1

∑
q̃,m

ω 
=ω′∑
ω,ω′=x,y,z

ρ̂q̃,mmρ̂−q̃,mm

[
cos

(
a0

2
(q̃ω + q̃ω′ )

)
+ cos

(
a0

2
(q̃ω − q̃ω′ )

)]

= 1

N
U1

∑
q̃,m

ρ̂q̃,mmρ̂−q̃,mm

(
6 − a2

0

2
(q̃2

x + q̃2
y + q̃2

z )

)
. (C4)

b. Intrapocket the next nearest neighbors:

Hint-intra-nn = 1

N

U2

2

∑
q̃,m

ρ̂q̃,mmρ̂−q̃,mm
(
eia0 q̃x + e−ia0 q̃x + eia0 q̃y + e−ia0 q̃y + ei a0

2 q̃z + e−i a0
2 q̃z
)

= 1

N
U2

∑
q̃,m

ρ̂q̃,mmρ̂−q̃,mm[cos (a0q̃x ) + cos (a0q̃y) + cos (a0q̃z )]

= 1

N
U1

∑
q̃,m

ρ̂q̃,mmρ̂−q̃,mm

(
3 − a2

0

2
(q̃2

x + q̃2
y + q̃2

z )

)
. (C5)

c. Interpocket the nearest neighbors:

Hint-inter-n = 1

N

U1

2

∑
q̃mn

∑
〈〈i j〉〉

ρ̂q̃,mnρ̂−q̃,mne−i(Lmn·ri j+q̃·ri j )

= 1

N
U1

∑
q̃mn

ρ̂q̃,mnρ̂−q̃,mn

[
cos

(
π + a0

2
(q̃⊥1 + q̃‖)

)
+ cos

(
π + a0

2
(q̃⊥1 − q̃‖)

)
+ cos

(
π + a0

2
(q̃⊥2 + q̃‖)

)

+ cos

(
π + a0

2
(q̃⊥2 − q̃‖)

)
+ cos

(
a0

2
(q̃⊥1 + q̃⊥2)

)
+ cos

(
a0

2
(q̃⊥1 − q̃⊥2)

)]
= 1

N
U1

∑
q̃mn

ρ̂q̃,mnρ̂−q̃,mn

(
−2 + 1

2
q̃2

‖

)
, (C6)
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where we use q̃‖ to denote the component of q̃ parallel to Lmn and q̃⊥1,2 to denote the other two components perpendicular to
Lmn. For example, we take m = 1, n = 2, L12 = 2π

a0
(−1, 0, 0). q̃‖ is taken as q̃x and q̃⊥1,2 are taken as q̃y and q̃z.

d. Interpocket the next-nearest neighbors:

Hint-intra-nn = 1

N

U2

2

∑
q̃mn

ρ̂q̃,mnρ̂−q̃,mn
(
ei(2π+a0 q̃‖ ) + ei(2π−a0 q̃‖ ) + eia0 q̃⊥1 + e−ia0 q̃⊥1 + ei a0

2 q̃⊥2 + e−i a0
2 q̃⊥2

)
= 1

N
U2

∑
q̃

ρ̂q̃,mnρ̂−q̃,mn[cos (a0q̃‖) + cos (a0q̃⊥1) + cos (a0q̃⊥2)]

= 1

N
U2

∑
q

ρ̂q̃,mnρ̂−q̃,mn

(
3 − a2

0

2
(q̃2

‖ + q̃2
⊥1 + q̃2

⊥2)

)
. (C7)

Here we simplify q̃2
x + q̃2

y + q̃2
z and q̃2

‖ + q̃2
⊥1 + q̃2

⊥2 as q̃2 and write the interaction as Hint = ∑
i,q̃

1
N Ui fi(q̃ + Lmn)ρ̂q̃,mnρ̂−q̃,mn

with fi(q̃ + Lmn) listed in Table I.

APPENDIX D: PROJECTION FROM ORBITAL BASIS
TO THE BAND BASIS

In the weak-coupling condition, only the interaction be-
tween the states on the Fermi surfaces is essential. In the
above, we have constrained the momentum K and K + q near
the Fermi surfaces and take an energy cutoff in the summa-
tion. To obtain the effective interaction on the Fermi surfaces,
we need to project the states from the orbital basis onto the
states on the Fermi surfaces (remember that in the low-doping
condition, we use the states at the L points to label the states
on the Fermi surfaces). We first establish four local reference
frames with Lm as the coordinate origin and �Lm as the z axis
shown in Fig. 10. The axes of the local reference frame at L1

written in the global reference frame are defined as

x =
(√

2

2
,−

√
2

2
, 0

)ᵀ

y =
(√

6

6
,

√
6

6
,−
√

2

3

)ᵀ

z =
(√

1

3
,

√
1

3
,

√
1

3

)ᵀ

,

FIG. 10. The local reference coordinates on four L points.

and the other three coordinates of the local reference frames
can be obtained by taking the C4 (defined along the kZ

axis) rotation on the first one. We transform the states
created by the operator ψ̂†(k + Lm) in the global refer-
ence frame to the states created by the operator φ̂†(k)
in the local reference frames by the operator Ûm, and
ψ̂

†
l (k + Lm) = Ûmφ̂

†
m,l (k)Û †

m = ∑
w Um

wl φ̂
†
m,w(k) and ψ̂l (k +

Lm) = Ûmφ̂m,l (k)Û †
m = ∑

w Um∗
wl φ̂m,w(k). For the intrapocket

interaction, m = n, the density operator is transformed as

ρ̂q̃,mm =
∑̃
k,l

ψ̂
†
l (k + q̃ + Lm)ψ̂l (k + Lm)

=
∑̃
k,l

Ûmφ̂
†
m,l (k + q̃)Û †

mÛmφ̂n,l (k)Û †
m

=
∑̃

k,l,w,v

Um
wlUm∗

vl φ̂†
m,w(k + q̃)φ̂n,v (k)

=
∑̃
k,w

φ̂†
m,w(k + q̃)φ̂m,w(k). (D1)

We use the fact that the similarity transformation matrix Um

is unitary and
∑

l Um
wlUm∗

vl = δwv . For the interpocket interac-
tion, m 
= n, and we have

ρ̂q̃,mn =
∑̃
k,l

ψ̂
†
l (k + q̃ + Lm)ψ̂l (k + Ln)

=
∑̃
k,l

Ûmφ̂
†
m,l (k + q̃)Û †

mÛnφ̂n,l (k)Û †
n

=
∑̃

k,l,w,v

Um
wlUn∗

vl φ̂†
m,w(k + q̃)φ̂n,v (k)

=
∑̃
k,w,v

Dmn
wvφ̂

†
m,w(k + q̃)φ̂n,v (k), (D2)

where the matrix Dmn can be obtained by the following two
steps. (i) The representation of the density operator ρ̂q̃,mn

is an identity matrix in the global reference frame and is
invariant under the similarity transformation. We take a ro-
tation on the global referencee frame and make the directions
of the axes coinciding with the local reference frame at L1.
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(ii) We take C4 rotation to transform the orbitals defined
in the reference coordinates of the local reference frame at
L1 to the orbitals in the local reference frames at Lm and
Ln. The matrix Um can be obtained as Um = e− i

2 (m−1) π
2 σ·ẑ ⊗

e−i(m−1) π
2 s·ẑ. σ = (σx, σy, σz ), s = (sx, sy, sz ). σx,y,z and sx,y,z

are the generators of SU(2) and SO(3) group, respectively.
ẑ is the unit vector in the direction of the kZ axis in

the local reference frame ẑ = (0,−
√

2
3 ,

√
1
3 )ᵀ. The matrix

Dmn is obtained as Dmn = UmUn†. The interaction under
the basis of the four local reference frames is obtained
as

Hint =
∑

mq̃kl1l2

φ̂
†
m,k+q̃,l1

φ̂
†
m,−k−q̃,l2

φ̂m,−k,l2 φ̂m,k,l1 [U0 + U1 f1(q̃) + U2 f2(q̃)]

+
∑
q̃kmn

∑
w1w2v1v2

Dmn
w1v1

Dmn
w2v2

φ̂
†
m,k+q̃,w1

φ̂
†
m,−k−q̃,w2

φ̂n,−k,v2 φ̂n,k,v1 [U0 + U1 f1(q̃ + Lmn) + U2 f2(q̃ + Lmn)]. (D3)

For the next step, we transform the orbital w1, w2, v1, and v2 in the local reference frames to the eigenstates of the C3 rotation
(defined along �Lm) with eigenvaules jz = ± 1

2 , including |J = 3
2 , jz = ± 1

2 〉, |J = 1
2 , jz = ± 1

2 〉 on each pocket. The relations
between the orbital basis and angular momentum basis can be obtained by Clebsch-Gordan coefficients∣∣∣∣J = 1

2
, jz = 1

2

〉
= − 1√

3
|pz,↑〉 − 1√

3
|px,↓〉 − i√

3
|py,↓〉,∣∣∣∣J = 3

2
, jz = 1

2

〉
=
√

2

3
|pz,↑〉 − 1√

6
|px,↓〉 − i√

6
|py,↓〉,∣∣∣∣J = 1

2
, jz = −1

2

〉
= 1√

3
|pz,↓〉 − 1√

3
|px,↑〉 + i√

3
|py,↑〉,∣∣∣∣J = 3

2
, jz = −1

2

〉
=
√

2

3
|pz,↓〉 + 1√

6
|px,↑〉 − i√

6
|py,↑〉. (D4)

We obtain the interaction in the angular momentum basis as

Hint =
∑

mq̃kt1t2

φ̂
†
m,k+q̃,t1

φ̂
†
m,−k−q̃,t2

φ̂m,−k,t2 φ̂m,k,t1 [U0 + U1 f1(q̃) + U2 f2(q̃)]

+
∑
q̃kmn

∑
w1w2v1v2

∑
t1t2r1r2

G∗
w1t1D

mn
w1v1

Gv1r1G∗
w2t2D

mn
w2v2

Gv2t2 φ̂
†
m,k+q̃,t1

φ̂
†
m,−k−q̃,t2

φ̂n,−k,r2 φ̂n,k,r1 [U0 + U1 f1(q) + U2 f2(q)], (D5)

where the indices t1,2, r1,2 = 1, 2, 3, 4 denote the basis |J = 1
2 , jz = 1

2 〉, |J = 3
2 , jz = 1

2 〉, |J = − 1
2 , jz = 1

2 〉, and |J = 3
2 , jz =

− 1
2 〉, respectively. Gw′

1t1 is the transformation coefficient with w′
1 = 1, 2, 3, 4, 5, 6 indicating the orbitals in the local reference

frame (↑,↓) ⊗ (px, py, pz ):

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1√
3

1√
6

0 0 i√
3

− i√
6

− 1√
3

√
2
3 0 0

− 1√
3

− 1√
6

0 0

− i√
3

− i√
6

0 0

0 0 1√
3

√
2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D6)

We can simplify the interaction as

Hint =
∑

mq̃kt1t2

φ̂
†
m,k+q̃,t1

φ̂
†
m,−k−q̃,t2

φ̂m,−k,t2 φ̂m,k,t1 [U0 + U1 f1(q̃) + U2 f2(q̃)]

+
∑
q̃kmn

∑
t1t2r1r2

(G†DmnG)t1r1 (G†DmnG)t2r2 φ̂
†
m,k+q̃,t1

φ̂
†
m,−k−q̃,t2

φ̂n,−k,r2 φ̂n,k,r1 [U0 + U1 f1(q) + U2 f2(q)]. (D7)

Based on the effective Hamiltonian Hmix on the Fermi surface introduced in the main text, we take the two eigenstates | jz = ± 1
2 〉2

as the states on the Fermi pockets. Finally, we project the interaction in the global reference frame onto the four Fermi surfaces
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and obtain

Hint =
∑

mq̃kd1d2

ĉ†
m,k+m̃,q,d1

ĉ†
m,−k−q̃,d2

ĉm,−k,d2 ĉm,k,d1 [U0 + U1 f1(q̃) + U2 f2(q̃)]

+
∑
q̃kmn

∑
d1d2g1g2

(M†G†DmnGM)d1g1 (M†G†DmnGM)d2g2 ĉ†
m,k+q̃,d1

ĉ†
m,−k−q̃,d2

ĉn,−k,g2 ĉn,k,g1 [U0 + U1 f1(q) + U2 f2(q)]. (D8)

Here we use ĉm,k,d to denote the states on the mth Fermi
pocket with pseudospin d =↑ (↓). M is composed by the
eigenstates on the Fermi surfaces | jz = ± 1

2 〉2,

M =

⎛⎜⎜⎜⎝
cos θ

2 0

sin θ
2 0

0 − cos θ
2

0 sin θ
2

⎞⎟⎟⎟⎠. (D9)

APPENDIX E: INDUCING IRREPS OF POINT GROUP
Oh FROM POINT GROUP D3d

The point group Oh is the semidirect product of point
group D3d and the fourfold cyclic group {C4,C2

4 ,C3
4 ,C4

4 },
which means Oh = {D3d ,C4D3d ,C2

4 D3d ,C3
4 D3d} =

{D3d , D3dC4, D3dC2
4 , D3dC3

4 }. We can obtain that for any
element R1 in the point group D3d , we can always find
another element R2 also in D3d which satisfies R1Cα

4 = Cβ

4 R2.
Namely, for a given α we can find a β satisfying the relation

∀ α ∈ {1, 2, 3, 4}, R1 ∈ D3d , ∃β ∈ 1, 2, 3, 4,

R2 ∈ D3d , R1C
α
4 = Cβ

4 R2. (E1)

In the point group D3d , there are three C2 rotation symmetries
denoted as C2a, C2b, and C2c. The axis of C2a coincides with
the x axis in the local reference frame. The axes of C2b and C2c

are obtained by acting the C3 rotation (along �L) on the axis
of C2a. We take one element from each class of D3d , C3, and
C2a to show the relations in Eq. (E1):

C3C4 = C4
3C2

3 , C3C4
2 = C4C2b, C3C4

3 = C4
2C2c,

(E2)

C2aC4 = C4
3C2

2a, C2aC4
2 = C2

4C2a, C2aC4
3 = C4C2a.

(E3)

The other symmetries can be analyzed similarly. In the main
text, we have already shown the irreps basis of D3d denoted as
δ̂ι,η. The index ι indicates the irreps and η indicates the com-
ponent of the irreps. For the one-dimensional irreps like a1g(u)

and a2g(u), η = 1, while for eu(g), η = 1, 2. For the element R
in the group D3d , we have

Rδ̂ι,η1 =
∑
η2

δ̂η2Rι(R)η2η1 , (E4)

where Rι(R) is the irreps matrix of the element R. Now we add
a superscript m on the irreps basis, i.e., δ̂m

ι,η, to denote δ̂ι,η on
the Fermi pocket at Lm. In the last section, we act C4 rotation
on the first local reference frame directly to obtain the other
three. Similarly, we have Ci

4δ̂
m
ι,η = δ̂(m+i) mod 4

ι,η . We can obtain

the representations of C4 and C2
4 in the equation below:

Rι(C4) =

⎛⎜⎜⎝
0 0 0 Iι

Iι 0 0 0
0 Iι 0 0
0 0 Iι 0

⎞⎟⎟⎠,

D
(
C2

4

) =

⎛⎜⎜⎝
0 0 Iι 0
0 0 0 Iι

Iι 0 0 0
0 Iι 0 0

⎞⎟⎟⎠, (E5)

where we use Iι to denote the identity matrix with the same
dimension as the irreps of D3d indicated by ι. Based on
Eqs. (E2), (E3), and (E4), we can induce the representa-
tions of group Oh based on the irreps basis of group D3d ,
{δ̂1

ι , δ̂
2
ι , δ̂

3
ι , δ̂

4
ι }, where the index η is suppressed and δ̂m

ι de-
notes the vector {δ̂m

ι,1, . . . , δ̂
m
ι,η}:

C3δ̂
1
ι = δ̂1

ι Rι(C3),

C3δ̂
2
ι = C3C4δ̂

1
ι = C3

4C2
3 δ̂1

ι

= C3
4 δ̂1

ι Rι(C
2
3 ) = δ̂4

ι Rι(C
2
3 ),

C3δ̂
3
ι = C3C

2
4 δ̂1

ι = C4C2bδ̂
1
ι

= C4δ̂
1
ι Rι(C2b) = δ̂2

ι Rι(C2b),

C3δ̂
4
ι = C3C

3
4 δ̂1

ι = C2
4C2cδ̂

1
ι

= C2
4 δ̂1

ι Rι(C2c) = δ̂3
ι Rι(C2c), (E6)

and, similarly, for C2a we have

C2aδ̂
1
ι = δ̂1

ι Rι(C2a),

C2aδ̂
2
ι = C2aC4δ̂

1
ι = C3

4C2aδ̂
1
ι

= C3
4 δ̂1

ι Rι(C2a) = δ̂4
ι Rι(C2a),

C2aδ̂
3
ι = C2aC

2
4 δ̂1

ι = C2
4C2aδ̂

1
ι

= C2
4 δ̂1

ι Rι(C2a) = δ̂3
ι Rι(C2b),

C2aδ̂
4
ι = C2aC

3
4 δ̂1

ι = C4C2aδ̂
1
ι

= C4δ̂
1
ι Rι(C2a) = δ̂2

ι Rι(C2a). (E7)

With the two equations in the above, we can obtain the in-
duced representation of C3 and C2a in group Oh as

Rι(C3) =

⎛⎜⎜⎜⎝
Rι(C3) 0 0 0

0 0 Rι(C2b) 0

0 0 0 Rι(C2c)

0 Rι(C2
3 ) 0 0

⎞⎟⎟⎟⎠, (E8)
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TABLE IX. The irreps matrices of point group D3d .

C3 C2
3 C2a C2b C2c

a1g(u) 1 1 1 1 1

a2g(u) 1 1 −1 −1 −1

eg(u) (
− 1

2 −
√

3
2√

3
2 − 1

2

) (
− 1

2

√
3

2

−
√

3
2 − 1

2

) (1 0
0 −1) (

− 1
2 −

√
3

2

−
√

3
2

1
2

) (
− 1

2

√
3

2√
3

2
1
2

)

Rι(C2a) =

⎛⎜⎜⎜⎝
Rι(C2a) 0 0 0

0 0 0 Rι(C2a)

0 0 Rι(C2a) 0

0 Rι(C2a) 0 0

⎞⎟⎟⎟⎠.

(E9)

We use Rι(R) to denote the representations of Oh and all of
the irreps of D3d , Rι(R), are listed in Table IX. So far, we
have obtained the induced representations of C3, C2a, C4, and
C2

4 which belong to different classes in group Oh. The induced
representations are not irreps apparently and we decompose
the induced representations into the irreps in the form of the
equation

XRι(R)X † =
⊕

ε

(⊕
cε

Rε (R)

)
, (E10)

where X is a similarity transformation matrix and cε denotes
how many times the irrep Rε (R) appear in the decomposition
with ε indicating the irreps of Oh. cε can be obtained as cε =∑

R∈Oh

1
gχε (R)∗χ (R). g is the order of the group which equals

to 48 for Oh. χε (R) is the character of the irreps of the element
R and χ (R) is the character of Rι. At last, we decompose the
induced representations as follows:

X1Ra1u(g) (R)X †
1 = RA1u(g) (R) ⊕ RT2u(g) (R),

X2Ra2u(g) (R)X †
2 = RA2u(g) (R) ⊕ RT1u(g) (R),

X3Reu(g) (R)X †
3 = REu(g) (R) ⊕ RT1u(g) (R) ⊕ RT2u(g) (R). (E11)

We use a1u(g), a2u(g), and eu(g) to denote irreps of D3d

distinguishing with the irreps of Oh written as A1u(g),
A2u(g), Eu(g), T1u(g), and T2u(g). The similarity matrices X1,2,3

can be solved out to obtain the induced irreps basis of group
Oh which are shown explicitly in the main text.

APPENDIX F: SINGLET STATES EXCLUDED
FROM OUR CONSIDERATION

In Eq. (4), we expand the interaction to the second order of
q̃. The interaction in the zeroth order has the pairing function
as a constant and is decomposed into a trivial channel δ̂†

a1g
δ̂a1g .

After we introduce k and k′ in Appendix C, the interaction in
the second order of q̃ can be written as q̃2 = k2 + k′2 − 2kk′.
Among the three terms, k2 and k′2 provide the even-parity
pairing, and in the even-parity pairing channels the interaction
can be decomposed as δ̂†

ε δ̂a1g + H.c. The irrep a1g can only
induce the A1g and T2g irreps of group Oh. Therefore, the even-
parity pairing channels can be only A1g and T2g. Moreover,
both the A1g and T2g pairing states are topologically trivial.

We assume the onsite interaction strength |U0| much bigger
than the other two, |U0| � |U1|, |U2|. When the onsite inter-
action is attractive, i.e., U0 < 0, the interaction in Eq. (D8) is
domained by the term in the zeroth order of k. The intrapocket
interaction can be decomposed as

X1

⊕
m

(
δ̂m†

a1g
δ̂m

a1g

)
X †

1 = �̂
†
A1g

�̂A1g ⊕ �̂
†
T2g

�̂T2g. (F1)

Thus, when U0 < 0, the ground state is dominated by the
topologically trivial channels.

For the repulsive onsite interaction, U0 > 0, the zeroth-
order interaction (U0 dominates U1 and U2) are positive which
cannot support superconductivity on the mean-field level. We
then expand the interaction to the second order of k. Here, we
use �̂0

A1g
and �̂0

T2g
to denote the basis composed by the pairing

function in the zeroth order of k and �̂2
A1g

and �̂2
T2g

to denote
the basis composed by the pairing function in the second order
of k. The interaction decomposed into A1g channel can be
written as

Hint = (
�̂

0†
A1g

, �̂
2†
A1g

)( h0(θ,U0) h(θ,U1,U2)

h(θ,U1,U2)∗ 0

)(
�̂0

A1g

�̂2
A1g

)
,

(F2)

where h0(θ,U0) = 3 + 1
12 [4 cos(θ ) + 3 cos(2θ ) + 5]

obtained in the former sections and |h(θ,U1,U2)| �
|h0(θ,U0)|. We diagonalize Hint matrix and obtain
the coefficient for each A1g channel as h0(θ,U0 )

2 ±√
h0(θ,U0 )2

4 + |h(θ,U1,U2)|2, in which only one is

negative but close to zero, lim|h(θ,U1,U2 )|�|h0(θ,U0 )| h0(θ,U0 )
2 −√

h0(θ,U0 )2

4 + |h(θ,U1,U2)|2 = −| h(θ, U1, U2 )
h0(θ,U0 ) ||h(θ,U1,U2)| ∼

0. The analysis for the T2g channel is similar to A1g. Therefore,
the onsite repulsive interaction excludes the spin-singlet
pairing states.

APPENDIX G: MEAN-FIELD APPROXIMATION
CALCULATION

We use � to denote the superconducting gap and μ to de-
note the chemical potential. In the weak-pairing limit, we only
consider the electronic states within a shell near the Fermi sur-
faces. We take the thickness of the shell as 2δμ, i.e., μ − δμ <
k2

x +k2
y

2m + ξk2
z

2m < μ + δμ. Moreover, in the weak-pairing limit it
requires

� � δμ � μ. (G1)

The pairing part of the BdG Hamiltonian is written as

Hpairing = (ĉk,↑, ĉk,↓)[id1(k)σ1σ2 + id2(k)σ2σ2

+ id3(k)σ3σ2]

(
ĉ−k,↑
ĉ−k,↓

)
+ H.c., (G2)

where σ are the Pauli matrices. For the spin-triplet states
from the interaction expanded to the second order of k,
d1,2,3(k) are linear functions of k. In the spherical coordinates,
k = k(sin θ cos φ, sin θ sin φ, cos θ ), and the linear function
d1,2,3(k) can be written as kd1,2,3(θ, φ), where k is the mag-
nitude of k. We also write di(θ, φ) into the vector form
d = (d1(θ, φ), d2(θ, φ), d3(θ, φ)). The dispersion of the BdG
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Hamiltonian can be obtained as

E (k, θ, φ) = ±
√(

g(θ, φ)

2m
k2 − μ

)2

+ k2d2 ± 2k2
√

[Re (d ) × Im (d )] · [Re (d ) × Im (d )]. (G3)

In the equation above, g(θ, φ) = sin θ2 + ξ cos θ2. ξ is used to depict the anisotropy of the Fermi surfaces. For simplicity, we
suppress the variables θ , φ and write g(θ, φ) and di(θ, φ) as g and di in the following calculation. When the di function has the
same phase, arg(d1) = arg(d2) = arg(d3), we have Re(d ) × Im(d ) = 0. In this condition, the system has lower free energy and
the time-reversal symmetry is respected. We take a gauge where arg(d1) = arg(d2) = arg(d3) = 0. Namely, d1, d2, and d3 are all
real and the dispersion takes the form as

E (k, θ, φ) = ±
√(

g(θ, φ)

2m
k2 − μ

)2

+ k2d2. (G4)

We integrate the negative eigenvaules within a shell (with a thickness of δμ) near the four Fermi surfaces to obtain the free
energy. The free energy saved in the superconducting state is

�E =
∫

d�

∫ g
2m k2=μ+δμ

g
2m k2=μ−δμ

ρkk2dk

⎛⎝√( g

2m
k2 − μ

)2

+ d2k2 −
∣∣∣∣ g

2m
k2 − μ

∣∣∣∣
⎞⎠+ Nλ2

f̃ (U1,U2)
, (G5)

where � stands for the solid angle, d� = sin θ dθ dφ, and ρk is the density of the states with respect to k which is treated
as a constant in the integral area. In the above equation, λ and f̃ (U1,U2) are short for λε and f̃ε (U1,U2), with ε labeling the
channels with different symmetries. λε is the modulus of the vector �ε = (λε,1,1, . . . , λε,κ,ζ )ᵀ obtained from the mean-field
approximation, and λε,κ,ζ = 1

N

∑
k f̃ε,κ (U1,U2)�̂ε,κ,ζ = 〈 f̃ε,κ (U1,U2)�̂ε,κ,ζ 〉 with �̂ε,κ,ζ being the ζ th basis of the κth irrep

in the channel ε. For example, we totally have 5 T2u and T2u is a three-dimensional irrep. We take ε = T2u, κ = 1, 2, 3, 4, 5,
ζ = 1, 2, 3. In general, λε,κ,ζ is a complex number. However, due to the time-reversal symmetry, we can choose a gauge where

λε,κ,ζ is real. f̃ε (U1,U2) is the effective interaction in the corresponding channel, and f̃ε (U1,U2) = λ2
ε/
∑

κ,ζ

λ2
ε,κ,ζ

f̃ε,κ (U1,U2 )
. We write

�E as �E ′ + λ2

f̃ (U1,U2 )
, with �E ′ being the integral part in Eq. (G5). We can change the variable k in the integral to x = k2 and

obtain

�E ′ =
∫

d�

∫ 2m
g (μ+δμ)

2m
g (μ−δμ)

ρkdx

√
x

2

⎛⎝√( g

2m
x − μ

)2

+ d2x −
∣∣∣∣ g

2m
x − μ

∣∣∣∣
⎞⎠. (G6)

Then, we substitute x with 2mμ

g t ,

�E ′ =
∫

d�

∫ 1+ δμ

μ

1− δμ

μ

ρkdt
(2m)

3
2 μ

5
2

2g
3
2

√
t

⎛⎝√(t − 1)2 + 2md2

gμ
t − |t − 1|

⎞⎠
=
∫

d�

∫ δμ

μ

− δμ

μ

ρkdt
(2m)

3
2 μ

5
2

2g
3
2

√
t + 1

⎛⎝√t2 + 2md2

gμ
(t + 1) − |t |

⎞⎠. (G7)

According to the relation in Eq. (G1), δμ

μ
� 1, we have

lim
t→0

√
t + 1

⎛⎝√t2 + 2md2

gμ
(t + 1) − |t |

⎞⎠ =
√

t2 + 2md2

gμ
− |t |. (G8)

We substitute Eq. (G8) into (G7) and simplify the integral as

�E ′ = ρk

∫
d�

(2m)
3
2 μ

5
2

g
3
2

∫ δμ

μ

0

⎛⎝√t2 + 2md2

gμ
− t

⎞⎠
= ρk

∫
d�

(2m)
3
2 μ

5
2

g
3
2

⎡⎣1

2

δμ

μ

√
2md2

gμ
+ δμ2

μ2
+ 1

2

2md2

gμ
ln

⎛⎝δμ

μ
+
√

2md2

gμ
+ δμ2

μ2

⎞⎠− 1

4

2md2

gμ
ln

2md2

gμ
− 1

2

δμ2

μ2

⎤⎦.

(G9)
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We also have 2md2

gμ
/

δμ2

μ2 � 1 derived from

2md2

gμ

/
δμ2

μ2
= 2md2μ

δμ2g
= d2k2

F μ

δμ2 g
2m k2

F

= �2μ

δμ2μ
= �2

δμ2 � 1. (G10)

We approximate
√

2md2

gμ + δμ2

μ2 − δμ

μ
as 1

2
2md2

gδμ
and

√
2md2

gμ + δμ2

μ2 + δμ

μ
as 2 δμ

μ
, and substitute it into Eq. (G9) obtaining

�E ′ =
∫

ρkd�
(2m)

3
2 μ

5
2

g
3
2

[
1

4

2md2

gμ
+ 1

4

2md2

gμ
ln

(
4gδμ2

2mμd2

)
+ 0(d2)

]

∼
∫

ρkd�
(2m)

3
2 μ

5
2

g
3
2

1

4

2md2

gμ
ln

(
4gδμ2

2mμd2

)
. (G11)

In the second line of the above equation, we adopt the approximation ln( 4gδμ2

2mμd2 ) � 1. g and d2 are the functions of θ and φ.

Meanwhile, d is the linear function of λκ,ζ , i.e., di(θ, φ) = ∑
κ,ζ A(θ, φ)i,κ,ζ λκ,ζ . Now, we use one index j to indicate both κ

and ζ and simplify the above relation in a vector form di(θ, φ) = ∑
j A(θ, φ)i, jλ j . Accordingly, we have d(θ, φ) = A(θ, φ)� =

λA(θ, φ)�̂, where �̂ is a unit vector satisfying �̂†�̂ = 1. The gap function is obtained as

d(θ, φ)2 = λ2�̂†A(θ, φ)†A(θ, φ)�̂. (G12)

We define A(θ, φ) = A(θ, φ)†A(θ, φ) and substitute Eq. (G12) into (G11) and get

�E = − (2m)
5
2 μ

3
2 λ2ρk

4
ln

mμλ2

2δμ2

∫
d�

1

g
5
2

�̂†A�̂ − (2m)
5
2 μ

3
2 λ2ρk

4

∫
d�

1

g
5
2

�̂†A�̂ ln
�̂†A�̂

g
+ Nλ2

f̃ (U1,U2)
. (G13)

We set (2m)
5
2 μ

3
2

4 ρk = α,
∫

d� 1

g
5
2
�̂†Â�̂ = A, mμ

2δμ2 = β2,
∫

d� 1

g
5
2
�̂†Â�̂ ln �̂†Â�̂

g = B, and the equation can be simplified as

�E = −2αAλ2 ln βλ − αBλ2 + Nλ2

f̃ (U1,U2)
. (G14)

For a system, ξ , U1, and U2 are all determined. �E depends on λ, and the λ corresponding to the lowest free energy. i.e., �E the
biggest, is the ground state. With a certain λ̂, we can solve A and B for each channel and the maximum of �E has λ satisfying
∂�E
∂λ

= 0:

2αA ln βλ = N

f̃ (U1,U2)
− αA − αB. (G15)

We substitute the relation into �E and obtain

�E = Aα

β2
exp

(
N

A f̃ (U1,U2)α
− B

A
− 1

)
. (G16)

In the above equation, we have f̃ (U1,U2)α ∼ 0 derivated as follows:

f̃ (U1,U2)α = f̃ (U1,U2)
(2m)

5
2 μ

3
2 ρk

4
= f̃ (U1,U2)k2

F ρkmkF (2m)
3
2 μ

3
2

2k3
F

, (G17)

where f̃ (U1,U2)k2
F is the interaction strength expanded to the second order of q̃. We have ρk4πk2dk ∼ ρE dE with ρE as the

density of states about the energy and dE ∼ k
m dk. Therefore, we can derive ρkkm ∼ ρE . Substitute the relation into the above

equation, and we have

f̃ (U1,U2)α ∼ f̃ (U1,U2)k2
F ρE=μ(2m)

3
2 μ

3
2

2k3
F

∼ f̃ (U1,U2)k2
F ρE=μμ

3
2

2μ
3
2

∼ f̃ (U1,U2)k2
F ρFS ∼ 0, (G18)

where ρE=μ is the density of states at the Fermi surfaces. Constrained by the weak-pairing limit, the production of interaction
strength and the density of states is near zero f̃ (U1,U2)k2

F ρFS ∼ 0. We take logarithm on both sides of the equation to compare
the saved free energy of each channel:

ln �E = N

A f̃ (U1,U2)α
− B

A
− 1 + ln

Aα

β2
. (G19)

α, β are the same for every channel, so we drop these constant terms and only compare the residual N
AŨα

− B
A + ln A. The first

term N
AŨα

domains the saved free energy. A can be written as (Aλ̂)†(Aλ̂) which is positive while f̃ (U1,U2) is negative. The
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bigger |A f̃ (U1,U2)| is, the more free energy the system saves. The values of A f̃ (U1,U2) are degenerated in the space spanned
by the order parameter in the freedom of the index ζ . We decompose the vector of order parameter λε�̂ε into the direct product
of two parts λε�̂ε,κ ⊗ �̂ε,ζ , and obtain �̂ε,κ by maximizing |A f̃ (U1,U2)| and obtain �̂ε,ζ by minimizing B. There are two A1u,
one A2u, three Eu, four T1u, and five T2u channels in total. So, the �̂ε,κ for these channels have two, one, three, four, and five
components, respectively. We use the conjugate gradient method to minimize A f̃ (U1,U2). With the obtained �̂ε,κ , we sample
on the unit vector �̂ε,ζ , which has the same number of components as the dimension of the channels themselves, and search for
the ground states. We find that the Eu channel always takes [10] state, and T1u states can take [001], [110], and [111] states, and
the T2u channel can take [001] and [111] states, in different regions of the phase diagram.

APPENDIX H: SYMMETRIES AND TOPOLOGICAL
PROPERITIES OF EACH CHANNEL

In the Nambu space, ψ̂
†
k = (ĉ†

k,↑, ĉ†
k,↓, ĉ−k,↑, ĉ−k,↓), the

particle-hole symmetry takes the matrix form C = η1σ0K (K
is the conjugation operation), where η and σ are the Pauli
matrices acting on the Nambu and the pseudospin degrees
of freedom, respectively. The time-reversal symmetry takes
the matrix form T = iη0σ2K . Combining the particle-hole
symmetry and the time-reversal symmetry, we have the chiral
symmetry S = CT = iη1σ2. For the spatial symmetry opera-
tion R belonging to the D3d group on the Lm Fermi pocket, we
have

Rĉm†
k,d R† =

∑
d ′

ĉm†
Rk,d ′Rd ′d , Rĉm

k,d R† =
∑

d ′
ĉm

Rk,d ′R∗
d ′d ,

(H1)

where R is the transformation matrix corresponding to sym-
metry operation R. In the superconducting state, the spatial
operation R transforms the pairing part of the BdG Hamilto-
nian

∑
m,d1,d2

(Hm
SC)d1d2 (k)ĉm†

k,d1
ĉm†
−k,d2

+ H.c. as

R
∑
d1,d2

(
Hm

SC

)
d1d2

(k)ĉ†
k,d1

ĉ†
−k,d2

R†

=
∑

d1,d2,d ′,d ′′

(
Hm

SC

)
d1d2

(k)ĉ†
Rk,dm′Rd ′d1 ĉm†

−Rk,d ′′Rd ′′d2

=
∑
d ′,d ′′

(
RHm

SC(k)Rᵀ)
d ′d ′′ ĉ

m†
Rk,d ′ ĉ

m†
−Rk,d ′′ . (H2)

In Eq. (G2), the spin-triplet pairing has the general
form Hm

SC(k) = iσ · d(k)σ2 = iσ1σ2d1(k) + iσ2σ2d2(k) +
iσ3σ2d3(k). We take the mirror symmetry Ma as an example
to show the constraint of the spatial symmetry on the
superconductivity. Ma crosses the L1 Fermi surface, and it
maps (kX , kY , kZ ) �→ (kY , kX , kZ ) in the global frame and
(kx, ky, kz ) �→ (−kx, ky, kz ) in the local frame defined at the
L1 point in Fig. 1(b). Obviously, the kx = 0 plane is invariant
under Ma. In the local reference frame at L1, Ma takes the
matrix form Ma, Ma = e− i

2 σ1π = −iσ1 under the basis
(ĉ†

k,↑, ĉ†
k,↓). Straightforwardly, we act Ma on the matrices σσ2

and have

Maσ1σ2M
ᵀ
a = σ1σ2,

Maσ2σ2M
ᵀ
a = −σ2σ2,

Maσ3σ2M
ᵀ
a = −σ3σ2. (H3)

According to the above equation, one obtains that under
Ma the spin-triplet pairing transforms as MaHSC(k)Mᵀ

a =
H̃SC(k) = iσ1σ2d1(k) − iσ2σ2d2(k) − iσ3σ2d3(k). In the
mirror-invariant plane, MaHSC(k)Mᵀ

a = �H(Mak), with

� = ±1 determined by the form of d(k) and � = 1
(� = −1) corresponding to the mirror-even (mirror-odd)
superconductivity. In the Nambu space, the matrix form of
the mirror symmetry Ma is

Ma =
(
Ma 0

0 �M∗
a

)
. (H4)

In the following, we give more detailed analysis on the topo-
logical properties of the superconducting ground states in the
phase diagram in the main text.

A1u: The A1u state is full gap. We consider the supercon-
ductivity on the L1 Fermi pocket, where the d vector, as
mentioned in the main text, is d(k) = (αkx, αky, βkz ) (both
the d vector and the coefficients α, β are obtained from the
mean-field calculation). For a 3D full-gap SC belonging to
class DIII, its topological invariant is the 3D winding num-
ber. For the simple single-orbital model in our consideration,
to obtain the 3D winding number, we can write the pair-
ing function in the form HSC(k) = ∑

m,n=1,2,3 ikmAmnσnσ2,
where we use k1,2,3 to denote kx,y,z. In the above form, it
can be proved that the winding number of the single-orbital
Hamiltonian equals to sgn(det A) (notice that the conclusion

FIG. 11. (a) Shows the Fermi surface L1 (the red ball) and the
two black points stand for the superconducting nodes on the Fermi
surface in the A2u state. We use the transparent gray plane to denote
the mirror plane. In the BZ on the (001) surface, at the projecting
points of the dark gray region, there exist Majorana zero-energy arcs.
(b) Re and Im stand for the real and imaginary axis. θ is the complex
phase angle of the off-diagonal entry in Eq. (H8). If we take x from
−∞ to ∞, θ will travel on the circle along the direction of the blue
trace. It approaches to the red point on the positive real axis from up
(down) side, when we take x → ∞ (x → −∞). If we take x = 0,
the off-diagonal entry is a negative real number, indicated by the red
point on the negative real axis. The two red points on the imaginary
axis correspond to the two roots of the equation 1

3m x2 + ξ

6m (3kX −
x)2 − μ = 0 with opposite sign.

134517-20



THEORY OF TOPOLOGICAL SUPERCONDUCTIVITY IN … PHYSICAL REVIEW B 105, 134517 (2022)

only applies to the single-orbital model in our considera-
tion, i.e., H0 in the main text, with merely linear terms
of k in the superconducting pairing). Since the supercon-
ducting order is even under the C4 symmetry in the A1u

channel, the winding number of each pocket is the same,
i.e., sgn(det A) being the same on each of the pockets, and
the system is characterized by the total winding number
w = 4 sgn(α2β ).

A2u: The A2u state is gapless, and we show the gapless point
on the L1 Fermi surface in Fig. 11(a). The d vector on the L1

pocket is d(k) = (−αky, αkx, 0). The nodal gap structure in
the A2u state is protected by the mirror symmetry Ma and the
chiral symmetry. Under the mirror symmetry Ma, the pairing

function transforms as

MaHSC(k)Mᵀ
a

= H̃(k) = −iσ1σ2αky − iσ2σ2αkx = HSC(Mak). (H5)

Obviously, the superconducting order is even under Ma,
namely � = 1, and the chiral symmetry commutes with Ma. To
show the topological protection of the nodal gap structure, we
first decompose the BdG Hamiltonian according to Ma in the
mirror-invariant plane (kx = 0) into different mirror-invariant
subspaces with the basis ψ̂

†
k = 1/

√
2(−ĉ†

k,↑ + ĉ†
k,↓, ĉ−k,↑ +

ĉ−k,↓, ĉ†
k,↑ + ĉ†

k,↓,−ĉ−k,↑ + ĉ−k,↓), and the Hamiltonian takes
the form

HBdG(k, kx = 0) =

⎛⎜⎜⎜⎜⎜⎜⎝

k2
y

2m + ξk2
z

2m − μ −αky 0 0

−αky − k2
y

2m − ξk2
z

2m + μ 0 0

0 0
k2

y

2m + ξk2
z

2m − μ −αky

0 0 −αky − k2
y

2m − ξk2
z

2m + μ

⎞⎟⎟⎟⎟⎟⎟⎠. (H6)

Within each subspace, the chiral symmetry is respected. Then, we transform the Hamiltonian in each subspace to the off-
diagonalized form

Hsubmirror =
(

0 iαky + k2
y

2m + ξk2
z

2m − μ

−iαky + k2
y

2m + ξk2
z

2m − μ 0

)
. (H7)

To study the surface modes on the (001) surface, we change the Hamiltonian from the local to the global reference frame with

ky =
√

1
6 (kX + kY ) −

√
2
3 kZ , kz =

√
1
3 (kX + kY + kZ ), and in the mirror-invariant plane kX = kY we have

Hsubmirror =
⎛⎝ 0 iα

√
2
3 (kX − kZ ) + (kX −kZ )2

3m + ξ (2kX +kZ )2

6m − μ

−iα
√

2
3 (kX − kZ ) + (kX −kZ )2

3m + ξ (2kX +kZ )2

6m − μ 0

⎞⎠. (H8)

We take kX satisfying −
√

2mμ

3ξ
< kX <

√
2mμ

3ξ
, i.e., the dark gray region in Fig. 11(a), and set kX − kZ = x. The off-diagonal

terms in Eq. (H8) become ±iαx + 1
3m x2 + ξ

6m (3kX − x)2 − μ. When we take x from −∞ to ∞, equivalent to kZ from ∞ to
−∞, the complex phase of the off-diagonal terms changes from 0 to −2π as indicated in Fig. 11(b). Namely, for each fixed

kX satisfying −
√

2mμ

3ξ
< kX <

√
2mμ

3ξ
, the line (kX , kX , kZ ) carries a 1D winding number −1, leading to a pair of zero-energy

modes at the point (kX , kX ) in the surface BZ on the (001) surface. Take all the kX into account, and we can get the Majorana
zero-energy arcs shown in the main text.

Eu: For the Eu state which is fully gapped, the unit vector (t1, t2) in the order parameter is taken as (1, 0). From the
representation table in the main text, we know that the symmetry of the system breaks from the group Oh to D4h. However,
the C2a and C4 symmetries are preserved and the character of C2a and C4 symmetries equal to 1, i.e., the superconducting order
being even under C2a and C4. Therefore, though there is symmetry breaking, the Eu state has similar topological property with
the A1u state. Specifically, the d vector on the L1 Fermi pocket is (αkx, αky + βkz, γ ky), and the system is characterized by the
winding number w = −4 sgn(αβγ ).

T2u,[001]: For the T2u,[001] state, the symmetry of the sys-
tem breaks from the Oh group to the D4h group, and the
C2a and C4 symmetries are respected according to the ir-
reps table in the main text. The character of C2q and C4

equals to 1 and −1, respectively. On the L1 Fermi pocket,
the d vector takes the form d(k) = (αkx, β1ky + β2kz, γ1ky +
γ2kz ). The 3D winding number contributed by the L1 Fermi
pocket is w1 = sgn(det A) = sgn(αβ1γ2 − αβ2γ1). However,

different from A1u and Eu, the superconducting order is
odd under C4 symmetry leading to opposite 3D winding
numbers on the C4-related Fermi pockets. Namely, the wind-
ing numbers contributed by the four Fermi pockets are
w1,−w1,w1,−w1, respectively. We can see that the total
winding number gives 0. However, the state is topolog-
ically nontrivial and is characterized by nonzero mirror
Chern numbers. We consider the mirror symmetry Ma under
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which the superconducting order is odd and MaHsc(k)Mᵀ
a = −Hsc(k) in the kx = 0 plane. In the mirror-invariant plane, we can

decompose the BdG Hamiltonian into different mirror subspaces. Similar to the A2u case, we change the basis to the mirror-
invariant eigenstates ψ̂

†
k = 1/

√
2(−ĉ−k,↑ + ĉ−k,↓,−ĉ†

k,↑ + ĉ†
k,↓, ĉ−k,↑ + ĉ−k,↓, ĉ†

k,↑ + ĉ†
k,↓), and obtain the Hamiltonian

HBdG(k, kx = 0)

=

⎛⎜⎜⎜⎜⎜⎜⎝
− k2

y

2m − ξk2
z

2m + μ −iβ1ky − iβ2kz − γ1ky − γ2kz 0 0

iβ1ky + iβ2kz − γ1ky − γ2kz
k2

y

2m + ξk2
z

2m − μ 0 0

0 0 − k2
y

2m − ξk2
z

2m + μ γ1ky + γ2kz − iβ1ky − iβ2kz

0 0 γ1ky + γ2kz + iβ1ky + iβ2kz
k2

y

2m + ξk2
z

2m − μ

⎞⎟⎟⎟⎟⎟⎟⎠.

(H9)

In each mirror subspace in the kx = 0 plane, there exists a gapless point at ky = kz = 0 when the chemical potential μ = 0. The
nonzero chemical potential gaps out the system and μ < 0 (> 0) makes the system topologically trivial (nontrivial). Therefore,
the condition μ = 0 is a topological phase transition point within the kx = 0 plane. We can calculate the topological charge
of the gapless point, according to which we can obtain the mirror Chern number. It turns out that the mirror Chern number
contributed by the L1 Fermi pocket is sgn(det A′) = sgn(β1γ2 − β2γ1). Since the L1 and L3 Fermi pockets (related by C2

4 ) both
cross Ma, both of the two Fermi pockets contribute to the mirror Chern number. Moreover, based on a similar analysis one can
find that the mirror Chern number from the L3 Fermi pocket is the same as that on the L1 Fermi pocket. As a result, the T2u,[001]

state carries the mirror Chern number 2 sgn(β1γ2 − β2γ1) in the Ma-invariant plane, which suggests the second-order topological
superconductivity.

For the other states in the phase diagram, we do not show the analysis in detail since all these states can be analyzed in similar
ways.

APPENDIX I: CALCULATION OF EDGE STATES

We consider the open boundary condition along the Z direction and treat kZ as −i ∂
∂Z . We write

−i
∂

∂Z
|Z, kx, ky,w〉 = −i

|Z + dZ, kx, ky,w〉 − |Z − dZ, kx, ky,w〉
2dZ

, (I1)

where w is the pseudospin index. We first write the BdG Hamiltonian in the basis of
(|Z1, kx, ky,w〉, |Z2, kx, ky,w〉, . . . , |ZN , kx, ky,w〉)ᵀ. We assume there are totally N sites in the Z direction and
Zi+1 − Zi = dZ → 0. In the periodic boundary condition, we stick the N th site with the first site. The operator k̂Z can be
written as

k̂Z = 1

2 dZ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 i 0 · · · 0 −i

−i 0 i · · · 0 0

0 −i 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 i

i 0 0 · · · −i 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (I2)

While, for the open boundary condition, we cut off the loop and remove the coupling between the N th site and the first site in
the matrix. Namely, in the open boundary condition, we have the operator k̂Z as

k̂Z = 1

2 dZ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 i 0 · · · 0 0

−i 0 i · · · 0 0

0 −i 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 i

0 0 0 · · · −i 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (I3)

For the second-order derivation of Z , i.e., k̂2
Z , we have

k̂2
Z = − ∂2

∂Z2
|Z, kx, ky,w〉 = −|Z + dZ, kx, ky,w〉 + |Z − dZ, kx, ky,w〉 − 2|Z, kx, ky,w〉

dZ2
. (I4)
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In the periodic condition we have

k̂2
Z = − 1

dZ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0 1

1 −2 1 · · · 0 0

0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1

1 0 0 · · · 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (I5)

In the open boundary condition we have

k̂2
Z = − 1

dZ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0 0

1 −2 1 · · · 0 0

0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1
0 0 0 · · · 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (I6)

We substitute k̂Z and k̂2
Z in the open boundary condition in Eqs. (I3) and (I6) into the BdG Hamiltonian and diagonalize the

Hamiltonian to obtain the surface modes.
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