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Josephson effect in superconductor/normal-dot/superconductor junctions driven
out of equilibrium by quasiparticle injection

Sarath Sankar , Julia S. Meyer, and Manuel Houzet
Université Grenoble Alpes, CEA, Grenoble INP, IRIG, Pheliqs, F-38000 Grenoble, France

(Received 16 January 2022; revised 4 April 2022; accepted 6 April 2022; published 20 April 2022)

We study theoretically the large variations of the supercurrent through a normal dot that are induced by a small
quasiparticle injection current from normal leads connected to the dot. We find that the supercurrent decomposes
into a subgap contribution, which depends on the voltages applied to the normal leads, as well as a contribution
with opposite sign from energies outside the gap, which is insensitive to the voltages. As the voltages gradually
suppress the subgap contribution, a critical voltage exists above which the contribution from energies outside
the gap dominates, leading to a sign reversal of the current-phase relation, namely a transition to a so-called
π -junction behavior. We determine the critical voltage and analyze the robustness of the effect with respect to
temperature and inelastic relaxation in the dot.
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I. INTRODUCTION

The fascinating properties of superconducting devices are
in large part associated with the presence of an excitation gap
for quasiparticles such that, at low temperatures, the system
can be described in terms of a macroscopic variable, the su-
perconducting phase, while being protected from dissipation.
It turns out, however, that quasiparticles still play an important
role in many situations. Nonequilibrium quasiparticles may
be present due to the breaking of Cooper pairs, e.g., by the
absorption of stray photons or cosmic rays. They have been
shown to be very difficult to get rid off and to be detrimental
for the coherence of superconducting qubits (see, e.g., Ref. [1]
for a recent review). On the other hand, trapped quasiparticles
in the Andreev bound states that form in Josephson junctions
can lead to interesting novel phenomena, such as the realiza-
tion of an Andreev spin qubit [2,3].

Recent experiments on gate control of the supercurrent in
metallic Josephson junctions [4–8] have revived the interest
in a better understanding of the role of quasiparticle injection
from normal parts of the circuit [9–12]. Deliberate quasiparti-
cle injection via voltage-biased normal leads has indeed been
studied earlier and shown to have important effects on the
supercurrent [13–15]. The possible reversal of the sign of the
supercurrent upon increasing the voltage of a normal lead
directly coupled to the junction was first shown, though not
emphasized, theoretically in a long ballistic junction [16]. The
resulting realization of a so-called nonequilibrium π junction
was pointed out in Ref. [17], where a simpler setup consisting
of a normal dot connected to two superconductors was in-
vestigated. Experimentally, a nonequilibrium π junction was
first realized in a long diffusive junction [18]. Also subsequent
work, both theoretical [19–21] and experimental [22,23], con-
centrated on extended junctions. (A short ballistic junction
was addressed in Ref. [21]. However, in that case, the effect
is absent.) More complicated geometries, sometimes called

Andreev interferometers, have been studied as well [24,25],
but all in the long-junction limit. We note in passing that
equilibrium π junctions may be realized in superconductor-
ferromagnet-superconductor junctions [26–29].

Here we revisit the simple superconductor/normal-
dot/superconductor setup and analyze the supercurrent in
detail. Our main findings are that the nonequilibrium π tran-
sition exists irrespective of the coupling strengths between
the dot and the superconductors, and that it is robust with
respect to temperature and inelastic relaxation due to electron-
electron interactions. Furthermore, we show that the same
phenomenon also occurs in multiterminal Josephson junctions
[30–33] that are currently under intensive investigation, as
they may be used for Majorana braiding [34,35] and have
interesting topological properties [36–38].

Using the quasiclassical Usadel equations in the Keldysh
formulation [39], we study a chaotic normal dot coupled to
various superconducting and normal leads. We obtain explicit
analytical expressions for the currents flowing from the dot to
the different leads. Whereas the links to the normal leads only
carry dissipative currents, the links to the superconducting
leads may carry both dissipative currents and dissipationless
supercurrents. We find that the dissipative and supercurrents
can be distinguished by their behavior under a global change
of sign of all the voltages: while the dissipative currents are
odd, the supercurrents are even under such a sign reversal.

The distinct behavior under a global change of sign of
all voltages allows us to separately study the supercurrents,
which can be expressed as an energy integral over the product
of a spectral function and a distribution function. While the
spectral function only depends on the spectral properties of the
leads and the couplings between the dot and the leads, the dis-
tribution function also depends on the distribution functions
of the leads. Interestingly the contributions to the supercurrent
from subgap energies and from energies outside the gap show
a quite different behavior. The subgap contributions depend
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only on the voltage-dependent distribution functions of the
normal leads, which is easy to understand as the gap in the su-
perconducting leads prevents thermalization at these energies.
By contrast, the contributions from energies outside the gap
depend only on the equilibrium distribution functions of the
superconducting leads. Thus the quasiparticle injection from
the normal leads only affects the subgap contributions and, in
particular, suppresses them upon increasing the bias voltages.

Furthermore, we show that, at fixed superconducting
phases, the signs of the subgap contributions and the contri-
butions from energies outside the gap are opposite, such that
the two contributions are in competition. This effect can be
traced back to the negative sign of the spectral current function
at energies above the gap, as emphasized in the two-terminal
case in Ref. [40]. In equilibrium, we find that the subgap
contributions always dominate and, therefore, fix the signs
of the supercurrents. However, as the applied voltages to the
normal leads are increased, the gradual suppression of the
subgap contributions leads to a supercurrent sign reversal at
a critical value of the voltages, where the contributions from
energies outside the gap become dominant.

In a two-terminal junction, a sign reversal of the supercur-
rent corresponds to a transition from a conventional junction
to a so-called nonequilibrium π junction. We study this effect
in detail in the case of weak and strong coupling of the
dot to the superconducting leads, both at zero temperature
and close to the superconducting critical temperature, Tc. At
zero temperature, we find that the transition always occurs at
voltages V ∗ < �0/e, where �0 is the zero-temperature super-
conducting gap. Upon further increasing the voltage above
�0/e, the critical current saturates to a value that is smaller
than or comparable to the equilibrium critical current. Close
to Tc, the behavior is qualitatively different. At strong cou-
pling, the transition is pushed up to voltages V ∗ > �0/e. By
contrast, at weak coupling, the finite temperature reduces the
value of the critical voltage V ∗. Interestingly, in that case, the
critical current at large voltages in the π -junction regime is
parametrically larger than the equilibrium supercurrent.

As in any nonequilibrium phenomenon, relaxation plays
an important role. We study the robustness of the effects
discussed above with respect to internal inelastic relaxation
inside the dot due to electron-electron interactions. Modeling
this inelastic relaxation by a fictitious fermionic bath [41],
we find that the transition survives even when the inelastic
relaxation rate �b is fairly large, though it is pushed to large
voltages. Thus the effect is robust.

The paper is organized as follows. In Sec. II, we define the
model and provide the general expressions for the currents in
the quasiclassical-Keldysh formalism. In Sec. III, we analyze
the supercurrents in the absence of inelastic relaxation and
obtain the critical voltage at which the π transition happens.
In Sec. IV, the effects of inelastic relaxation within the dot
due to electron-electron interactions are considered. Finally,
we conclude in Sec. V. Some details and generalizations of
the setup can be found in the Appendixes.

II. MODEL

We consider a normal dot that is coupled to normal (N)
and superconducting (S) leads through tunnel barriers. In the

quasiclassical-Keldysh formalism [42], the electric current
through the junction connecting the dot to lead p can be
expressed in terms of the quasiclassical Green’s functions of
the dot (ǧ) and the lead (ǧp), subject to the normalization
condition ǧ2

(p) = 1, as follows:

Ip = Gp

16e

∫ ∞

−∞
dE Ĩp(E ), (1)

with

Ĩp = Tr
[
τ̂3

(
ĝK

p ĝA − ĝRĝK
p − ĝK ĝA

p + ĝR
pĝK

)]
, (2)

where Gp is the tunnel conductance in the normal state and
ĝR/A/K

(p) denotes the retarded, advanced, and Keldysh compo-
nents of the quasiclassical Green’s function, respectively:

ǧ(p) =
(

ĝR
(p) ĝK

(p)
0 ĝA

(p)

)
. (3)

The components ĝR/A/K
(p) are 2 × 2 matrices in Nambu space

and τ̂1,2,3 are Pauli matrices acting in that space.
If we neglect inelastic relaxation in the dot, the dot Green’s

function is determined by the equation

[ȟ, ǧ] = 0, with ȟ = E τ̌3 + i
∑

p

�pǧp. (4)

Here τ̌3 = σ̂0 ⊗ τ̂3 with σ̂0 being the identity matrix in
Keldysh space, E is the energy measured from the Fermi level
in the S leads, and �p = Gpδ/(2πGQ), where δ is the mean
level spacing in the dot and GQ = e2/π the conductance quan-
tum (in units where h̄ = 1), are the partial level widths due to
the tunnel coupling of the dot to the leads. The quasiclassical
approximation relies on large conductances, Gp � GQ, such
that (i) mesoscopic fluctuations can be safely ignored and
(ii) the discrete energy levels in the dot cannot be resolved
because of their broadening by scattering. Furthermore, the
short-junction geometry discussed in our work corresponds to
a dot size, L, much smaller than the superconducting coher-
ence length, vF /�, where vF is the Fermi velocity. The above
conditions ensure δ � �,� � vF /L. Thus they allow us to
concentrate on the competition between � and � in the results
discussed below.

The spectral Green’s functions ĝR/A
(p) can be generally ex-

pressed as

ĝR
(p) = sin θ(p)[sin χ(p)τ̂1 + cos χ(p)τ̂2] + cos θ(p)τ̂3 (5)

and ĝA
(p) = −τ̂3ĝR †

(p)τ̂3 with complex angles θ(p) and χ(p).
For a normal lead, θp = 0 such that ĝR/A

p = ±τ̂3. Assuming
that all the superconducting leads are grounded and have the
same gap amplitude and different superconducting phases φp,
�p ≡ �eiφp , their Green’s functions are obtained with

χp = φp and θp = θS, where tan θS = i�

E + i0+ . (6)

The Green’s functions ĝR/A of the dot are determined us-
ing the respective blocks of Eq. (4), [ĥR/A, ĝR/A] = 0, with
ĥR/A = E τ̂3 + i

∑
p �pĝR/A

p . As (ĥR/A)2 is proportional to the

identity matrix, it is easy to see that ĝR(A) = ĥR(A)/ξR(A) with
ξR(A) = ±sgn(E )

√
(ĥR(A) )2, where the sign convention is cho-

sen to match the normal state result ĝR(A) = ±τ̂3 in the limit of
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vanishing coupling to the leads. Note that ξA = −(ξR)∗. Thus
the dot parameters θ and χ are given as

sin θ = i�φ sin θS

ξR
, sin χ =

∑
s �s sin φs

�φ

, (7)

with �φ =
√∑

s,s′ �s�s′ cos φss′ and

ξR = sgn(E )
√

(E + i�N + i�S cos θS )2 − �2
φ sin2 θS, (8)

where the sum over leads s is restricted to the superconducting
leads, φss′ = φs − φs′ , and �N and �S are the sums of the
partial level widths associated with the N and S leads, respec-
tively. Note that χ is real.

The Keldysh part of the equilibrium Green’s function reads
ĝK

p = (ĝR
p − ĝA

p) fL0(E ), where fL0(E ) = tanh(E/2T ) (in units
where kB = 1). For a normal lead n biased at voltage Vn,
one obtains ĝK

n (E ) = 2τ̂3[1 − 2 f (E − eVnτ̂3)], where f (E ) is
the Fermi-Dirac distribution function. It can also be written
in the form ĝK

n (E ) = 2τ̂3 fLn(E ) + 2τ̂0 fT n(E ), where the lon-
gitudinal component of the distribution function, fLn(E ) =
[ f (−E − eVn) − f (E − eVn)], is odd in energy and even in
voltage, whereas the transversal component of the distribution
function, fT n(E ) = 1 − f (E − eVn) − f (−E − eVn), is even
in energy and odd in voltage.

To obtain the Keldysh part of the dot Green’s function,
following Refs. [43,44], we combine the Keldysh component
of the normalization condition, ĝRĝK + ĝK ĝA = 0, and the
Keldysh component of Eq. (4) to find

ĝK = 1

ξR + ξA
(ĥK − ĝRĥK ĝA). (9)

Using

ĥK = i
∑

p

�pĝK
p

= (ĥR − ĥA) fL0 + 2i
∑

n

�n[τ̂3( fLn − fL0) + τ̂0 fT n], (10)

where the sum over leads n is restricted to the normal leads,
and the identities derived in Appendix A, it can be written in
the form

ĝK = (ĝR − ĝA) fL + (ĝRτ̂3 − τ̂3ĝA) fT , (11)

with

fL = fL0 + C

Im ξR

∑
n

�n( fLn − fL0), (12)

fT = 1

C Im ξR

∑
n

�n fT n, (13)

where

C = 1 + cos θ cos θ∗ + sin θ sin θ∗

cos θ + cos θ∗ . (14)

Note that, for |E | < �, C takes a particularly simple form (see
Appendix A), C = Im ξR/�N , such that the subgap distribu-
tion function only depends on the distribution functions of the
normal leads,

fL(E ) = 1

�N

∑
n

�n fLn(E ) if |E | < �. (15)

This reflects the fact that no thermalization with the supercon-
ducting leads is possible at these energies. At energies |E | �
�, one recovers the normal state result, where fL = ∑

p �p fLp

is a weighted sum of the distribution functions of all the leads.
We now have all the elements necessary to evaluate the

currents as given by Eq. (1). The current to a normal lead takes
the form

In = Gn

4e

∫
dE Ĩn(E ) with Ĩn = 2( fT − fT n)Re(cos θ ).

(16)
It is a dissipative current that is odd under flipping the signs of
all the voltages (as can be readily deduced from the expression
for fT n).

The current to a superconducting lead can be decomposed
into a dissipative current Idis

s and a dissipationless supercur-
rent IS

s [17,45,46], namely,

Is = IS
s + Idis

s = Gs

2e

∫
dE

(
Ĩ S
s (E ) + Ĩ dis

s (E )
)
, (17)

with

Ĩ S
s (E ) =

∑
s′ �s′ sin φs′s

�φ

[ fLIm(sin θ )Re(sin θS )

+ fL0Re(sin θ )Im(sin θS )], (18)

Ĩ dis
s (E ) = fT

[
Re(cos θ )Re(cos θS )

−
∑

s′ �s′ cos φs′s

�φ

Re(sin θ )Re(sin θS )

]
. (19)

Under a global flip in the sign of the voltages in the normal
leads we see that fL is even whereas fT is odd, which results
in the supercurrent being even and the dissipative current
being odd. Thus the dissipative currents and supercurrents are
conserved separately:∑

n

In +
∑

s

Idis
s = 0 and

∑
s

IS
s = 0. (20)

We further note that the two components in our setup satisfy
an additional symmetry property: the supercurrents and disip-
pative currents are odd and even, respectively, under a global
sign flip of the superconducting phases. (This result may not
survive in the case of a finite-length normal region [47].)

Here we are interested in the supercurrents IS
s . As sin θS

is purely real for |E | < � and purely imaginary for |E | > �

[see Eq. (6)], we can distinguish two contributions in Eq. (18):
a subgap contribution that depends on the voltage-dependent
dot distribution function fL and a contribution from energies
outside the gap that depends on the equilibrium distribution
function fL0. Thus, using Eq. (15) and the observation that the
integrand is even in energy,

IS
s =

∑
s′ Gs�s′ sin φs′s

e�φ

{ ∑
n

�n

�N

∫ �

0
dE fLnIm(sin θ ) sin θS

− i
∫ ∞

�

dE fL0Re(sin θ ) sin θS

}
. (21)

The contribution from energies outside the gap vanishes when
the dot is perfectly coupled to the superconductors (�S → ∞)
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such that a short ballistic junction is formed. In that case,
the supercurrent is carried by Andreev states only. A finite
value of �S has a similar effect as a nonzero length or a
finite Thouless energy, yielding a continuum contribution to
the supercurrent [40,48]. The presence of this continuum con-
tribution is crucial for the phenomena described here.

Equation (21) can be further simplified using Eqs. (7) and
(8), namely

IS
s = 1

e

∑
s′

Gs�s′ sin φs′s

{∑
n

�n

�N

∫ �

0
dE fLn(E ) j(E )

+
∫ ∞

�

dE fL0(E ) j(E )

}
,

with

j(E ) = Re ξR

|ξR|2 sin2 θS = Re ξR

|ξR|2
�2

�2 − E2
. (22)

(We will see in the next section that the singularity at |E | = �

is integrable.)
As Re ξR(E > 0) is positive, we make the important obser-

vation that the supercurrent,

IS
s = 1

e

∑
s′

Gs�s′ sin φs′s

{∑
n

�n

�N
K<

n + K>

}
, (23)

results from a competition between positive subgap contribu-
tions determined by

K<
n =

∫ �

0
dE fLn(E ) j(E ) > 0 (24)

and negative contributions from energies outside the gap de-
termined by

K> =
∫ ∞

�

dE fL0(E ) j(E ) < 0. (25)

As we will see in the following, it is this competition that leads
to a nonequilibrium π junction. In particular, we find that, in
equilibrium, when fLn = fL0, the supercurrent is dominated
by the positive subgap contributions K<

n . Out of equilibrium,
the modified distribution functions fLn suppress the subgap
contributions such that, eventually, the supercurrent will be
dominated by the negative contribution K> from energies
outside of the gap. The resulting sign change signals the
transition to a π -junction behavior. In the following section,
we determine the supercurrent as a function of the applied
voltages in various regimes.

III. VOLTAGE-DEPENDENT SUPERCURRENT IN THE
ABSENCE OF INELASTIC RELAXATION

For the main part of this paper, we will consider a specific
setup with two superconducting leads, phase biased at a phase
difference φ2 − φ1 = φ, and normal leads, voltage biased at
voltages with the same absolute value, |Vn| = V . As fLn is
an even function of the voltage, the distribution functions of
all the normal leads are the same, such that all the Kn in
Eq. (26) are the same, and the expression for the supercurrent

simplifies to

IS
1 = −IS

2 = �S

eR
sin φ(K> + K<), (26)

where K< is given by Eq. (24) and R = (G1 + G2)/G1G2.
This formula allows us to numerically evaluate the supercur-
rent in all parameter regimes. In the following, to get a better
understanding of the results, we discuss limiting cases where
an analytical expression for the supercurrent can be obtained.
Note that the dissipative currents depend on the signs of the
voltages in the normal leads. The dissipative currents in the
superconducting leads vanish in a symmetric setup in which
�N> = �N<, where �N>(�N<) is the sum over the �n of
the leads biased at +V (−V ). This follows from the separate
conservation of supercurrents and dissipative currents. In an
asymmetric setup, the dissipative currents would contribute
to the measured critical current [49–51]. However, in the
regime, where the normal leads that drive the system out of
equilibrium are weakly coupled to the dot, �N � �S , this
effect is negligible. In the following, we will concentrate on
that regime.

While a nonvanishing coupling is necessary to establish the
out-of-equilibrium distribution function fL, we can see from
Eqs. (15) that fL(E < �), which enters the expression for the
supercurrent, does not depend on the absolute magnitude of
the couplings. Namely, the value of �N affects the supercur-
rent, Eq. (26), only via the spectral current j(E ). As j(E ) is
nonvanishing in the absence of a coupling to the normal leads,
we may evaluate it at �N = 0 to obtain the result in leading
order. Then the expression for ξR determining j(E ) takes the
form

ξR =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√(
E + �SE√

�2−E2

)2 − �2
φ�2

�2−E2 , E < �,

√(
E + i �SE√

E2−�2

)2 + �2
φ�2

E2−�2 , E > �.

(27)

Note that ξR vanishes for some E = Eg, where Eg satisfies the
equation

Eg = �φ�

�S +
√

�2 − E2
g

. (28)

ξR is purely imaginary for E < Eg, and consequently j(E <

Eg) vanishes. Furthermore, in the interval, Eg < E < �, ξR is
real such that the spectral current simplifies to j(E ) = {ξR[1 −
(E/�)2]}−1.

To proceed further we will study two limiting cases: weak-
coupling �S � �0 in Sec. III A and strong-coupling �S � �0

in Sec. III B. We start by considering the zero-temperature
case, where fL0(E > 0) = 1 and fL(E > 0) = �(E − eV ).
We determine the critical current as a function of voltage and,
in particular, determine the voltage V ∗ at which a switch from
a conventional junction to a π junction takes place due to the
competition between K> and K<. We then consider the effect
of finite temperature in Sec. III C. Here analytical results can
be obtained in the regime T � Tc.
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A. Weak-coupling �S � �0 at T = 0

At T = 0, the gap in the leads is � = �0. Let us first
consider the contributions to the supercurrent from energies
E > �0. In that regime, we find

ξR ≈
⎧⎨
⎩

E , E − �0 � �2
S

�0
,(

�S√
�2

S−�2
φ

+ i
√

�2
S−�2

φ√
2�0(E−�0 )

)
�0, E → �+

0 .

(29)
Thus, as E → �+

0 , the spectral current saturates at j(�+
0 ) =

−�S�0(�2
S − �2

φ )−3/2, and K> can be approximated as

K> ≈ −
∫ ∞

�0+�2
S/�0

dE
1

E (E2 − �2
0)

≈ − ln
�0

�S
, (30)

with logarithmic accuracy. [Note that the case �φ ≈ �S , which
is realized when φ ≈ 2πn, would require more careful consid-
eration. However, as the critical current is realized at phases
φ ≈ π (n + 1

2 ), we will not detail it here.]
Let us now turn to the subgap contributions. At weak

coupling, the spectral gap Eg is small. Namely, Eq. (28) yields
Eg ≈ �φ � �0, varying between Eg = |�S1 − �S2 | at φ = πn
and Eg = �S at φ = π (n + 1/2). Furthermore,

ξR ≈
⎧⎨
⎩

√
E2 − E2

g , �0 − E � �2
S

�0
,√

(�2
S−�2

φ )�0

2(�0−E ) , E → �−
0 .

(31)

For �0 − V <
�2

S
�0

, we can thus approximate

K< ≈
∫ �0−�2

S/�0

max(Eg,eV )
dE

�2
0√

E2 − E2
g

(
�2

0 − E2
) , (32)

≈
⎧⎨
⎩

ln �2
0

�SEg
, eV < Eg,

ln
�0

√
�2

0−(eV )2

�SV , eV � Eg.

[For φ → πn, Eg has to be replaced by max(�φ, �N ) in the
above formulas.]

With Eqs. (30) and (32), we find the equilibrium (V = 0)
supercurrent

IS, eq
1 ≈ �S

eR
ln

�0

Eg
sin φ. (33)

The result describes a conventional junction with current-
phase relation IS (φ) = Ic sin φ (neglecting the nonsinusoidal
corrections due to phase dependence of Eg in the logarithm)
and critical current Ieq

c = (�S/eR) ln[�0/Eg(π/2)].
Increasing the voltage in the subgap regime to eV � Eg

(still eV < �0), we obtain

IS
1 (V ) ≈ �S

eR
ln

√
�2

0 − (eV )2

V
sin φ. (34)

The prefactor in that expression changes sign at
eV ∗ = �0/

√
2, signaling the transition to a π junc-

tion. Namely, at V > V ∗, the current phase relation
has the form IS (φ) = −Ic sin φ with critical current

Ic = (�S/eR) ln(V/

√
�2

0/e2 − V 2).

Finally, at eV > �0, the supercurrent saturates at

IS, >
1 ≈ −�S

eR
ln

�0

�S
sin φ, (35)

describing a π junction with critical current I>
c =

(�S/eR) ln(�0/�S ) of the same order of magnitude as
the equilibrium critical current. Our results are in agreement
with the original work by Volkov [17].

B. Strong-coupling �S � �0 at T = 0

As in the case of weak coupling, we start by considering
the contributions to the supercurrent from energies E > �0.
Here

ξR ≈ E + i
�SE√

E2 − �2
, (36)

such that

K> ≈ −�2
0

∫ ∞

�0

dE
1

E (E2 + �2
S )

≈ −�2
0

�2
S

ln
�S

�0
(37)

with logarithmic accuracy.
Let us now turn to the subgap contributions. At

strong coupling, Eg ≈ �φ�0/�S , varying from Emin
g = |�S1 −

�S2 |�0/�S at φ = 2π (n + 1/2) to Emax
g = �0 at φ = 2πn.

Except for the narrow regime �S − �φ � �2
0

�S
corresponding

to phases |φ − 2πn| � �0
�S

(that is not relevant for determin-
ing the critical current; see below), we find

ξR ≈ �S

√
E2 − E2

g

�2
0 − E2

(38)

and consequently

K< ≈ �2
0

�S

∫ �0

max(Eg,eV )
dE

1√
E2 − E2

g

√
�2

0 − E2

=

⎧⎪⎨
⎪⎩

�0
�S

K
(

1 − E2
g

�2
0

)
, eV < Eg,

�0
�S

F

[
arcsin

(√
�2

0−(eV )2

�2
0−E2

g

)∣∣∣∣1 − E2
g

�2
0

]
, Eg<eV <�0,

(39)

where K and F are the complete and incomplete elliptic
integrals of the first kind, respectively. [Similar to the weak-
coupling case, for φ → 2π (n + 1/2), Eg has to be replaced by
max(�φ, �N ) in the above formulas.]

The equilibrium current-phase relation is given as

IS, eq
1 ≈ �0

eR
K

(
4�S1�S2

�2
S

sin2 φ

2

)
sin φ. (40)

The critical current is Ieq
c ∼ �0/(eR); it is realized at φ =

φ
eq
c ∈ [0, π ] and it corresponds to a conventional junction.

(For �S1 = �S2 , one finds φ
eq
c ≈ 0.59π .)

The fact that Eg reaches �0 (at φ = 2πn) and that the
contributions to the equilibrium supercurrent from energies
outside the gap are parametrically smaller than the contri-
butions from subgap energies, as can be seen by comparing
Eqs. (37) and (39), leads to a qualitatively different scenario
for the current reversal compared with the weak-coupling
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FIG. 1. Current-phase relation in the strong-coupling case for
different voltages. The equilibrium current-phase relation (dotted
line) is nonsinusoidal. In the symmetric case, �S1 = �S2 , shown
here, the equilibrium critical current is realized at φeq

c ≈ 0.59π . The
critical current starts to decrease once eV = Eg(φeq

c ) (dash-dotted
line). The transition takes place when the two extrema at positive
and negative values of IS

1 within the interval [0, π ] have the same
magnitude (solid line). Thus the critical current at the transition
is finite. For eV > �0, the current-phase relation takes the form
IS,>
1 = I>

c sin(φ + π ) (dashed line).

case. The current-phase relation does not differ from the equi-
librium case until eV reaches Emin

g . As the voltage further
increases, the phase φ∗ at which Eg(φ∗) = eV decreases from
π to 0. Once it reaches φ

eq
c , the critical current starts to

decrease (see also Ref. [51]). Analyzing the phase dependence
of the supercurrent around Eg(φ∗) = eV , we conclude that
Ic(V ) = IS, eq

1 [φ∗(V )] for eV � Eg(φeq
c ).

For �0 − eV � �0 − Eg, we may approximate the incom-
plete elliptic integral of the first kind as

F

[
arcsin

(√
�2

0 − (eV )2

�2
0 − E2

g

)∣∣∣∣∣1 − E2
g

�2
0

]
≈

√
�2

0 − (eV )2

�2
0 − E2

g

,

which leads to a current-phase relation of the form

IS
1 (V ) ≈ �0

eR

(√
�2

0 − (eV )2

�2
0 − E2

g

− �0

�S
ln

�S

�0

)
sin φ. (41)

Thus the prefactor changes sign when eV reaches√
�2

0 − (�2
0 − E2

g )�0
�S

ln �S
�0

. In particular, at the phase

φ = π/2, which gives the critical current at V > V ∗, the
sign changes when �0 − eV ≈ �3

0/(4�2
S ) ln2(�S/�0).

A π junction is realized once |IS
1 (V, π/2)| exceeds

IS, eq
1 [φ∗(V )] ≈ (π�0/2eR)φ∗(V ) at voltages �0 − eV ∗ ≈
�3

0/[2(1 + π )2�2
S] ln2(�S/�0). As a consequence, the critical

current does not vanish at the transition. Such a behavior is
characteristic of junctions with a nonsinusoidal current-phase
relation. Figure 1 shows current-phase relations at different
voltages to illustrate the above scenario.

At eV > �0, the supercurrent saturates at

IS, >
1 = − �2

0

eR�S
ln

�S

�0
sin φ. (42)

Here the critical current I>
c = (�2

0/eR�S ) ln(�S/�0) is para-
metrically smaller than the equilibrium supercurrent Ieq

c .
Note that, in the limit �S → ∞, we recover the result

of Ref. [21] that the supercurrent gradually decreases with
voltage and vanishes at V > �0.

C. Finite temperature

As a next step, we consider the effects of finite temperature
and, in particular, the regime T � Tc. In that regime, the
equilibrium supercurrent is reduced due to the fact that the
distribution function f eq

L = tanh(E/2T ) suppresses the low-
energy contributions to the supercurrent. This also changes the
competition between contributions from energies below and
above the gap, and therefore affects the voltage V ∗ at which
the π transition takes place. As, close to Tc, the gap is given as
�/Tc ≈

√
8π2/7ζ (3)

√
1 − T/Tc, the relation �S � � holds

at arbitrary coupling.
As before, let us start by considering the contributions to

the supercurrent from energies outside the gap. We find

K> ≈ −�2
∫ ∞

�

dE tanh
E

2T

1

E
(
E2 + �2

S

)
≈

{− π�2

4�STc
+ 7ζ (3)�2

4π2T 2
c

, �S � Tc ∼ �0,

−�2

�2
S
ln

(
�S
Tc

)
, �S � Tc ∼ �0.

(43)

In weak coupling, the result is obtained using∫ ∞

�/(2Tc )
dx

tanh x

x
[
x2 + (

�S
2Tc

)2] ≈
∫ ∞

0
dx

1

x2 + (
�S
2Tc

)2

+
∫ ∞

0
dx

tanh x − x

x3
,

where the second term has to be kept as, in equilibrium,
the first term is canceled by the contributions from subgap
energies (see below).

We now turn to the subgap contributions. As E � T ∼ Tc,
the distribution function may be approximated as

fL(V ) ≈ E

2Tc

1

cosh2(eV /2Tc)
, (44)

which yields

K< ≈ �2/2�STc

cosh2(eV /2Tc)

∫ �

Eg

dE
E√

E2 − E2
g

√
�2 − E2

= π�2

4�STc

1

cosh2(eV /2Tc)
. (45)

As at T = 0, the contributions from energies below and above
the gap are comparable in the weak-coupling case, �S � �0.
In that regime, the supercurrent is given as

IS
1 (V ) ≈ �S

eR

�2

4π2T 2
c

[
7ζ (3) − π3 Tc

�S
tanh2 eV

2Tc

]
sin φ. (46)

As the dominant contributions cancel at V = 0, i.e., as the
critical current is parametrically smaller than the individual
terms, the sign change happens at a small voltage,

eV ∗ ≈ 2

π

√
7ζ (3)�STc

π
. (47)
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Interestingly, the supercurrent at V � V ∗ parametrically
exceeds the equilibrium supercurrent, namely Ieq

c ∼
�S�

2/(eRT 2
c ), whereas I>

c ∼ �2/(eRTc). This enhancement
occurs in the small temperature range Tc − T � �2

S/Tc.
By contrast, in the strong-coupling case, �S � �0, the

subgap contributions dominate in equilibrium. Therefore, a
large voltage is needed to achieve the π transition. In particu-
lar,

IS
1 (V ) ≈ �S

eR

π�2

4�STc

[
1

cosh2(eV /2Tc)
− 4Tc

π�S
ln

�S

Tc

]
sin φ,

(48)
yielding

eV ∗ ≈ Tc ln

(
�S

Tc

)
. (49)

Here the critical current at large voltages, I>
c = �2/(eR�S ),

is parametrically smaller than the equilibrium critical current,
Ieq
c = π�2/(4eRTc).

D. Numerical results

To visualize the results, we evaluate the critical cur-
rent numerically. Figure 2 shows the voltage dependence of
the critical current for various coupling strengths, at T = 0
[Fig. 2(a)] and at T � Tc [Fig. 2(b)]. The minimum of the
critical current at a finite voltage signals the transition to a
π junction. The transition happens in all parameter regimes
with the characteristic voltage V ∗ increasing with coupling
strength �S . Numerically V ∗ is obtained by determining the
voltage at which the maximal current Imax(φ) in the interval
φ ∈ [0, π ] changes sign. Figure 3(a) shows the temperature
dependence of V ∗ for various coupling strengths. The critical
current vanishes at the transition in the weak-coupling limit; it
increases with �S as the current-phase relation becomes non-
sinusoidal. The enhancement of the nonequilibrium critical
current close to Tc in the weak-coupling limit, as discussed in
Sec. III C, is illustrated in Fig. 3(b). Here the dependence on
�N is taken into account as well: the effect is seen to diminish
as �N increases.

IV. EFFECTS OF INELASTIC RELAXATION

So far we neglected inelastic relaxation within the dot.
Such relaxation processes, if strong enough, tend to establish
a Fermi-Dirac distribution in the dot with an effective tem-
perature and chemical potential determined by the coupling
to the reservoirs. As the nonequilibrium π junction relies on
deviations from a Fermi-Dirac distribution in the dot, it is
expected that strong enough inelastic processes will destroy
the effect. Here we show that nevertheless the π junction
remains robust in a large regime of parameters.

To determine the effect of internal relaxation, we have
to compare it with the relaxation to the reservoirs. In the
subgap regime, relaxation can take place only with the normal
reservoirs. As we assume that �N is small, this is a very slow
process and internal relaxation should start playing a role as
soon as the corresponding rate exceeds �N .

A simple way to model internal relaxation is to couple the
system to a fictitious fermionic bath [41] whose temperature
and chemical potential are chosen such that the energy and

FIG. 2. Critical current as a function of the voltage applied to the
normal leads in the absence of inelastic relaxation in the dot. The
minimum of the critical current at finite voltage signals the transition
from a zero junction to a nonequilibrium π junction. The critical
currents are normalized by the (temperature-dependent) critical cur-
rent in equilibrium. (a) Results for T = 0 at different values of �S .
The critical current saturates at V = �0. (b) Results at T = 0.9Tc.
Interestingly, in the weak-coupling limit, the critical current at high
voltages largely exceeds the equilibrium critical current

charge currents between the dot and the bath vanish. We
denote the temperature and chemical potential of this fictitious
bath Tb and Vb, respectively. The coupling between the dot
and the bath is characterized by the rate �b. The advantage of
this description is that it is readily described using the general
formulas in Sec. II, extending the sum over normal leads to
include the fictitious bath. We will assume �b � �S .

The condition for the vanishing of the charge current be-
tween the dot and the bath can be deduced from Eq. (16),
namely ∫

dE ( fT − fT b)Re(cos θ ) = 0. (50)

The energy current J can be written as

Jb = Gb

16e

∫
dE EJ̃b(E ), (51)
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FIG. 3. (a) Dependence of the voltage V ∗, at which the transition
from a conventional junction to a nonequilibrium π junction occurs,
on temperature. The behavior is qualitatively different at weak cou-
pling, where V ∗ decreases with temperature, and strong coupling,
where V ∗ increases with temperature. The dotted lines show the
analytical results that were obtained close to Tc. (b) Critical current
enhancement in the π phase in the weak-coupling limit close to Tc.
The dotted lines show the enhancement factor I>

c /Ieq
c = 4Tc/(π�S )

in the limit �N → 0. A reduction at finite �N is observed.

with

J̃b = Tr
(
ĝK

b ĝA − ĝRĝK
b − ĝK ĝA

b + ĝR
bĝK

)
, (52)

which, using similar considerations as the ones leading to
Eq. (16), yields the condition∫

dE E ( fL − fLb)Re(cos θ ) = 0. (53)

Using the expressions for the distribution functions in the
dot, Eqs. (12) and (13), the two conditions can be rearranged
such that the left-hand side only depends on the parameters Tb

and Vb of the fictitious bath, whereas the right-hand side only
depends on the parameters T and Vn of the normal reservoirs.
For simplicity, we will consider only the case T = 0 here. For
the setup considered in the previous section, this yields∫ ∞

0
dE fT b

(
1 − �b

C Im ξR

)
Re(cos θ )

= (�N<
− �N>

)
∫ eV

0
dE

1

C Im ξR
Re(cos θ ), (54)∫ ∞

0
dE E (1 − fLb)

(
1 − C�b

Im ξR

)
Re(cos θ )

= �N

∫ eV

0
dE E

C

Im ξR
Re(cos θ ), (55)

where the parameters ξR and C are specified in Sec. II.
In a symmetric setup, �N>

= �N<
, the right-hand side of

Eq. (54) vanishes. This imposes Vb = 0 such that fT b = 0.
We will concentrate on this case to illustrate the effect of
relaxation. Extensions to an asymmetric case are discussed
in Appendix C. We find that the characteristic voltage V ∗ of
the π transition depends on the asymmetry only very weakly.
Thus the following results are qualitatively valid also in the
extreme case of only one normal lead.

In the absence of superconductivity, the bath tempera-
ture Tb is readily obtained from Eq. (55) setting �0 = 0.
In that case, Tb =

√
3�N/π2(�N + �S )eV . Superconductivity

suppresses relaxation to the superconducting leads at low
energies. This leads to a faster rise of the temperature in the
subgap regime. The temperature obtained by solving Eq. (55)
numerically is shown in Fig. 4(a), where we consider the case
�N � �b � �S for different strengths of �S . The results can
be understood qualitatively as follows: at small V , the S leads
play no role in the heat balance process. They do, however,
modify the density of states in the dot. Initially only states
at energies E < Eg are accessible in the dot. (Their density
of states is finite when taking into account finite �N and
�b.) In that regime, Tb = √

3eV/π . As temperature increases,
the integral on the left hand side of Eq. (55) will contain
contributions ∼ e−Tb/Eg from energies E > Eg. Due to the
increased density of states at E > Eg, their contribution can
be shown to become relevant at Tb ∼ Eg/ ln(�S/�b) � Eg and
to lead to a slow-down of the increase in temperature. Once
eV > Eg, the enhanced density of states becomes accessible
in the integral on the right hand side of Eq. (55). This leads to
an enhanced power injection and results in a sharp increase in
Tb. At eV = �0, we can approximate Eq. (55) as

�N

�b

∫ �0

0
dE E fLb ≈

∫ ∞

�0

dE E (1 − fLb), (56)

yielding Tb ∼ �0/ ln(�b/�N ), i.e., a temperature that is al-
most independent of the coupling to the superconducting
leads. Finally, at eV > �0, the slope is determined by the
normal state result Tb = √

3�N/(�N + �S )eV/π .
Once Tb is determined, the supercurrent can be computed

from Eq. (26). For the specific case considered here and
�N , �b � �S , it takes the form

IS = �S

eR
sin φ[K> + K̃<(Tb)], (57)

with

K̃<(Tb) = �(�0 − eV )
�N

�N + �b

∫ �0

eV
dE j(E )

+ �b

�N + �b

∫ �0

0
dE fLb(E ) j(E ). (58)
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FIG. 4. (a) Dependence of the bath temperature on voltage in
a symmetric setup, obtained by numerically solving Eq. (55). As
discussed in the text, the temperature at eV = �0 is found to be
almost independent of the coupling strength to the superconducting
leads. Note that the subgap temperature dependence varies with
phase due to the phase dependence of Eg. (b) Critical current as a
function of voltage (log scale) for the same parameters as in (a),
obtained numerically from Eq. (57). Inelastic relaxation weakens the
nonequilibrium effects and pushes the π transition to large voltages.

If �b � �N , K̃<(Tb) = K< up to corrections of order �b/�N .
As the corrections to K< are positive, they tend to increase

V ∗. As they are small, one may expect that the corrections to
V ∗ are small. This turns out to be true only as long as eV ∗
remains smaller than �0. Once eV ∗ reaches �0, it increases
rapidly upon further increasing �b due to the energy exchange
with the superconducting leads. As seen in Sec. III B, the
transition happens very close to �0 in the strong-coupling
regime such that small corrections are sufficient to push eV ∗
up to �0. Using Eq. (41), we can estimate that this happens at
�b ∼ (�N�0/�S ) ln(�S/�0) � �N .

In the following, we will concentrate on the opposite
regime, �b � �N , where

K̃<(Tb) ≈
∫ �0

0
dE fLb(E ) j(E )

=
∫ �0

Eg

dE
1

ξR

�2
0

�2
0 − E2

tanh
E

2Tb
, (59)

corresponding to the equilibrium result, but at finite tempera-
ture Tb.

FIG. 5. Effect of inelastic relaxation in the dot, characterized by
the rate �b on the voltage V ∗, at which the π transition occurs, for
the case T = 0. eV ∗ is found to increase slowly until it reaches �0

followed by a much faster variation, if �b is further increased. At
�b � �N , the system is always in the latter regime.

As long as Tb � Eg the effect of the finite temperature is
negligible. Analytic results can be obtained for Eg � Tb �
�0 (relevant for �S � �0 only), where

K̃<(Tb) ≈ �2
0

∫ �0−�2
S/�0

Tb

dE
1

E
(
�2

0 − E2
) ≈ ln

�2
0

�STb
, (60)

as well as for Tb � �0, where

K̃<(Tb) ≈ �2
0

2Tb

∫ �0−�2
S/�0

0

dE

�2
0 − E2

≈ �0

2Tb
ln

�0

�S
(61)

if �S � �0 and

K̃<(Tb) ≈ �2
0

2�STb

∫ �0

0

dE√
�2

0 − E2
≈ π�2

0

4�STb
(62)

if �S � �0. To find the π transition, we have to compare these
results with K> computed in the previous section, namely
Eq. (30) at weak coupling and Eq. (37) at strong coupling. We
see that, in the weak-coupling limit, �S � �0, the transition
happens when T ∗

b is of the order of �0. On the other hand, in
the strong-coupling limit, �S � �0, the transition happens at
T ∗

b ∼ �S/ ln(�S/�0) � �0. In both cases, the corresponding
voltage V ∗ is larger than �0/e, such that we may use the

relation eV ∗ ∼
√

�S
�N

T ∗
b . At weak coupling, this yields

eV ∗ ∼
√

�S

�N
�0, (63)

whereas at strong coupling we find

eV ∗ ∼ �
3/2
S√

�N ln �S
�0

. (64)

Thus, in both cases, the transition from a conventional junc-
tion to a nonequilibrium π junction still occurs, though it
is pushed to voltages eV ∗ � �0. Figure 5 shows V ∗ as a
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function of �b for different strengths of �S . The rapid increase
in V ∗ once it has reached �0 is clearly seen.

V. DISCUSSION AND OUTLOOK

We showed that the supercurrent through a
superconductor/normal-dot/superconductor junction is
strongly modified in the presence of quasiparticle injection
via normal leads. The effect is most pronounced in the
absence of inelastic relaxation in the dot, when the
dot distribution function is very far from a Fermi-Dirac
distribution. In the weak-coupling case, the critical current
may be suppressed to zero due to a tiny quasiparticle
injection current IN ∼ �N/min{�S,�0}Ieq

c � Ieq
c at moderate

voltage eV < �0. Further increasing V leads to a revival
of the supercurrent, though with an inverted sign of the
current-phase relation, corresponding to a π junction. In
the strong-coupling case, a similar π transition is observed,
but due to the nonsinusoidal current-phase relation a finite
critical current remains at the transition. The origin of this
π transition can be easily understood in the short junction
setup considered here: the supercurrent is determined by
a competition between subgap processes and processes
involving energies outside the gap with opposite sign.
Interestingly we find that, in the weak-coupling case, the
critical current at high voltages deep in π -junction regime
may largely exceed the equilibrium critical current close to Tc.
It is straightforward to generalize the results to multiterminal
junctions as discussed in Appendix B.

Internal relaxation in the dot leads to a more Fermi-Dirac-
like distribution function. This slows down the suppression
of the critical current with increasing injection voltage. As
long as the internal relaxation rate �b � �S , the π transition
is robust, but it occurs at much larger voltage. We expect
the transition to be completely suppressed at �b � �S . Fur-

thermore, in our study, we did not consider relaxation by
phonons—the only external relaxation processes are due to
the currents to the leads. This requires the rate �N to be not
too small. If the main external relaxation process is due to
phonons, we also expect the π transition to be absent. A
suppression of the critical current due to the quasiparticle
injection, the weaker the larger the phonon relaxation rate �ph,
should remain.

The effect of quasiparticle injection on the critical current
in a variety of setups has been intensively studied in recent
years. Here we see in detail how a tiny quasiparticle injection
current may completely modify the system properties in a very
simple setup. Our study further highlights the importance of
the shape of the quasiparticle distribution function with much
stronger effects for a non-Fermi-Dirac shape.
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APPENDIX A: DERIVATION OF SOME IDENTITIES FOR
SOLVING THE KINETIC EQUATION

To obtain Eq. (11) for the Keldysh component of the dot
Green’s function, we use the identity

τ̂3 − ĝRτ̂3ĝA = C(ĝR − ĝA), (A1)

with C given by Eq. (14). To derive this identity, we start from
the following parametrization of ĝR/A:

ĝR = sin θ (sin χτ̂1 + cos χτ̂2) + cos θ τ̂3, (A2)

ĝA = sin θ∗(sin χτ̂1 + cos χτ̂2) − cos θ∗τ̂3, (A3)

where we used that χ is real. Using trigonometric identities,
we easily obtain

ĝR − ĝA = 2 cos
θ + θ∗

2

[
sin

θ − θ∗

2
(sin χτ̂1 + cos χτ̂2) + cos

θ − θ∗

2
τ̂3

]
, (A4)

τ̂3 − ĝRτ̂3ĝA = 2 cos
θ − θ∗

2

[
sin

θ − θ∗

2
(sin χτ̂1 + cos χτ̂2) + cos

θ − θ∗

2
τ̂3

]
. (A5)

Thus Eq. (A1) holds with

C = cos θ−θ∗
2

cos θ+θ∗
2

= 1 + cos θ cos θ∗ + sin θ sin θ∗

cos θ + cos θ∗ . (A6)

The further identity ĝRτ̂3 − τ̂3ĝA = C(τ̂0 − ĝRĝA) follows triv-
ially from the normalization condition ĝ2 = 1.

For the evaluation of the current, it is useful to show that C
simplifies for |E | < �, resulting in a simple expression for fL

in the dot as given in Eq. (15). For |E | < �, cos θS is purely
imaginary and sin θS is purely real, such that, using Eqs. (7)
and (8), we can write

cos θ = a + i�N

ξR
and sin θ = ib

ξR
, (A7)

with ξR =
√

(a + i�N )2 − b2, where a and b are real numbers.
As a consequence,

C = |ξR|2 + a2 + �2
N + b2

2a Re ξR + 2�N Im ξR
. (A8)

Using Re ξRIm ξR = a�N and (Im ξR)2 = −(a2 − �2
N − b2 −

|ξR|2)/2, it can easily be shown that Eq. (A8) reduces to C =
Im ξR/�N .

APPENDIX B: CRITICAL CURRENT HYPERSURFACES
IN MULTITERMINAL JUNCTIONS

The general formula (26) can easily be applied to multi-
terminal junctions with more than two superconducting leads.
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FIG. 6. Critical current hypersurfaces (CCH) for a setup with
three superconducting leads at T = 0. The overall shape of the CCH
depends on the values of all the couplings �s. (a) Weak coupling. At
V ∗, the CCH shrinks to a point. (b) Strong coupling. At V ∗, the CCH
remains finite. The slight variations of V ∗ for different leads are not
visible on this scale.

In that case, there is not a single critical current, but one can
define a critical current hypersurface (CCH) [32] in the space
of m − 1 independent supercurrents, where m is the number of
superconducting leads. (The remaining current is determined
by current conservation.) The CCH encloses the hypervolume,
where a nondissipative supercurrent can flow. According to
Eq. (26), the supercurrents are given as

IS
s = 1

e

∑
s′

Gs�s′ sin φs′s(K
< + K>). (B1)

In addition to the explicit phase dependence, K<

depends on the phase difference through Eg ∝ �φ =√∑
s,s′ �s�s′ cos φss′ .

The same competition between K< and K> that was re-
sponsible for the π transition in the two-terminal setup will
lead to a nonmonotonous dependence of the hypervolume
enclosed by the CCH as a function of the voltage applied to
the normal leads.

In the weak-coupling case, �S � �0, we saw that the
phase dependence of K< does not play an important role. Thus

FIG. 7. Dependence of (a) the bath temperature Tb and (b) the
bath chemical potential Vb on voltage in an extreme asymmetric setup
with γ− = 1. The same parameters as in Fig. 4 were used. The results
for Tb at γ− = 0 are shown as dashed lines for comparison.

the CCH will evolve with increasing voltage without changing
its shape and shrink to a point at V ∗ before increasing again.
Here V ∗ has the same value as for the two-terminal case,
eV ∗ = �0/

√
2. On the other hand, in the strong-coupling

case, �S � �0, the phase dependence of K< does play an
important role. Thus the shape of the CCH will depend on
voltage. Furthermore, as the critical currents never vanish, the
CCH does not shrink to a point: it reaches a minimum at V ∗
before increasing again. As V ∗ depends on the nonsinusoidal
shape of the current-phase characteristic, one obtains the same
order of magnitude as for the two-terminal case, eV ∗ � �0,
but the minima for the critical currents corresponding to dif-
ferent leads may happen at slightly different voltages.

Figure 6 shows some examples of critical current hypersur-
faces in a setup with three superconducting leads. They were
obtained by evaluating the supercurrents using Eq. (26) on a
grid of m − 1 independent phases taking values in the interval
[−π, π ].

APPENDIX C: INELASTIC RELAXATION
IN AN ASYMMETRIC SETUP

In the main text, we considered the effect of inelastic
relaxation only in a symmetric setup such that the voltage

134515-11
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FIG. 8. (a) Critical current as a function of voltage in an extreme
asymmetric setup with γ− = 1. The same parameters as in Fig. 4
were used. The results for Tb at γ− = 0 are shown as dashed lines for
comparison. (b) Critical voltage V ∗ as a function of �b at γ− = 1. The
results for γ− = 0 (Fig. 5) are shown as dashed lines for comparison.
Deviations can be seen in the weak-coupling case at intermediate �b.

Vb of the fictitious bath remained zero. Here we address the
question of what happens in an asymmetric setup, where γ− =
(�N>

− �N<
)/�N �= 0. In that case, the subgap contributions

to supercurrent depend on the distribution function

fLb(E ) = 1

2

[
tanh

E − eVb

2Tb
+ tanh

E + eVb

2Tb

]
, (C1)

as can be seen from Eq. (58). Both Tb and Vb are expected to
increase with voltage and gradually suppress the low-energy
contributions to the supercurrent, eventually leading to a π

transition. To get an idea about their magnitude, let us first
discuss the normal case, such that Eqs. (54) and (55) simplify
to

eVb = γ− �N
�S

V, (C2)

T 2
b [−Li2(−eeVb/Tb ) − Li2(−e−eVb/Tb )] = �N

�S

V 2

2 , (C3)

where Li2 is the dilogarithm function and we assumed �N �
�S as for the main part of this paper. This assumption ensures
that Tb � eVb, such that we can approximate

Tb ≈
√

3�N

π2�S
eV

(
1 − π2γ 2

−
6

�N

�S

)
. (C4)

We conclude that the finite γ− only leads to small modifica-
tions of the distribution function compared to the symmetric
case, corresponding to a shift of the temperature of the order
δTb/Tb ∼ �N/�S .

At �b � �N , the π transition at γ− = 0 happens in the
regime where Tb is given by the normal state result. Thus
the above considerations are sufficient to conclude that a
finite γ− has negligible effect. This is further illustrated in
Figs. 7 and 8.
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