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A general framework is proposed to solve the two-dimensional (2D) fully frustrated XY model for the
Josephson junction arrays in a perpendicular magnetic field. The essential idea is to encode the ground-state
local rules induced by frustrations in the local tensors of the partition function. The partition function is then
expressed in terms of a product of a 1D transfer matrix operator, whose eigenequation can be solved by an
algorithm of matrix product states rigorously. The singularity of the entanglement entropy for the 1D quantum
analog provides a stringent criterion to distinguish various phase transitions without identifying a priori order
parameter. Two very close phase transitions are determined at T,y &~ 0.4459 and T, ~ 0.4532, respectively. The
former corresponds to a Berezinskii-Kosterlitz-Thouless phase transition describing the phase coherence of XY
spins, and the latter is an Ising-like continuous phase transition below which a chirality order with spontaneously

broken Z, symmetry is established.

DOLI: 10.1103/PhysRevB.105.134516

I. INTRODUCTION

It is well known that the Berezinskii-Kosterlitz-Thouless
(BKT) mechanism [1,2] provides a prototypical example of
topological phase transitions in two-dimensional (2D) sys-
tems and has been extensively investigated in various systems.
The phase coherence of Cooper pairs in 2D superconductivity
can be characterized by the BKT transition, corresponding to
the unbinding vortices and antivortices. One of the prototype
models is the 2D XY model, and an attractive platform to
realize the XY model is Josephson junction array [3—8], where
the XY spin variables represent the superconducting order-
parameter phases. When applying a perpendicular magnetic
field such that the flux density per plaquette is just one-half
flux [8—11], we have the so-called fully frustrated XY model
(FFXY).

The FEXY model was proposed originally as a continuum
version of spin glasses possessing competing ferromagnetic
and antiferromagnetic interactions [12,13]. Although the
model is U (1) invariant, a new Z, degree of freedom emerges
as a result of minimization of local conflict interactions. Due
to the presence of strong frustration, extensive studies have
been carried out for the FFXY model on the square lattice
[14-28] or the antiferromagnetic XY spin model on the tri-
angular lattice [29-37]. The nature of the phase transitions
in the 2D FFXY has been the subject of a long controversy,
because two distinct types of ordering occur extremely closed
to each other [14]. Despite the effort dedicated to the study of
this model, there is not yet a general consensus on the critical
behavior of these systems [26,28].
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Due to the ground-state degeneracies, the study of strongly
correlated statistical systems with frustrations has proven to
be really difficult and most sampling methods suffer from a
critical slowing down when approaching the low-temperature
phase [38]. Recently, an increasing interest has been stimu-
lated on the investigation of tensor network methods in the
study of the frustrated systems. It is found that, although the
tensor network methods provide an effective computational
approach to study the classical lattice models [39,40], special
attention should be paid in the construction of the local tensors
in the presence of geometrical frustrations, which has been
demonstrated in the simulations of frustrated classical spin
systems with discrete degrees of freedom [41,42]. The key
point is that the ground-state local rules induced by frustra-
tions should be encoded in the local tensors when comprising
the whole tensor network of the partition function.

In this work, we apply the state-of-the-art tensor network
method to study such strongly frustrated spin systems in the
thermodynamic limit. It is demonstrated that the extension of
the applicability of tensor networks to the fully frustrated sys-
tems with continuous U (1) degrees of freedom is nontrivial,
because the standard formulation of the tensor network fails to
converge. Here we propose a new construction strategy based
on the splitting of U (1) spins, and then the partition function
of the FFXY model is transformed into an infinite 2D tensor
network with an enlarged unit cell, which can be efficiently
contracted by a recently proposed tensor network algorithm
[43] under optimal variational principles [44,45].

As the partition function is written in terms of a product
of 1D transfer matrix operator, the singularity of the entangle-
ment entropy of this 1D quantum transfer operator can be used
to determine various phase transitions with great accuracy
[46]. The distinct advantage of the tensor network method
over the Monte Carlo simulations is that a stringent criterion

©2022 American Physical Society
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FIG. 1. (a) The ground state of the FFXY model on the square
lattice. The =+ signs denote the checkerboardlike chiralities. Thick
lines correspond to A;; =7 and thin lines to A;; =0. (b) The
finite-temperature phase diagram of the FFXY model showing a low-
temperature phase with XY spin quasilong-range order (QLRO) and
chiral long-range order (LRO), a chiral ordered phase with XY spin
disorder, and a high-temperature disordered phase. Two different
transitions happen at Tzxy =~ 0.4459 and T}, = 0.4459 belonging
to the BKT and Ising universality class, respectively.

can be used to distinguish various phase transitions without
identifying a priori order parameter. From the perspective of
the quantum entanglement, we can resolve the puzzles about
the FFXY model with clear evidence that the Ising phase
transition takes place at a higher temperature 7Tj;,, than the
BKT transition Tgg7. The finite-temperature phase diagram
is displayed in Fig. 1(b). The low-temperature phase is char-
acterized by a long-range ordered checkerboard pattern of
chirality together with a quasilong-range XY spin order. In
the intermediate temperature region (Tpxr < T < Tjgine), the
long-range chiral order survives while the spin—spin correla-
tions are destroyed.

The paper is organized as follows. In Sec. II we give an
introduction of the 2D FFXY model and the possible phase
transitions. In Sec. Il we develop a general framework of
the tensor network theory for this fully frustrated model. In
Sec. IV we present the numerical results for the determination
of the finite temperature phase diagram. Finally in Sec. V, we
discuss the nature of the intermediate temperature phase and
give our conclusions.

II. FFXY MODEL

The FEXY model on a 2D square lattice can be defined by
the Hamiltonian

H:—JZcos(Gi—9j+Aij) (1
(ij)

to describe the Josephson junction array under an external
magnetic field [9,14], where J > 0 is the coupling strength,
i and j enumerate the lattice sites, and the summation is over
the pairs of the nearest neighbors. The frustration is induced
by the gauge field defined on the lattice bond satisfying A;; =
—Aj;. The gauge field is related to the vector potential of the
external magnetic field by A;; = 2= [V dl - A, where @y = %
is the flux quantum. The case of full frustration corresponds
to the Z, gauge field (half quantum flux per plaquette), i.e.,
> i, jyeDd A;; = m, where the sum is taken around the perime-
ter of a plaquette.

The ground states of the FFXY model on a square lattice
present a U(1) x Z, degeneracy [12,13]. The U(1) degen-
eracy is related to the global invariance of the Hamiltonian
like the 2D XY model. The twofold discrete degeneracy is
resulted from the Z, symmetry of the Hamiltonian under
the simultaneous reversal in the signs of all §; and A;;. The
ground state is characterized by a checkerboard pattern of
chiralities analogous to the antiferromagnetic Ising model,
where the planar spins rotate clockwise and counterclockwise
alternatively around the plaquettes. As shown in Fig. 1(a), the
chiralities T = %1 are defined on the faces of the plaquettes
where the corresponding gauge invariant phase differences
between two nearest-neighbor spins are ¢;; = 0; — 0; + A;; =
47 /4. Since all the choices of fully frustrated gauge fields
are physically equivalent, the gauge field given in Fig. 1(a)
is used throughout this paper. In the Coulomb gas language,
the 7, = %1 chiralities can be viewed as g, = :I:% topological
charges located at the centers of the plaquettes.

As the temperature increases, two kinds of topological
excitations are expected to disorder the system: (i) Pointlike
defects as vortices or antivortices which destroy the U(1)
phase coherence by flipping the signs of the topological
charges; (ii) linear defects as the domain walls separating two
ground states of different checkerboard patterns of topological
charges. Hence the FFXY model is expected to have two
kinds of phase transitions associated with the formation of
the quasilong-range order of the U(1) spins and the long-
range Ising order characterized by chirality. Besides, the close
interplay between different topological excitations makes it
difficult but interesting to explore the nature of the transitions.

III. TENSOR NETWORK THEORY
A. Representations of partition function

The partition function of a classical lattice model with local
interactions can always be represented as a contraction of
tensor network on its original lattice. The standard construc-
tion of the network starts from putting an interaction matrix
on each bond accounting for the Boltzmann weight, then the
local tensors defined on the lattice sites are obtained by taking
suitable decompositions for the local bond matrices. Although
this paradigm has been proven a success in studies of the clas-
sical XY model [47-49], it cannot be directly applied to the
fully frustrated case where the constraints of the ground-state
local rules should be imposed at the level of the local tensors
[41,42].

To illustrate this point, we first derive the partition function
of the FFXY model following the standard approach. The
partition function on the original lattice is expressed as

db; )
Z= Hf o ![ W (0, 0,)W'(6;, 6)W 6k, 6)W (61, 6,),
)

where
W(@,‘, 9}) — eﬁ]cos(é,-fe_,-)’ W/(Q,‘, 9}) — efﬂjcos(e,-fe,-)

can be viewed as the infinite interaction matrices with contin-
uous U (1) indices and B = 1/T is the inverse temperature.
The partition function is now cast into the tensor network

134516-2



TENSOR NETWORK APPROACH TO THE ...

PHYSICAL REVIEW B 105, 134516 (2022)

(a) (b)

— -0 -0~ —

—(33——-'

— - —

@_.
—[E]—
—[E]—
—(E}

— - - —-

—{E}
—(E}

— 00~

-0 —

(c)
N N n
0—0m—o, = o @ Ao, ‘
ny Ny= Ny

0—m—0, = oD B T,

FIG. 2. (a) Tensor network representation of the partition func-
tion with interaction matrices on the links accounting for the
Boltzmann weight. (b) Tensor network representation of the partition
function defined on the original lattice. The translation invariant
cluster is circled by the red dotted line. (c) The eigenvalue decompo-
sitions of the interaction matrices and the construction of delta tensor.

representation as shown in Fig. 2(a), where the integration
[ d6;/27 is denoted as red dots and the matrix indices take
the same values at the joint points.

To transform the local tensors into a discrete basis, we
employ the character decomposition for the Boltzmann factor,

[e¢]

= > Lx)e", 3)

n=—0oo

ex cos

where I,(x) are the modified Bessel functions of the first kind.
The eigenvalue decompositions are expressed as Uy, = ™
and I"(BJ) = (—1)"1,(BJ), shown in Fig. 2(c). The integra-
tion over all site variables is now transformed into a product
of independent integrations of all plane waves. It is easy to
integrate out the phase degrees of freedom at each site,

o, g A
T U9 H1U9 VllUG n;UQ 4 ni+n2° ( )

Then the conservation law of U (1) charges has been encoded
in the local § tensors as the constraint 8233’; # 0 only if
ny + ny = n3 + ng. As a result, the U (1) degrees of freedom
are transformed into the discrete bond indices n, represented
as links in the tensor network whose structure is depicted in
Fig. 2(b).

The real challenge comes from the construction of the local
tensors under the ground-state local rules. For the classical
XY model, to build the translation invariant local tensors,
we can simply split the diagonal spectrum I, tensors and
take a contraction of four «/I, tensors connected to the &
tensors at the same site [47,48]. For the FFXY model with
a checkerboard-like ground state, the translation invariant unit
is a 2 x 2 plaquette. So it is reasonable to enlarge the unit
cell as a cluster consisting of 2 x 2 tensors, as circled by the
red dotted line in Fig. 2(b). However, we find the standard
contraction algorithms such as variational uniform matrix
product state (VUMPS) [43—45] and corner transfer matrix
renormalization group (CTMRG) [50-52] fail to converge in
such a construction of local tensors.

— || I_...

(©) Aépf
&

FIG. 3. (a) Tensor network representation of the partition func-
tion with vertically split U(1) spins. (b) The transformation to
discrete degrees of freedom by integrating out U (1) phase variables.
(c) The construction of the local O4 and Op tensors. (d) The appro-
priate construction of the tensor network for the partition function
encoding the constraints.

Two important issues are needed to be addressed in this
construction. First, from the perspectives of tessellation, the
constraints for the phase differences between two nearest-
neighbor spins are only imposed on the four lattice sites within
a cluster. Since two nearest-neighbor clusters are separated by
an intermediate plaquette, the constraints between the spins
across the gutter is lost. Second, the linear transfer matrix
composed by an infinite row/column of local tensors under
this construction is always non-Hermitian. The key point is
that the spectrum tensors I, carry a negative factor (—1)"
which can never be divided into two Hermitian adjoint par-
titions. Moreover, the negative factors cannot be eliminated
under any local transforms due to the “odd rules” induced by
the gauge field [12].

In order to solve these problems, we propose a new con-
struction method based on the split of U (1) spins on the lattice
site. As shown in Fig. 3(a), each lattice spin is vertically split
into two independent spins by using the relation

/ a6, £(6,) = f / 46,636, — OVF©0)  (5)

where f(6;) denotes the rest part of the partition function as-
sociated to the lattice site i, and the corresponding interaction
matrices W are also equally divided into two V tensors as

V(@[, 91) = e%ﬂlms(gi,ej). (6)

Then, we carry out eigenvalue decompositions on the V' tensor
in the same manner,

V6, 6)) =Y Ugntn(B) U7y, )
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where (,(8J) = I,(8J/2). The Dirac delta function connect-
ing two cloned spins can be decomposed by

’ l *
8010) = 7= ) Unn Uy ®)

Again the orthogonality of U, ¢ enables us to integrate out the
phase variables at each lattice site, and the enlarged tensor
network is displayed in Fig. 3(b).

Now we are able to walk around the obstacles by an ap-
propriate construction of the network. The minimum building
blocks are the local tensors O4 and Op, whose inner structures
are shown in Fig. 3(c). The resulting tensor network N for the
partition function is depicted in Fig. 3(d) as

Z:tTr( ]_[ OAOB), )
OA,OBEN

where “tTr” denotes the tensor contraction over all auxiliary
links. Because the expansion coefficients decrease exponen-
tially in ¢, (x) with increasing n, an appropriate truncation can
be performed on the virtual indices of O4 and Op tensors
without loss of accuracy. The constraints among four spins
within a given plaquette is ensured by choosing a cluster
grouping O4 and Op tensors. Although the partition function
is represented by the row-to-row transfer matrix operator con-
sisting of a single layer of alternating O4 and Ojp tensors,
it is only well defined by even rows due to the nontrivial
2 x 2 plaquette structure of the checkerboard ground state.
Therefore the unit cluster should be composed by a double
stack of O4 and Ojp tensors as grouped by the red dotted line
in Fig. 3(d). Ultimately, we obtain the right construction of
the tensor network with the linear transfer matrix consisting of
the 2 x 2 clusters. Such a construction gives rise to the right
partition function by realizing that (i) all the constraints are
preserved within the transfer matrix while the spins across the
gutter between two transfer matrices are indeed the same spin;
(ii) the transfer matrix is Hermitian as the splitting of the I’
tensors is no longer needed.

Apart from the representation in the original lattice, there is
another approach to express the partition function as a tensor
network on the dual lattice with automatically encoded local
constraints. For a model with discrete degrees of freedom, the
dual construction can always be performed by splitting of the
model Hamiltonian on a shared bond, and the local tensors are
defined on the plaquette centers by grouping the split bonds
that are connected by Kronecker delta functions. However,
this strategy cannot be simply extended for the case of the
continuous degrees of freedom. When we split each bond
around the plaquette, there will be integrals of loops of Dirac
delta functions, which are not well defined mathematically.
That is why we can only split the W tensors in Fig. 2(a)
horizontally. We also notice that the duality transformation
of the FFXY model onto the dual height model cannot give
the appropriate partition function, as a finite truncation on
the height can mix up the Boltzmann weights. Therefore the
construction of the tensor network in the dual space remains
an open problem.

= AmElX E B

= A 4]

FIG. 4. (a) The eigenequation for the fixed-point MPS |W(A, B))
of the transfer operator 7(8). (b) and (c) Two smaller linear equa-
tions for the first and second rows as a decomposition of the
fixed-point eigenequation. (d)—(g) Eigenequations for the left and
right fixed points of the corresponding channel operators related to
O, and O),.

B. Multisite VUMPS algorithm

Within the framework of tensor network, the fundamental
object for the calculation of the partition function is the trans-
fer operator composed of two infinite rows of alternating O,
and Ogp tensors,

(10)

20,050,405 - - -
T(ﬁ)=tTr[ }

0,050,005

where the prime symbols are just a mark to distinguish the
second row from the first row. This operator can be regarded
as the matrix product operator (MPO) for the 1D quantum
spin chain, whose logarithmic form can be mapped to a 1D
quantum system with complicated spin—spin interactions. In
this way, the correspondence between the finite temperature
2D statistical model and the 1D quantum model at zero tem-
perature is established.

As sketched in Fig. 4(a), the value for the partition function
is determined by the dominant eigenvalues of the transfer
matrix

T(BIW(A, B)) = Amax|V(A, B)), (11)

where |W(A, B)) is the leading eigenvector represented by
matrix product states (MPS) made up of a two-site unit cell
of local A and B tensors [44]. This fixed-point equation can
be accurately solved by the multiple lattice-site VUMPS al-
gorithm [43], which provides an efficient variational scheme
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to approximate the largest eigenvector |\W(A, B)). The preci-
sion of this approximation is controlled by the auxiliary bond
dimension D of local A and B tensors. Instead of grouping
the local tensors of a cluster into a trivial unit cell at the cost
of growing the bond dimension of the MPO exponentially,
the multisite VUMPS algorithm brings about a significant
speedup with a computational complexity only scaling lin-
early with the size of the multisite cluster.

The multisite algorithm starts from decomposing the big
eigenequation into two smaller linear equations as shown in
Figs. 4(b) and 4(c),

Ti(B)IW(A, B)) =
L(BIVA', B)) =

A WA, BY),
A2 [W(A, B)), 12)

where T} (8) and T>(B) correspond to the first and second rows
of the blocked transfer matrix 7 (8), whose eigenvalue is a
combination as Anax = AjAj. In practice, the linear equa-
tions are transformed into a set of optimization problems,

Ar= max (WA, BITi(B)IVA, B)),
Ay = max (WA, B)|T2(B)¥(A, B)),

which can be solved efficiently by applying the VUMPS
algorithm [44,45] based on the tangent space projections in
iteration.

One of the key steps in the iteration of VUMPS method
is the calculation of the leading left and right eigenvectors of
the channel operators. The channel operators have a sandwich
structure composed of two local tensors of fixed-point MPS
and the middle four-leg local tensor. The channel operator
related to A tensor is defined by

T{=) Aex" oA’ (13)
iJ

and other channel operators are defined in the same way. For
the 2 x 2 unit cell, there are four set of eigenequations for the
left- and right-fixed points of the corresponding channel oper-
ators. Figures 4(d)—4(g) displays the eigenequations related to

OA and OA/
(FL|T5, = 2a(F
(YT

> To,Fe) = 2l FR),
= d(F2 L, T 1) =halFg ), (14)

and the same method are applied to Op and Op. The above
equations only map two fixed points in the same row to each
other without directly giving an eigenvalue problem. In the
same spirit as the solvers for fixed-point MPS, these equa-
tions are iteratively applied until a given convergence criterion
is reached.

C. Calculations of the physical quantities

Once the fixed-point MPS is achieved, various physical
quantities can be accurately calculated in the tensor-network
language. The entanglement properties can be detected via
the Schmidt decomposition of |W(A, B)) which bipartites the
relevant 1D quantum state of the MPO, and the entanglement
entropy [53] is determined directly from the singular values

(@) I | |

_91,1 91,2 91,3_
o]
_02,]—62,2—02,3_
ey
_03,]_03,2_03,3_

I i |
(c)

<ei(92|_9|1)> =

FIG. 5. (a) A unit cell of 2 x 2 plaquettes with nine spins at
vertices. (b) The construction of the impurity tensors from imbal-
anced delta tensors. (c) and (d) Evaluations of the nearest-neighbor
two-angle observables living on the vertical and horizontal bonds.
(e) Two-point correlation function represented by contracting a se-
quence of channel operators.

Sq as

D
- Zs§ Ins2, (15)
a=l1

in correspondence to the quantum entanglement measure for
a many-body quantum system.

Local observable can be evaluated by inserting the cor-
responding impurity tensors into the original tensor network
for the partition function. We can squeeze the whole network
into an infinite chain of channel operators by sequentially
pulling the MPS fixed points through the network from top
and bottom. Then a further contraction is performed by the left
and right fixed points of the channel operators. For instance,
the expectation value of the local chirality at a plaquette p is
defined as

0; +A;j)), (16)

Z (sin(6; —

t/eD

where the sum runs over the four bonds around the plaquette
anticlockwise, corresponding to four pairs of nearest-neighbor
two-angle observable. For the FFXY model with checker-
boardlike order of the chirality, it is necessary to pick out a
unit cell of 2 x 2 plaquette as shown in Fig. 5(a), where the
subplaquettes are labeled with a, b, ¢, and d. The number of
two-angle observable needed to evaluate the local chirality
of the sublattices can be reduced from 12 to 8 due to the
transitional symmetry of the unit cell. It is easy to check the
identities between the observable at boundaries like

(ei(91.1—91.2)> —

— _1—[ o—PEWO

(e i(93.1—93.z)>

191»16_101,2’ (17)
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where E({6;}) is the energy for a given spin configuration.
Compared with the orthogonal relation of (4), 1 and e~
in the second row simply change the corresponding delta
tensors in the original tensor network for the partition function
in Fig. 3(b) into

8+ —§n +ny

__ snmatng+l1
ni+ny+1° 6_=34

n+ny

(18)

which introduce the impurity tensors M and N~ containing
these imbalanced delta tensors into the tensor network of
Fig. 3(d). The structure of the impurity tensors is displayed
in Fig. 5(b) as M and N in the replacement of O4 and
Op, respectively, where ¢, v = & are in consistent with 5.
Here the superscript and subscript in M and N are omitted
when there is a normal delta tensor defined by Eq. (4). With
the help of the fixed points of the channel operators, it is
straightforward to get the two-angle observable sharing the
vertical bonds

(ei(Gz.l—Hl,l)) — (1:‘lf\|']r;:/};|FI$\>7 (19)
and those living on the horizontal bonds
<ei(61.1—01,2)> — (FLA}TAéﬁTIg* ’FI§)7 (20)

as graphically depicted in Figs. 5(c) and 5(d). Finally, we
deduce the local chiralities at four subplaquettes from the
imaginary part of these two-angle observable and the internal
energy per site can be obtained readily from the real part as

w=—5 3" (cos(t; — 0 +Ay)). @D
(i, j)ed

Moreover, the two-point correlation function between local
observable is defined by G(r) = (h(0;)h(0+,)), which can
be evaluated by inserting two local impurity tensors into the
original tensor network. The corresponding impurity tensors
are constructed in the same way by altering the Kronecker
delta tensors,

ni,ny

§nasna _>/d_eei(n1+nz—n3—n4)h(9). (22)
2

For the spin—spin correlation function, as shown in Fig. 5(e),
the evaluation of G(r) = (¢!@~%+)) is reduced to a trace of a
row of channel operators containing two impurity tensors M ™
and N~

G(r) = (F| Ty TETHTS - ToTS Thy- |Fe),  (23)

r—1

where the left and right leading eigenvectors of the channel
operators are employed.

IV. NUMERICAL RESULTS

Most of the previous studies determine the transition tem-
perature according to some kind of order parameter like the
magnetization or Binder cumulant. These order parameters
are good criteria to identify the critical temperatures rele-
vant to U(1) or Z, phase transition when several transitions
are apart from each other with sufficient distance separation.
However, for the case of FFXY model, it is hard to tell two
kinds of mutually close transitions apart from these quantities
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n 145

e

0.1536D7* + 0.4532
1.35 ¢
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0.1651(InD)~2 + 0.4459

0.00 0,02 0.04
115 . | [inD]-2
0.450 0.452 0.454 0.456 0.458 0.460
T

FIG. 6. The entanglement entropy as a function of temperature
develops two singularities at 7;; and 7, indicating two phase tran-
sitions for different MPS bond dimensions. Inset: The singularity
temperatures T;; and 7, of the entanglement entropy fitted for MPS
bond dimensions from 100 to 200 with an interval of 20. The
lower transition temperature 7., varies linearly on (In D)~2, while
the higher transition temperature 7, has a linear variance with 1/D.

because either the U (1) or the Z, transition temperature is ob-
tained from an average with some degrees of uncertainty and
the estimated temperatures may mix up with each other. Here
we propose that the entanglement entropy shall shed a new
light to overcome the difficulties in deciding whether there
are two distinct transitions in the FFXY model. The entan-
glement entropy of the fixed-point MPS for the 1D quantum
transfer operator exhibits singularity at the critical tempera-
tures which offers a sharp criteria to accurately determine all
possible phase transitions, especially for systems possessing
U (1) x Z, symmetry [49,54].

As shown in Fig. 6, the entanglement entropy Sg develops
two sharp singularities at two critical temperatures 7, and T,
which strongly indicate the existence of two phase transitions
at two different temperatures. As the singularity positions vary
with the MPS bond dimension D, the critical temperatures T
and T, can be determined precisely by extrapolating the bond
dimension D to infinite. Moreover, we find that the critical
temperatures 7;; and T, exhibit different scaling behaviors in
the linear extrapolation, implying that that the two phase tran-
sitions belong to different kinds of universality classes. The
inset of Fig. 6 displays how the critical temperatures, 7,; and
T», vary with the MPS bond dimensions. The lower transition
temperature 7;; varies linearly on the inverse square of the
logarithm of the bond dimension, while the higher transition
temperature T, has a linear variance with the inverse bond
dimension. From the linear extrapolation, the critical temper-
atures are estimated to be T, >~ 0.4459 and T, >~ 0.4532,
which agree well with the previous Monte Carlo simulations
[21,26].

Actually, the different scaling behavior stems from the
different critical behavior of the BKT and 2D Ising transitions.
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FIG. 7. (a) The specific heat develops a small bump and sharp
peak at T.; and T,,, respectively. The green line is a fitting curve of
the logarithmic divergence for 7 > T.,. (b) The establishment of the
checkerboardlike pattern of local chiralities below T,,. The inset is
the fitting of the critical exponent of the staggered magnetization.
(c) The spin—spin correlation function displays power-law behav-
ior at T = 0.450 below T;;. (d) The spin—spin correlation function
decays exponentially at 7 = 0.454 at the intermediate temperature
between T, and T,.

The BKT transition for 7 > Tt is characterized by the expo-
nentially diverging correlation length

Epxr(T) o exp(b/vT — Tt),

while the 2D Ising transition is featured by
Er5ing(T) o< 1/|T — Tc|.

Since the bond dimensions of the fixed-point MPS can be
regarded as a finite cutoff on the diverging correlation length,
it is reasonable to use the (InD)~2 and the 1/D scaling for
the extrapolation of the critical temperatures 7., and T,,, re-
spectively. Besides, the separation between 7;; and T, gets
larger as the bond dimension increases, which indicates that
large bond dimensions are necessary to clarify the nature of
the transitions.

In order to gain insight into the essential physics of dif-
ferent phase transitions, we investigate the thermodynamic
properties. We begin with the specific heat which can be
derived directly from Cy = du/dT, where u is the internal
energy obtained by the contraction of the tensor network
with the nearest-neighbor impurity tensors as introduced in
Eq. (21). As shown in Fig. 7(a), the specific heat exhibits a
logarithmic divergence at T > T, but a small bump around
T.:. The logarithmic-specific heat at the higher temperature
side indicates the occurrence of a second-order phase tran-
sition such as the 2D Ising phase transition, while the small
bump at the lower temperature can be regarded as a higher-
order continuous phase transition like the BKT transition. The
specific heat curve is inadequate for a logarithmic fitting at the

lower temperature side of T;, because two different transitions
are still closed to each other.

It is natural to expect that the logarithmic peak of the
specific heat is related to the breaking of the chiral order as
the FFXY has a checkerboard ground state with Z, symmetry.
We thus check this long-range ordering of the local chirality
T at the subplaquettes defined by (16) within a transition
invariant unit cell depicted in Fig. 5(a). As shown in Fig. 7(b),
the expectation values of the local chirality are finite below
T.,, indicating the formation of the long-range Z, order. In
addition, we find a perfect agreement for the four chiralities as
T, = —T, = —T. = T4, Which is clear evidence for the emer-
gence of the checkerboard pattern through the phase transition
at T,,. The checkerboardlike order of the chirality can be
characterized by a staggered magnetization defined as

1
m= > (=1yrhieg,, (24)
0,

where 7, is the local chirality at the center of the plaquette
located at position (x,, y,). As the temperature approaches T;»
from below, we find that m vanishes continuously as m ~ tP
with t = (T;, — T')/T., where  ~ 1/8 is the critical expo-
nents characteristic of the 2D Ising model. The linear fitting
of Inm o BInt is depicted in the inset of Fig. 7(b). Therefore
there is convincing evidence that the transition at 7, belongs
to the 2D Ising universality class.

From the analysis of the specific heat, we are aware of the
transition at 7;; related to a spin ordering, which is completely
different from the second-order phase transitions. To further
explore the nature of the phase transition, we calculate the
spin—spin correlation function

G(r) = (¥ () (0)) o {cos(by — 0,))

within the tensor network framework by Eq. (23). As
displayed in Fig. 7(c), the spin—spin correlation function
exhibits an algebraic behavior below T, implying the vortex-
antivortex bindings in the spin configuration. However, for
the temperature above T, G(r) decays exponentially, in-
dicating the destruction of phase coherence between vortex
pairs. Figure 7(d) shows the exponential behavior of G(r) at
an intermediate temperature between 7., and T;,. Hence the
change in the behavior of the correlation function at 7;; turns
out to be in the universality class of the BKT transition.
Finally, the whole phase structure is summarized in
Fig. 1(b). The FFXY model has two very close but separate
phase transitions with transition temperature Tpxr < T ing-
The transition at 7,, belongs to the usual 2D Ising univer-
sality class, while the transition at Tgx7 belongs to the BKT
universality class. As the system cools down, the Z, symmetry
is first broken at Tj,, characterized by the formation of a
checkerboardlike long-range order of chiralities, and then the
BKT transition occurs at a lower temperature Tpxr featured
by the algebraic correlation between vortex—antivortex pairs.

V. CONCLUSION

We have proposed a general framework to solve the 2D
FFXY model. The important aspect is to encode the ground-
state local rules induced by frustrations into the local tensors
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of the partition function. Then the partition function is written
in terms of a product of 1D transfer matrix operator, whose
eigenequation is solved by an algorithm of matrix product
states rigorously. The singularity of the entanglement entropy
for this 1D quantum analog provides a stringent criterion
to determine various phase transitions without identifying a
priori order parameter. Certainly the present methods provide
a promising route to solve other frustrated lattice models with
continuous degrees of freedom in 2D.

The main result of our tensor network theory is that,
higher than the BKT phase transition, a chiral ordered phase
with spontaneously broken Z, symmetry has been confirmed,
where the spin—spin phase coherence is absent but the phase
differences of the spins on two nearest-neighbor sites have a
nontrivial value different from O or m. In contrast with the
conventional situations where the Ising transition happens at
a lower temperature below the BKT transition, the ordering
of the spins in the FFXY model is nontrivial. It is highly
interesting that the chiral ordered intermediate phase may
be related to some unconventional superconductivity in the
absence of condensed Cooper pairs.

Furthermore, another phase transition associated with the
unbinding of kink pairs on domain walls in the FFXY model
[55] was proposed to support the existence of two sepa-
rate bulk transitions Tpxr < Tfsing, Which happen at a lower
temperature Tj;x < Tpxr. The kinks at the corners of do-
main walls behave as fractional vortices with the topological
charge :I:%. However, the verification of such transition is
only realized under a special boundary condition where an
infinite domain wall is ensured [56]. We believe that our tensor
network approach may provide a promising way for further
detailed investigations of such kink—antikink unbinding tran-
sition.
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