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Piezosuperconductivity: Novel effects in noncentrosymmetric superconductors

Anton Kapustin1,* and Leo Radzihovsky 2,†

1Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
2Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA

(Received 8 February 2022; accepted 8 April 2022; published 20 April 2022)

We study effects in noncentrosymmetric superconductors arising from their unique coupling of Cooper-pair
condensate and elasticity. We show that although the much discussed Lifshitz coupling is not observable in a
uniform bulk state, it strikingly endows dislocations with a fractional magnetic flux. We also predict a generation
of voltage-free strain by a DC current in a P- and T -breaking Josephson junction. Viewing superconductors
through the lens of higher-form symmetries we identify the Lifshitz coupling as a chemical potential for the
approximately conserved winding number, drawing an analogy with pyroelectric insulators.

DOI: 10.1103/PhysRevB.105.134514

I. INTRODUCTION

A. Background and motivation

Superconductors are one of the more thoroughly studied
states of matter, exhibiting rich phenomenology, much of
which is quite well mapped out and understood both from
microscopic and effective field-theoretic points of view. Yet
new phenomena are being discovered in materials that ex-
hibit unconventional superconductivity. This includes such
diverse materials as cuprate, iron-based, and heavy fermion
superconductors.

In this paper we consider noncentrosymmetric super-
conductors with broken time-reversal symmetry. We use
equilibrium effective field theory to explore their low-energy
universal properties, including coupling to elastic degrees
of freedom that can and generally are neglected in the
low-energy description of centrosymmetric superconductors.
Among a number of predictions, we show that low-order
current-elastic strain coupling unique to these materials leads
to a nontrivial low-energy phenomenology that we refer to as
piezosuperconductivity.

Noncentrosymmetric materials are those where the spa-
tial inversion symmetry P is broken. There are many classes
of such materials, including ferromagnets and piezoelectric
insulators. The study of noncentrosymmetric superconduc-
tors, however, has begun only relatively recently, see, e.g.,
Refs. [1,2] for a review. Superconductors which break P in
the bulk are actually not that rare [1]. P breaking also oc-
curs naturally in two-dimensional (2D) films in the presence
of spin-orbit interactions or as a surface effect. Microscopi-
cally, P breaking implies that the pairing mechanism can no
longer be classified as spin singlet or spin triplet. This “parity
mixing” is the distinguishing feature of noncentrosymmetric
superconductors.

One might expect parity mixing to have a dramatic effect
on the macroscopic behavior. If time-reversal T is also broken
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(either spontaneously or, for example, by applying an in-plane
magnetic field to a 2D film), then the most obvious implication
is the “superconducting magnetoelectric coupling”: an addi-
tional contribution in the London equation for the current that
is linear both in the magnetic field and the superfluid density.
Within the Ginzburg-Landau (GL) description, it arises from
the Lifshitz term in the free energy which is of the first order
in spatial derivatives of the order parameter [3,4]. It has been
argued [5,6] that this leads to a helical superconducting state
(akin to the Fulde-Ferrell state [7,8]), where the phase of the
order parameter depends linearly on coordinates and thus the
Cooper-pair condensate has a nonvanishing momentum [5,6],
allowed by broken P and T symmetries. However, an experi-
mental confirmation of the helical state has remained elusive.
Recently a superconducting diode effect (SDE) was observed
in Nb/V/Ta superlattices, controlled by an in-plane magnetic
field [9]. A related giant Josephson diode effect (JDE) was
observed in a niobium-semimetal-niobium Josephson junc-
tion [10]. Both were interpreted in terms of a condensate with
a nonzero Cooper-pair momentum induced by the magnetic
field.

Here we will discuss the helical state and its experimen-
tal manifestations as well as other effects arising in P- and
T -violating superconductors. In particular, we will argue on
general gauge-invariance grounds that the effects of the lead-
ing Lifshitz coupling are absent in a uniform bulk state, and
thus a helical superconductor is not really macroscopically
distinct from a conventional superconductor. The effects of
the equilibrium Cooper-pair momentum, a clear signature of P
and T violation, can and do, however, appear in certain meso-
scopic geometries or nonuniform states, such as interfaces
(e.g., JDE), non-simply-connected samples, vortex lattices,
and, most strikingly, dislocations. We also identify another
effect, a strain-induced Josephson current, as a macroscopic
manifestation of P and T breaking in a superconducting state.

B. Manuscript organization and results

The content of the paper and our results are as follows.
In Sec. II we use the standard model for P and T broken
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superconductors [2] and gauge invariance to argue that phys-
ical manifestations of the leading spatially uniform Lifshitz
coupling and the associated Cooper-pair momentum are hid-
den in the bulk, only revealed in specialized mesoscopic
geometries that we discuss. Building on a GL model, we
propose and analyze a simple generalization that describes
the coupling of the superconducting order parameter and
the elastic degrees of freedom allowed by broken inversion
and time-reversal symmetries—piezosuperconductivity. One
of the results of this analysis is that a dislocation binds a frac-
tional flux proportional both to the Lifshitz coupling and the
Burgers vector. We also explain an analogy between supercon-
ductors and insulators based on the presence of approximate
higher-form symmetries in both classes of materials. In light
of this observation, the Lifshitz coupling is interpreted as a
chemical potential for a higher-form winding symmetry, while
the helical state itself is analogous to a pyroelectric insulator.
We use this higher-form symmetry formulation to support our
conclusion that a uniform helical superconductor is not a bulk
state that is distinct from a conventional superconductor. In
Sec. III we predict another manifestation of P- and T -breaking
superconductivity, namely a current-dependent strain (at zero
voltage) in a Josephson junction and a complementary strain-
induced phase difference across the junction. In Sec. IV we
discuss the effect of elastic coupling on the nature of the
normal-superconductor transition, concluding that no new ef-
fects arise beyond the “magnetoelastic” coupling studied in
magnetic critical systems that can drive the transition first
order or give well studied “Fisher renormalization” of the
critical exponents. We also analyze elastic anomalies asso-
ciated with piezosuperconductivity around finite temperature
phase transition into the superconducting state. We conclude
in Sec. V with an overview of our predictions and consider
prospects for their experimental detection.

II. PIEZOSUPERCONDUCTING FREE ENERGY

A. Ginzburg-Landau free energy with Lifshitz coupling

Within the Ginzburg-Landau phenomenological approach,
sufficient for near-equilibrium static phenomena, the low-
energy physics of a superconductor is described by a complex
scalar ψ (r) = |ψ (r)|eiϕ(r). Under a gauge transformation
which maps the external vector potential A to A + ∇χ , the
Cooper-pair field ψ has charge 2e, transforming according
to ψ �→ ψe2ieχ . The free energy density can be expanded
as a power series in a gauge-invariant (covariant) derivative
Daψ = (∇a − 2ieAa)ψ :

f = V (ψ∗ψ ) − 2Re(iκabhaψ
∗Dbψ )

+ Re(κabDaψ
∗Dbψ ) + · · · , (2.1)

where we included the Lifshitz (second) term characteristic
of noncentrosymmetric superconductors in addition to the
conventional Ginzburg-Landau form. The ellipsis denote sub-
dominant contributions with higher derivatives and powers of
ψ . The Ginzburg-Landau potential V is also invariant under
the above U (1) gauge transformation. Although it is usually
taken to be a quartic function of ψ , its detailed form will not
be important here. If one imposes both the spatial inversion

symmetry P and the time-reversal symmetry T , then ha has to
vanish, while the tensor κab must be real and symmetric.

In this paper we are interested in the situation where either
P or T (or both) are broken, and then the vector h may be
complex while the tensor κ may be complex and Hermi-
tian. However, it is easy to see that the imaginary part of
h contributes only a total derivative to f and thus can be
dropped. Similarly, the imaginary part of κ contributes a total
derivative plus a term of the form 2e Im κabFab|ψ |2, where
Fab = ∂aAb − ∂bAa. Such a term corresponds to a spontaneous
magnetization and does not concern us here. In what follows
we will take the vector h to be real, the tensor κ to be real
and symmetric, and both are spatially uniform. Stability also
requires κ to be positive definite.

The vector h is a polar vector which is odd under time
reversal. Thus, it can be nonzero only if both P and T are
broken. Such a term has apparently been first proposed by
Edelstein [4]; a similar extension for a two-component order
parameter has appeared even earlier [3]. The physics associ-
ated with h has been extensively discussed in the context of
noncentrosymmetric superconductors in an external magnetic
field, where P is broken spontaneously while T is broken
explicitly by the external magnetic field [4–6]. In particular, it
has been predicted in Ref. [5] that a nonzero h leads to a “‘he-
lical” superconducting state, where the phase of ψ depends
linearly on coordinates akin to the Fulde-Ferrell [7,8,11,12]
superconductor (though, with distinct symmetries and physi-
cal mechanism). Indeed, the free energy can be rewritten as

f = V (ψ∗ψ ) + κab|(Da + iha)ψ |2 − κabhahb|ψ |2 + · · · ,

(2.2)

so minimizing the kinetic energy in the absence of elec-
tromagnetic field and with free boundary conditions gives
ψ ∼ e−ih·r. Thus, h is often interpreted [2] as the equilibrium
momentum of the Cooper-pair condensate.

We note that, apart from a upward shift in the transition
temperature (quadratic in ψ correction to V ) in Eq. (2.2), h en-
ters only through an “extended covariant derivative” Da + iha.
This suggests a geometric interpretation of h as a constant
U (1) vector potential, i.e., a flat background U (1) gauge field.
As is well known from the theory of the Aharonov-Bohm
effect, only the holonomy of a flat gauge field along a non-
contractible loop is physically meaningful. Since the physical
space R3 has no noncontractible loops, this implies that in
the bulk h can be “gauged away.” Indeed, a constant h can
be absorbed into a redefinition ψ �→ ψe−ih·r (crucially, at
the expense of modifying terms with higher derivatives, the
leading one quadratic in ψ , with three derivatives). Impor-
tantly, the potential V (ψ∗ψ ) is unchanged thanks to ordinary
electromagnetic gauge invariance. More generally, a noncon-
stant h which is a gradient of a function can be removed by
a redefinition of ψ , and our conclusions also extend to this
case. Conversely, h with a nonzero curl will have physically
observable effects.

This conclusion does not imply that a constant nonzero
h has no observable effects. Indeed, there are a number of
mesoscopic experimental configurations where h has physical
consequences. One is the familiar Little-Parks experiment,
where a sample has a non-simply-connected shape [13], e.g.,
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a ring or an annular Corbino geometry, so that h cannot be
gauged away. A nonzero h will shift the Little-Parks oscilla-
tions of the current as a function of the magnetic flux by the
holonomy of h, which is a clear sign of P and T violation.
Another example is that discussed in Ref. [6], where the
helical ground state affects the Josephson current between a
superconductor with a nonzero h and an ordinary supercon-
ductor with h = 0. It leads to oscillations of the DC Josephson
current as a function of the extent of the junction in the direc-
tion of h, suppressing the overall current. This physical effect
is consistent with the above interpretation of h as a gauge field,
since h along the plane of the interface, with a step across it,
has a nonvanishing curl and therefore cannot be gauged away.
The aforementioned Josephson diode effect [10] is another
example of a mesoscopic boundary effect, consistent with
above discussion. In all these examples, the dependence on h
is periodic, with period 2π/L, set by the mesoscopic geometry
of the structure. This is consistent with our above observation
that h can be gauged away from the macroscopic bulk modulo
2π/L, entering only through boundary conditions of a finite
size sample. We also note that in the London limit (constant
|ψ |), the Lifshitz coupling is a total derivative, 2κabha · ∇bϕ,
where ϕ = arg ψ .

Since, as argued above, the leading Lifshitz coupling has
negligible effects in the thermodynamic limit, the bulk physics
of a superconductor with broken P and T symmetries must
be controlled by higher order terms that might have other-
wise been viewed as subdominant. At quadratic order in the
Cooper-pair order parameter ψ , the leading such term is cubic
in covariant derivative, given by

f23 = 2Re(iγabcψ
∗DaDbDcψ ), (2.3)

where the real tensor γabc is odd under P and T symme-
tries. Without loss of generality we take the tensor γabc to be
completely symmetric. Indeed, since [Da, Db]ψ = −2ieFabψ ,
the components which are not completely symmetric can be
absorbed into a B-dependent redefinition of ha.

Another P- and T -violating leading higher order term,
quartic in ψ and linear in covariant derivative, is

f41 = −iκabh′
a|ψ |2(ψ∗Dbψ − ψDbψ

∗). (2.4)

Including such a term in the free energy is equivalent to
allowing h to depend on |ψ |2, and for uniform |ψ | and h′
can be gauged away in the bulk per our above discussion of
shifting away the Lifshitz term. f23 and f41 are irrelevant at
the transition into the superconducting state, but lead to vortex
anisotropy, akin to that recently observed in Ref. [14].

In the following sections we will describe another striking
manifestation of h. Namely, we will show that in the presence
of a dislocation, the physics is sensitive to h modulo the
reciprocal lattice vectors (much larger than the mesoscopic
2π/L manifestations discussed above). We will also show that
including the interaction between ψ and the elastic degrees of
freedom gives rise to further P- and T -violating effects in a
noncentrosymmetric superconductor.

B. Coupling to elastic degrees of freedom

When looking for other possible effects of P and T break-
ing on superconductivity, we note that boundaries are not

the only kind of inhomogeneities that can occur in a crystal.
Another ubiquitous type of inhomogeneity is a dislocation—a
translational topological defect in a crystal’s lattice structure.
To understand how dislocations interact with superconductiv-
ity, we need to take into account the coupling of ψ to the
elastic degrees of freedom. To do this, it is useful to regard
phonons as Goldstone bosons of the spontaneously broken
translation symmetry. The guiding principle of the free en-
ergy construction is its invariance under arbitrary rotations
and translations of the physical space, as well as under the
crystallographic space group in reference space. This is ac-
complished by introducing Goldstone fields X i(r), i = 1, 2, 3
which are functions of the “material coordinates” ra, a =
1, 2, 3. In equilibrium we have X i = Oi

ara + X i
0, where Oi

a
is an orthogonal matrix and X0 is an arbitrary vector. More
generally, one regards the functions X i(r) as describing a map
from the three-dimensional “reference space,” parametrized
by the material coordinates ra to the three-dimensional physi-
cal “target” space X i. This map is one-to-one if crystal defects
(dislocations and disclinations) are absent, otherwise it is lo-
cally one-to-one.

Note that the indices a, b, c, . . . label the coordinates of
the reference space, while the indices i, j, k, . . . label the co-
ordinates of the physical space. Elements of the crystal point
group act on the former, while rotations of the physical space
act on the latter. The “elastic vielbein”—the Cauchy defor-
mation tensor Ei

a = ∂X i

∂ra and its inverse Ẽ a
i = ∂ra

∂X i allow one to
convert one type of index to the other. It is useful to introduce
a reference-space metric tensor gab = Ei

aEi
b, where summation

over repeated indices is understood. We note that gab is a
tensor in the reference space and a scalar in the physical
space. Geometrically, it is a pull-back of the flat metric on the
physical space to the reference space via the map r �→ X(r).
In equilibrium, gab = δab is flat, so the conventional “right
Cauchy-Green” strain tensor, which is invariant with respect
to rotations in the physical space, uab = 1

2 (gab − δab) vanishes
in an undeformed crystal.

In the “Lagrangian” approach, the field ψ is regarded a
function of the reference coordinates ra (and time, if one
is interested in time-dependent problems). The free energy
density expanded to quadratic order in derivatives of ψ now
takes the form

f = V (ψ∗ψ ) − iκabha[u](ψ∗Dbψ − ψDbψ
∗)

+ κabDaψ
∗Dbψ + fel + · · · , (2.5)

where Daψ = ∂aψ − 2ei∂aX iAiψ and fel = 1
2 cab,cd uabucd is

the usual elastic free energy density, which is a function of the
symmetric strain only, and ellipsis stand for higher order terms
that are subdominant for small strains and currents. Note that
the vielbein appears in the coupling to the vector potential
to ensure rotational invariance in the physical space. In the
Lagrangian description, ∂aϕ and Ai are vectors in a reference
and a physical space, respectively. In both the Eulerian and
Lagrangian descriptions the velbein in the minimal coupling
ensures that the gauge transformation takes a standard form
ψ → ψe2ieχ , Ai → Ai + ∂iχ .

The symmetric tensor κab and the vector ha may them-
selves be functions of the strain tensor u. For example, the
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dependence of κab on u accounts for a possible dependence of
the London penetration length on the strain. For our purposes
here, it will be sufficient to regard κab as strain independent
and expand ha[u] to linear order in the strain ha[u] = ha +
gb,cd ucd .

After some rearrangement and a negative correction to the
elastic energy δ fel = −κab(ga,cd ucd + ha)(gb,e f ue f + hb)|ψ |2
encoding a superconductivity-induced elastic distortion and
strain-induced shift in the superconducting transition temper-
ature Tc, we get

f = V (ψ∗ψ ) + κab[Daψ + i(ha + ga,cd ucd )ψ]∗[Dbψ + i(hb + gb,e f ue f )ψ] + fel + δ fel + · · · . (2.6)

At first sight, it might seem that a constant vector h can again
be absorbed into ψ by redefining ψ → ψe−ih·r. However,
as discussed in the Introduction, this is not true if there are
boundaries or if the sample is not simply connected. We
will now show that it is also not true in the presence of a
dislocation.

C. Dislocation probe of the Lifshitz coupling

Usually, dislocations are incorporated by allowing the map
X �→ r(X) from the physical space to the reference space to
be multivalued, so that different “branches” of the map are
related by shifts in the Bravais lattice of the crystal. As a
result, loops in the physical space encircling dislocations map
to nonclosed paths in the reference space whose endpoints are
related by a shift in a reference space lattice—the Burgers
vector b of the dislocation. The inverse map r �→ X(r) is
single valued, but has the property that points in the reference
space separated by the Burgers vector are mapped to the same
point in the physical space.

Since ψ must be well defined on the physical space, the
redefinition ψ → ψe−ih·r is not “harmless” in the presence
of dislocations. Namely, in a dislocated sample a nonzero
h (a Lifshitz term) in the free energy [Eqs. (2.2) and (2.6)]
cannot be shifted away without consequences, and therefore
has physical effects in the bulk, probed by a dislocation. To
see what these effects are, we may switch to the Eulerian de-
scription and express all the fields as functions on the physical
space. After defining ψ = ψ̃e−ih·r, the winding number of
arg ψ̃ = ϕ̃ around the dislocation will no longer be integral.
Instead, for a closed curve γ linking the dislocation line we
will have ∮

γ

∇ϕ̃ · d
 = h · b + 2πn, (2.7)

where b is the Burgers vector of the dislocation and n is an
arbitrary integer.

One physical consequence of the shift (2.7) of the wind-
ing number of ϕ̃ is that when a T - and P-breaking material
is cooled through a superconducting phase transition, a dis-
location with a Burgers vector b will necessarily trap a
fractional magnetic flux of magnitude (h · b)/2e. This predic-
tion should be testable via scanning tunneling and Hall probe
microscopies.

From a geometric viewpoint, it may be more natural to
identify points in the reference space related by Bravais lattice
vectors so that the map X �→ r(X) is univalued and maps
loops to loops. It still has singularities at the locations of
dislocations, so that the complement of the singularity locus
is topologically nontrivial. In such description the reference

space becomes topologically nontrivial (has noncontractible
loops). The vector h can be interpreted as a flat U (1) gauge
field on the reference space, but since the space is no longer
simply connected, its holonomy (i.e., Wilson loops) is now
observable. Homology classes of noncontractible loops on
such reference space are then labeled by elements of the
Bravais lattice. The holonomy of the gauge field h along a
loop labeled by a Bravais lattice vector b is therefore given by
e−ih·b. We note, however, that although h is thereby probed by
dislocations, its values that differ by an element of the recip-
rocal lattice are physically indistinguishable, i.e., periodically
identified by reciprocal lattice vectors.

Identification of values of h related by a vector in the
reciprocal lattice suggests that h should be interpreted as the
net quasimomentum of a Cooper pair, consistent with the dis-
crete translational symmetry of a crystal. Finally, we note that
this distinction between momentum and quasimomentum is
important only because of discreteness on atomic scale, which
is why a consideration of dislocations is needed to identify h
as the quasimomentum.

In closing, we observe a close similarity between a
dislocation trapping a fractional flux and a mesoscopic super-
conducting ring in a Little-Parks experiment. Although both
are associated with an Aharonov-Bohm phase, in the case
of a dislocation there is no actual hole in the physical (sam-
ple) space, and the nontrivial topology is associated with the
holonomy in the reference space. To the extent that vortices
carrying a flux quantum can enter and leave the system, in
equilibrium a superconductor is sensitive only to a fraction
of a flux quantum set by h modulo the reciprocal lattice.
However, because equilibration of persistent currents can be
slow on experimental time scales, multiple flux quanta can
be induced on a dislocation by a fast ramp of h (via, e.g., an
in-plane magnetic field) beyond its fractional value.

D. Higher-form symmetry characterization of helical
superconductors and pyroelectric insulators

In this section we propose a higher-form symmetry-based
characterization of helical superconductors. The key fact is
that ϕ is a periodic scalar, ϕ ∼ ϕ + 2π . Therefore, for any
nontrivial degree-1 homology class γ there is an integral
conserved quantity, the winding (vortex) number of ϕ de-
fined as 1

2π

∫
γ

dϕ. Since this conserved quantity is obtained
by integrating over a closed curve—a codimension d − 1
submanifold of the d-dimensional spatial slice—the corre-
sponding symmetry is a (d − 1)-form symmetry [15].

Conservation of the winding number can be thought of as
a local conservation law if we introduce a 1-form J = dϕ

on the (d + 1)-dimensional space-time which (in the absence
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of vortices, namely for an exact 1-form J) tautologically
satisfies dJ = 0. Equivalently, if we define the Hodge dual
current J̃ = ∗dφ (whose components are given by J̃μ1,...,μd =
εμ1,μ2,...,μd+1∂μd+1ϕ), then it is divergenceless, ∂μ1 J̃μ1,...,μd = 0.
Letting d = 3 for definiteness, we can write dJ = 0 in a
suggestive form by defining a vector field J with components
Ji = ∂iϕ and the chemical potential μ = J0 = ∂0ϕ. Then dJ =
0 is equivalent to

∇ × J = 0, ∂t J = ∇μ. (2.8)

The second equation implies that for any closed curve γ the
integral

∮
γ

J · d
 is independent of time. Its physics is a local
statement of the Josephson equation. For a finite line segment,
this equation equates the increase with time of phase winding
across the line segment with the difference of chemical poten-
tials between the two ends. The first equation in (2.8) implies
that

∮
γ

J · d
 does not change under deformations of γ , which
is part of the definition of the (d − 1)-form symmetry. In
particular, it can be nonzero only if γ cannot be shrunk to
a point.

We note that this (d − 1)-form symmetry becomes exact
only in the London limit, where |ψ | cannot vanish. If vortices
are allowed, then ϕ = arg ψ is ill-defined at the vortex cores
where ψ = 0, and ∇ × J = nv is given by the vortex density.
If vortices can be regarded as nondynamical, one can restore
the (d − 1)-form symmetry by regarding all fields as defined
outside the vortex cores. This is a reasonable definition in
the London limit of vortices frozen inside a sample by, e.g.,
pinning defects.

The 1-form J can be naturally coupled to an external
d-form gauge field a = 1

d! aμ1,...,μd dxμ1 · · · dxμd by adding
a term

∫
a ∧ J = 1

d!

∫
aμ1,...,μd J̃μ1,...,μd dd+1x to the action.

Since dJ = 0, this coupling is invariant under a gauge symme-
try a �→ a + dλ, where λ is a (d − 1) form. In particular, an
analog of the chemical potential for a (d − 1)-form symmetry
is an external gauge field whose purely spatial components
vanish while the the components a0 j1··· jd−1 are constant. Taking
d = 3 for definiteness, this corresponds to shifting the action
by 1

6

∫
d3x εi jka0 jk∂iϕ for a constant skew-symmetric tensor

a0 jk = εi jkai. Comparing with Eq. (2.1), we observe that in the
London limit where |ψ |2 is a constant the vector a is related
to h of the Lifshitz coupling:

ai = 6∂aX iκabhb|ψ |2. (2.9)

Thus in the London limit h is identified with the chemical
potential for the winding number.

The concept of a chemical potential for a higher-form
symmetry may seem unfamiliar, but in fact the physics of
insulators can be interpreted in similar terms. Recall that an
insulator is characterized by the ability to define vector fields
D and H which in the absence of external sources satisfy
Maxwell’s equations for a dielectric,

∇ · D = 0,
∂D
∂t

= ∇ × H. (2.10)

Similarly to Eq. (2.8), the first equation ensures that for a
closed d − 1-dimensional surface � the quantity

∫
�

D · dS =
0 is independent of the choice of � within its homology

class. The second equation is the continuity equation for
the displacement field D. This means that an insulator pos-
sesses a 1-form symmetry (for all d). This 1-form symmetry
is typically only approximate, since physical systems have
a nonvanishing conductivity at positive temperatures. It be-
comes exact only in the limit when the energy or mobility
gap for charged excitations is infinitely large, or when the
temperature goes to zero.

Just as the Lifshitz coupling
∫

d3x h · J in a helical super-
conductor free energy modifies the chemical potential for the
winding number, adding a term

∫
d3x e · D to the dielectric

free energy (where e is a constant vector) changes the chem-
ical potential associated with the dielectric 1-form symmetry.
Such a term shifts the equilibrium value of the electric field
in the insulator by e and gives rise to a spontaneous electric
polarization. This is known as a pyroelectric state. In the case
of a helical superconductor, adding a chemical potential for
the winding number results in a nonzero equilibrium value of
the superfluid current J. Thus a helical superconductor is to
an ordinary superconductor as a pyroelectric is to an ordinary
insulator.

We note that an equilibrium current density in a heli-
cal superconductor is not in conflict with the Bloch-Bohm
theorem [16]. This theorem states that the net equilibrium
current through a section of a quasi-1D system vanishes when
its length is taken to infinity while the width is kept finite.
The equilibrium current density in a helical superconductor
is given by the minimal norm of the vector field Daϕ + ha.
Since ϕ is allowed to have a nonzero winding number, in a
quasi-1D system of length L and a cross-section area A the
minimizing configuration has the net current which scales like
A/L. This vanishes in the limit L → ∞, in agreement with the
Bloch-Bohm theorem.

A further similarity between pyroelectrics and helical su-
perconductors is that neither represents a macroscopic phase
of matter which is truly distinct from an ordinary supercon-
ductor or an ordinary insulator, respectively. In the case of
pyroelectrics, a spontaneously generated electric polarization
is almost canceled in the long-time limit by a flow of free
charges arising from a nonvanishing conductivity. Screening
is not perfect only because the free charge is quantized, while
the spontaneous electric polarization and the associated sur-
face charge, in general, are not. However, the residual electric
polarization is microscopic, rather than macroscopic, with
polarization density vanishing in the thermodynamic limit.
In the case of helical superconductors, an analogous process
takes place when one starts out with a nonvanishing persistent
current density: thanks to vortex-antivortex nucleation, the
winding number of ϕ changes until the current Daϕ + ha

reaches the minimum allowed by the sample topology. The
residual current is microscopic (more precisely, of order A/L,
as explained in the previous paragraph). As a result, all effects
of h on bulk properties are periodic with period of order 1/L
and thus vanish in the thermodynamic limit. Ultimately, the
reason for this is that, strictly speaking, neither the 1-form
symmetry of insulators nor the (d − 1)-form symmetry of su-
perconductors are exact. The former is violated by a nonzero
charge conductivity, while the latter is violated by nonzero
vortex mobility.
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E. T -invariant noncentrosymmetric superconductors in a
magnetic field

If a external magnetic field B uniformly penetrates a super-
conductor (realized in a film subjected to an in-plane magnetic
field), then uniform ha and ga,bc are induced through the
explicit T breaking. Spatial inversion P must still be broken,
but this occurs naturally if the two surfaces of the film are not
equivalent. To linear order in B we must have

ha = αb
aBi∂bX i, ga,bc = βd

a,bcBi∂d X i. (2.11)

Here αb
a is a T -even and P-odd rank-2 tensor, and βd

a,bc is a
T -even and P-odd rank-4 tensor which is symmetric in the
reference-space indices b, c. Above we took into account that
B is a vector in the physical space, and so used the elastic
vielbein to ensure rotational invariance in the physical space.
The form of the tensors αb

a and βd
a,bc is constrained by the

crystal symmetry. For example, for the C4v point group one
must have αb

a ∼ εab, for the plane of the film transverse to the
fourfold axis.

In the presence of B the Ginzburg-Landau free energy
depends not only on the strain uab but also on the vielbein
Ei

a = ∂aX i. Physically, this encodes the dependence of the free
energy on the orientation of the superconducting crystal with
respect to the in-plane magnetic field. Ordinary magnetiza-
tion energy −M · B also contributes to such a dependence,
however.

We note, however, that in a case of a nonuniform magnetic
field B(r), Lifshitz coupling h(r) may have a nonzero curl and
then cannot be gauged away. An important example of this is
a vortex state of a type II superconductor. Such a nonuniform
Lifshitz coupling may therefore lead to anisotropy and a field-
driven distortion of the vortex lattice [14,17].

III. ELASTIC JOSEPHSON EFFECTS

As discussed in a previous section, in a simply connected
sample and in the absence of dislocations, the effect of the
vector h can be eliminated by redefining ϕ. The rank-3 tensor
ga,bc, on the other hand, cannot be eliminated. It is odd under
both P and T . In other words, its symmetry properties are
exactly the same as those of the conventional piezomagnetic
coupling. When it is nonzero, it results in an additional con-
tribution to the elastic stress proportional to the superfluid
velocity va = Daϕ = ∂aϕ − 2e∂aX iAi:

σcd = ∂ f

∂ucd
= cab,cd ucd − 2κabgb,cd |ψ |2Daϕ. (3.1)

Reciprocally, the London equation for the superconducting
current now has a contribution from the strain:

ji = 4eκab|ψ |2Ei
a(Dbϕ − gb,cd ucd )

	 4eκi j |ψ |2Djϕ − 4eκib|ψ |2gb,cd ucd . (3.2)

The first term in this equation is the usual London current
proportional to the superfluid “density” tensor κi j with respect
to the “physical” coordinate axes. The second term reflects
a novel effect of a generation of a dissipationless current by
strain. It leads to the “elastic” Josephson effect as we now
discuss.

Consider a Josephson weak link arising from a narrow con-
striction (“bridge”) in a superconducting material. The usual
Josephson current has the form I = Ic sin �ϕ, where �ϕ is
the change of the phase ϕ = arg ψ across the bridge. Suppose
a strain is induced in the bridge by an external stress. This
changes the value of h[u] and therefore the net momentum
of the Cooper pairs. For an approximately uniform strain, the
additional phase accumulated by a Cooper pair as it traverses
the bridge is Lgz,abuab, where z is the axis along the bridge.
More generally, this is an order-of-magnitude WKB-like es-
timate, since the actual strain depends on coordinates and to
determine the numerical factor requires a solution of the full
elasticity problem. For concreteness, let us consider the case
where the bridge is twisted by an angle θ by an external torque
τ . If L 
 W , then the components uzx and uzy of the strain are
of order θW/L while the other components are negligible. The
Josephson current then takes the form

I = Ic sin(�ϕ + kθ ), (3.3)

where k ∼ W gz,za, and a = x, y. This current corresponds to
the following energy function which depends on both �ϕ and
θ :

V (�ϕ, θ ) = − 1

2e
Ic cos (�ϕ + kθ ) + cθ2

2L
− τθ, (3.4)

Here c is the torsional rigidity of the bridge given by a geo-
metric factor times the shear modulus times the square of the
cross-sectional area, defined to make the dependence of the
elastic energy on L explicit. The Josephson current is given,
as usual, by I = 2e ∂V

∂�ϕ
.

In the above discussion �ϕ was taken as the independent
control parameter. However, from the experimental viewpoint,
it is more natural to fix and tune the external current I through
device. The corresponding potential is the Legendre transform
of V (�ϕ, θ ) from �ϕ to I , and is obtained by adding a term
− I�ϕ

2e to the potential V (�ϕ, θ ) above and extremizing it with
respect to �ϕ and θ . This gives

θ = L

c
τ − kL

2ec
I, (3.5)

�ϕ = �ϕ0 − kL

c
τ + k2L

2ec
I, (3.6)

where �ϕ0 is defined by I = Ic sin �ϕ0.
According to Eq. (3.5), the coupling ga,bc results in a

current-dependent strain as measured by the twist angle θ . Im-
portantly, this behavior is not masked by piezolectric effects
since there is no voltage drop across the junction in the DC
regime. Furthermore, other effects such as the dependence of
the superfluid stiffness κ on the strain cannot lead to a linear
dependence of θ on the current I . Such a linear dependence
is a smoking gun for T -odd effects. Conversely, Eq. (3.6)
shows that �ϕ is affected by the applied stress, the torque
τ . While �ϕ is not directly observable, its time derivative is
proportional to the voltage drop and is observable. The AC
voltage drop resulting from an AC torque (stress) applied to
the junction is distinguishable from the piezoelectric voltage
by its linear dependence on the frequency (this, again, is a
robust consequence of the fact that ga,bc is T odd).

While the above discussion was phrased for
superconductor-constriction-superconductor junctions,
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qualitatively the same effects will take place in SIS and
SNS junctions provided there is both a T and P breaking
in the junction. In fact, it might be easier to observe
elastic Josephson effects in such junctions because then
the superconducting leads may be taken as ordinary P-
and T -symmetric superconductors. For example, following
Ref. [10], one can use a weak link involving a Dirac
semimetal. Spin-orbit interaction will then ensure the P
breaking in the junction, while an in-plane magnetic field will
induce the requisite T breaking.

IV. NORMAL-TO-SUPERCONDUCTING TRANSITION

Having studied the piezosuperconducting state, we now
turn to the transition from a metal to a piezosupercon-
ductor. We recall that a conventional thermal 3D metal-
superconductor transition (NS), when continuous, is believed
to be in the inverted XY universality class [18–20]. The distin-
guishing P- and T -violating bulk terms [Eqs. (2.3) and (2.4)]
are irrelevant at the NS critical point, and thus the universality
class of the NS transition would remain unchanged, were it
not for the elastic coupling that we explore below.

A. The effect of the elastic modes on the
superconducting transition

We consider the effect of phonon coupling in (2.5)
on the phase transition into a piezosuperconducting state.
Fluctuations of the superconducting order parameter ψ

are described by the standard GL free-energy den-
sity fGL = κ|(−i∇ − 2eA)ψ |2 + α|ψ |2 + 1

2β|ψ |4 + 1
8π

(∇ ×
A)2 (neglecting inessential anisotropy in κ and for compact-
ness of notation defining Aa = Ei

aAi), supplemented by the
Lifshitz coupling

fpiezo = −iκ (ha + ga,cd ucd )ψ∗(∂a − 2eiAa)ψ + c.c., (4.1)

the elastic free-energy density fel = 1
2 cab,cd uabucd , and the

strain-density coupling fsd = ρabuab|ψ |2, where ρab is a real
symmetric tensor. As discussed in Refs. [2,6], for nonzero ha

(arising from spontaneous or explicit T breaking) the tran-
sition is to a helical superconductor state with ψ = ψ̃e−ih·r,
taking place at an elevated critical temperature, determined
by the suppressed coupling α̃ = α − 3

2κh2 = 0, and governed
by an effective GL model

f = κ|Daψ̃ |2+α̃|ψ̃ |2+ 1

2
β|ψ̃ |4+ 1

8π
(∇×A)2+ 1

2
cab,cd uabucd

+ κga,bcubc[−iψ̃∗Daψ̃ + c.c.] + ρ̃abuab|ψ̃ |2. (4.2)

Here ρ̃ab = ρab − κhcgc,ab. We thus find that, aside from the
Tc shift, the standard GL free energy is perturbed by strain-
current and strain-density couplings (the last two terms)

fuψ = (gc,ab jc + ρ̃abn)uab, (4.3)

where n = |ψ̃ |2 and ja = −iκψ̃∗Daψ̃ + c.c. is the standard
number current. The electric current is given by

Ja = 2eκ[−iψ̃∗Daψ + c.c.] + 4eκga,bcubc|ψ̃ |2, (4.4)

and contains a strain-dependent contribution.

It is natural to ask whether these elastic couplings modify
the critical nature of the metal-superconductor phase tran-
sition. At the level of power counting one can formally
integrate out the phonons entering through the strain. This
induces a current-current, current-density, and density-density
couplings,

fn, j = − 1
2 (ge,ab je + ρ̃abn)K̂ab,cd (g f ,cd j f + ρ̃cd n), (4.5)

where K̂ab,cd is a long-range kernel of dimension zero aris-
ing from elasticity and given by the Fourier transform of
Kab,cd (q) = qa[qeceb, f d q f ]−1qc. Now it is straightforward to
see that current-density and current-current couplings in (4.5)
are irrelevant relative to the short-range (β in the standard
GL model) and long-range density-density quartic couplings,
as they, respectively, contain one and two extra derivatives.
The strain-density interaction in (4.3) and the corresponding
induced long-range density-density coupling in (4.5) have
been explored in a variety of compressible systems, e.g., su-
persolids and compressible magnets [21]. It is known that the
nature of the transition depends on the experimental ensem-
ble: a first-order transition at fixed pressure and a continuous
transition at fixed volume with “Fisher-renormalized” [22] ex-
ponents. We thus expect the same effects at the NS transition
when the elastic degrees of freedom are taken into account.
Since ρab is nonzero, in general, these effects are not special
to noncentrosymmetric superconductors.

B. Elastic anomalies

Conversely, one may consider the feedback of the su-
perconducting phase transition on the phonons. Within
mean-field theory (mft) approximation, treating ψ̃ = ψ̃0 as a
constant, and integrating out the gauge field, or equivalently
expressing it in terms of the strain using the corresponding
Euler-Lagrange equation 2eAa = ga,bcubc we find

f̃el = 1
2 c̃ab,cd uabucd − σ̃abuab, (4.6)

where the effective elastic tensor and superconductivity in-
duced stress are

c̃ab,cd = cab,cd + dab,cd |ψ̃0|2, σ̃ab = −ρ̃ab|ψ̃0|2. (4.7)

The tensor dab,cd is independent from the ones previously
introduced and encodes how the elastic constant depends on
the superfluid density. Thus, within mft we predict a distortion
δuab and a change of the elastic constants δcab,cd that sets
in nonanalytically as ∼|T − Tc| below the superconducting
transition. Beyond the mft approximation these critical cor-
rections δcab,cd , δuab scale with energy density according to
∼|T − Tc|1−α , where α is the heat-capacity critical exponent.
Again, this behavior is a generic consequence of the coupling
the superconducting order parameter ψ to the elastic modes
and is not special to noncentrosymmetric superconductors.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied superconductors with broken
P and T symmetries, exploring novel couplings between the
Cooper-pair condensate and the elastic degrees of freedom
that are special to such materials. Prior discussions of P-
and T -breaking superconductors highlighted the presence of
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the single-derivative Lifshitz coupling in the free energy and
the properties of the corresponding “helical state.” We have
argued on very general grounds that, although this coupling
h affects certain mesoscopic properties, gauge invariance pre-
cludes its manifestations in a uniform state. This can also be
understood using an approximate higher-form winding sym-
metry generic to all superconductors.

On the other hand, using our generalized Ginzburg-Landau
theory, we have argued that the Lifshitz coupling h has an
interesting effect on dislocations, turning them into vortices
carrying a fractional flux. Flux quantization leads to a periodic
identification of h by reciprocal lattice vectors. This is in
agreement with the interpretation of h as the quasimomentum
of the Cooper-pair condensate. We also showed that a novel
elastic coupling, special to P- and T -broken superconductors
gives rise to a new effect: a generation of a nondissipa-
tive current by strain. As discussed above, this leads to
current-induced strain in P- and T -breaking Josephson junc-
tions. Finally, we discussed the effects of the elastic modes
on the normal-to-superconductor phase transition, and the
complementary effects of the phase transition on the elastic
modes.

We conclude this paper by estimating the size of some of
the effects we described. The authors of Ref. [10] interpret
their results in terms of a helical state with a quasimomentum
h of order of a few inverse microns. Such a small h will
give dislocations a magnetic flux whose fractional part (in

units of the superconducting flux quantum) is no larger than
10−3. This is consistent with the weak-link’s length being
on the order of 103 of the elementary dislocation Burgers
vector (a lattice constant). To get up to a higher fraction of
the flux quantum, magnetic fields larger than the tiny 12 mT
used in these experiments will be necessary, or alternatively,
one could look at flux predicted to be necessarily trapped on
dislocations in ferromagnetic superconductors such as URhGe
and UCoGe [23].

Turning to the off-diagonal Josephson effect, the elastic
strain u induced by a current in a bridge is of order

u ∼ 10−6

[
gz,zx

(1 μm)−1

][
10 GPa

G

][
1 μm

W

]2[ I0

1 A

]
. (5.1)

Here G is the shear modulus of the material and W is the width
of the bridge. While we do not know how to estimate gz,zx, one
might expect that it is of the same order of magnitude as h.
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