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Evidence that cuprate superconductors form an array of nanoscopic Josephson junctions
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Recent measurements of charge instabilities in overdoped compounds rekindled the proposal that cuprates
become superconductors by long-range order through Josephson coupling between nanoscopic charge domains.
We use the theory of phase-ordering dynamics to show that incommensurate charge density waves (CDWs) are
formed in the CuO planes by a series of free-energy wells separated by steep barriers. Charge oscillations in
these domains give rise to a net hole-hole attraction proportional to the height of these barriers. Concomitantly,
the self-consistent calculations yield localized superconducting amplitudes in the CDW domains characterizing a
granular superconductor. We show that a transition by long-range phase order promoted by Josephson coupling
elucidates many well-known features of cuprates like the high magnetic penetration depth anisotropy and the
origin of the pseudogap, among others. Furthermore, the average Josephson energy reproduces closely the planar
superfluid density temperature dependence of La-based films and the superconducting giant proximity effects of
cuprates, a 20-year-old open problem.
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I. INTRODUCTION

One of the main challenges of condensed-matter physics
is a complete theory for high critical temperature supercon-
ductors (HTSs). Such a theory has been hindered by many
issues like the absence of clear Fermi surfaces, the pseu-
dogap, and the prominence of various forms of collective
fluctuations [1]. To characterize whether these distinct orders
compete with or strengthen each other, many experimen-
tal techniques have been refined to detect even overlapping
fluctuations. After imaging a granular structure with high
spatial resolution scanning tunneling microscopy (STM) in
underdoped Bi2Sr2CaCu2O8+d , Lang et al. [2] proposed that
superconducting (SC) long-range order could be achieved by
Josephson coupling between nanoscopic domains. This idea
gained more recognition after measurements of charge density
waves (CDWs) in YBa2Cu3O6+x (YBCO) single crystals but
was still not considered as a general theory of cuprates for two
reasons: first, the absence of incommensurate charge ordering
(CO) or CDW data in the overdoped region and, second, the
lack of a theoretical model that could justify and describe the
physical formation of the small Josephson junctions between
the CO domains.

In this paper, we use the theory of phase-ordering dy-
namics to show that the CDW or CO may be formed by
a two-dimensional array of free-energy potential wells with
properties similar to those of granular superconductors. In
recent years there has been a great improvement in the preci-
sion of the CO wavelength λCO measurements by STM, x-ray,
and Resonant X-Ray Scattering (REXS) [3]. The very fine
variation of λCO with the doping p (or hole per CuO unit cell)
revealed by these experiments can be reproduced theoretically
by a phase separation formalism based on the time-dependent
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nonlinear Cahn-Hilliard (CH) differential equation [4]. In this
approach, the charge modulations are tuned to reproduce the
measured λCO(p) in the 100% volume fraction of the simula-
tions [5–9].

The phase separation free energy reproduces the CDW
structure and acts as a crystal field that promotes Cooper
pair formation, leading to a direct connection between the
SC interaction and the charge modulations. Some critique the
CDW-mediated superconductivity, arguing that the CDW is
limited to the underdoped region. However, recent measure-
ments [10–12] and x-ray diffraction data demonstrated CDW
correlations in overdoped La2−xSrxCuO4 (LSCO) up to com-
pounds of at least x ≡ p = 0.21 and possibly up to p = 0.25
[13]. Here we perform CDW simulations and develop a SC
theory of cuprates based on Josephson coupling between local
SC order parameters in these domains and their long-range
phase order (LRO). The Josephson coupling is closely re-
lated to the superfluid densityρsf [14,15] and reproduces its
measured temperature variation ρsf (T ) for several overdoped
LSCO films with great accuracy.

The CDW-LRO approach is also appropriate for describing
the giant proximity effect (GPE) experiments in YBCO S-I-S
wires [16] and in LSCO Josephson-type trilayer S-N′-S junc-
tions [17,18], where I is an insulator with nonzero doping, S
is a superconductor, and N′ is a superconductor layer in the
normal phase. According to conventional theory, the critical
current should diminish exponentially with the size d of a
barrier made of non-SC materials [17]. For traditional low-
temperature Josephson junctions the thickness of the barrier
d is generally comparable to the barrier coherence length ξN

[17]. However, despite the very small SC coherence lengths
ξSC of cuprates, GPE was measured with several large barriers
[16,17] with d � ξN. Thus, technically, the YBCO non-SC
spacer with d ∼ 100 nm and La-based trilayers with d ∼
100–1000 nm are too large to carry a critical current, in clear
contradiction to the experiments [16–18]. On the other hand,
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in our approach, S, N′, and I all have CDWs and differ only
by the presence or absence of LRO, which is very sensitive
to external perturbations like an applied current or magnetic
field.

II. THE CDW SIMULATIONS

The starting point is the definition of the time-dependent
phase separation (PS) order parameter associated with the
local electronic density, u(r, t ) = [p(r, t ) − p]/p, where p is
the average hole density and p(r, t ) is the charge density at
a position r in the CuO plane and at a time of simulation t .
The CH equation is based on the electronic phase separation
Ginzburg-Landau (GL) free-energy expansion in terms of the
conserved charge order parameter u [5–9,19]:

f (u) = 1
2ε|∇u|2 + VGL(u, T ), (1)

where ε is the parameter that controls the charge modulation
scale and VGL(u, T ) = −α[TPS − T ]u2/2 + B2u4/4 + · · · is a
temperature-dependent double-well potential that character-
izes the rise in charge oscillations below the onset of the phase
separation temperature TPS. We do not know TPS, but there are
indications that it is close to the pseudogap temperature T ∗.
In the simulations, when T � T ∗, the values of α and B are
always 1. This free energy in terms of the phase separation
order parameter is much simpler than the Ginzburg-Landau-
Wilson free energy in terms of SC and pair density wave fields
[20], but it suitably reproduces the details of the CO structure
of distinct compounds and their localization energy VGL.

The CH equation can be derived by a continuity equation
of the local free-energy current density J = M∇(δ f /δu) [21],

∂u

∂t
= −∇ · J

= −M∇2[ε2∇2u − α2(T )u + B2u3], (2)

where M is the mobility or the charge transport coefficient
that sets both the phase separation timescale and the contrast
between the values of u for the two phases.

The equation is solved by a stable and fast finite-difference
scheme with free boundary conditions [19], yielding the phase
separation order parameter u(r, t = nδt ), function of position
r, and n simulation time steps δt . The limiting cases are
u(ri, t ) ≈ 0, corresponding to homogeneous systems above or
near TPS or small charge variations like the observed CDW,
and u(ri, t → ∞) = ± 1, corresponding to the extreme case
(at low temperatures) of complete phase separation. The lo-
cal charge density is derived from p(r, t ) = p × [u(r, t ) + 1],
and the latter case (strong phase separation) applies to static
stripes [22,23], while the former (weak phase separation) to
very small 	p ≈ 10−2−3 variations around p, like that mea-
sured in YBa2Cu3O6+δ [24].

Figure 1(a) shows that below the TPS temperature the or-
der parameter u(r, t ) evolves in time and VGL(r, t ) valleys
become deeper, which is expected to occur when the tem-
perature decreases, favoring the mesoscopic phase separation.
As the temperature goes below T ∗, we assume the large
time behavior VGL(r, t → ∞) shown in Fig. 1(a) to become
the low-temperature VGL(r, T → 0) that generates the CDW
[Fig. 1(b)]. In this large time regime, VGL(r) depends on the

FIG. 1. (a) The VGL(t ) evolution with time. Initially, VGL is flat,
which corresponds to a system above the onset phase separation
temperature TPS. The phase separation potential wells or valleys
increase with time, and this behavior is correlated with the decrease
of the temperature below TPS. As the temperature goes below T ∗,
we assume the stable large time behavior VGL(t → ∞) is that of
low temperature VGL(T � T ∗). (b) The Cooper pair formation in
the CDW free-energy valleys. At the top, we represent some planar
Cu atoms (blue circles) attracted to hole-poor domains represented
by black lines as an illustration. Hole fluctuations in these domains
produce atomic fluctuations that also affect the other holes, promot-
ing an atomic-mediated interaction (represented by the springs as
an illustration). At low temperature (T � T ∗) Cooper pairs may be
formed in the CDW valleys (the encircled pairs of black dots), and
at T � Tc they superflow and become uniform on the CuO plane (in
agreement with the CO x-ray scattering decreasing signal below Tc

[25,26]).

temperature through the usual form of the first GL coefficient
defined after Eq. (1), that is, (1 − T/T ∗)2. This temperature
dependence is the only relevant dependence of VGL(r, T ) in
our calculations.

A typical later time and low-temperature VGL(u(r)) used
in the calculations is shown in Fig. 2(b), which leads to
the LSCO checkerboard structure. We also show the three-
dimensional side view (in the inset) with its wells or valleys
in the form of “ice cream cones.” Notice that the free energy
is defined over the CuO plane, and the third dimension is
its value in each site, which demonstrates that the minima
occur at the center of the charge domains and the maxima
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FIG. 2. Top and three-dimensional perspectives of different
properties at a later time or low temperature: (a) A checkerboard
CDW map for a LSCO system with average hole density p = 0.12
for a 100 × 100 unit cell simulation and out-of-plane view. (b) The
corresponding GL free-energy potential VGL(ri ). The inset shows the
three-dimensional perspective, which reveals the array of deep wells.
(c) The BdG SC amplitude 	d (ri ) map in a 28 × 28 unit cell portion
of the density map in (a). The three-dimensional perspective plot
demonstrates that the amplitudes 	d (ri ) are completely localized
inside the CDW domains. (d) Typical histogram of the amplitudes
showing the 	d (ri ) variation with the local pi concentration.

occur at the borders. The detailed structure and strength of
this potential are shown in the Supplemental Material [27].

For YBCO, the CDW domains are formed in puddles or
patches with different modulations in either the a or b di-
rection in the CuO plane [28,29]. The LRO superconducting
calculations with VGL(u(r)) and alternating stripelike puddles
follow in the same way as the checkerboard in Fig. 2 since the
method requires only the formation of such finite-charge do-
mains [9]. We emphasize that the calculations described and
performed here are purely two-dimensional in order to model
the observed charge arrangements on the CuO plane and do
not take into account possible out-of-plane influences, like
the quenched disorder which arises from oxygen interstitials
discovered in the HgBa2CuO4+y system [30].

III. SUPERCONDUCTING CALCULATIONS

The form of analysis here is the three-dimensional view of
the planar CDW maps shown in Fig. 2(a), the GL free-energy
potential VGL in Fig. 2(b), and the SC pair amplitude 	d (ri ) in
a 28 × 28 site portion of the 100 × 100 site density map from
Fig. 2(a) in Fig. 2(c). These illustrative plots are for an LSCO
sample with average hole density p = 0.12. These plots show
clearly that alternating rich and poor charge regions develop
in the same kind of valleys in the form of ice cream cones,
as demonstrated by the out-of-plane view in the insets. The
SC pair amplitudes are contained inside the wells and are
shown in Fig. 2(c) have the same properties as isolated SC

grains, which motivates the proposal of an array of Josephson
junctions.

While Fig. 1(a) shows the evolution of VGL(xi ) that leads
to the CDW, Fig. 1(b) shows the low-temperature VGL(xi ) that
leads to the formation of the SC interaction in the CuO planes.
At the top we represent some planar atoms (blue circles)
attracted (repelled) by hole-poor (hole-rich) CDW domains
represented schematically by black lines. High-energy x-ray
diffraction [26] revealed that CDW modulations displace the
Cu and O atoms whose oscillations around their equilibrium
positions are sensed by the holes and may give rise to a net
hole-hole attraction [9,15] illustrated by the springs.

We argued before that this induced hole-hole SC interac-
tion is proportional to the depth of the VGL wells averaged
over the whole system, that is, 〈VGL(p)〉 [9,15]. The mean-field
self-consistent Bogoliubov–de Gennes (BdG) calculations
with this attractive pair interaction over the whole system
yield the local pair amplitude map 	d (ri ). The results also
depend on the local hole density p(i) and, consequently, have
the same CDW modulations λCO, leading to what is known as
the pair density wave [1].

Since 	d (ri ) fit perfectly inside the wells, each CDW do-
main has an independent local SC order parameter phase φi,
exactly like a granular superconductor. Therefore, each CDW
domain may behave like mesoscopic SC grains interconnected
by Josephson junctions with energies EJ(rlm) between l and
m domains like those shown with alternating red and blue
colors in Fig. 2(c). In the bottom of Fig. 1(b) we show that,
according to previous calculations [9,15], the Cooper pairs are
present up to T � T ∗ and are represented by two encircled
black dots. At T � Tc, LRO sets in, and the Cooper pairs
superflow through the system, establishing a uniform charge
density on the CuO plane. This leads to a decrease in the
CDW signal observed by high-energy x-ray diffraction below
Tc [25,26] and widely interpreted to be due to the competition
between CDW and superconductivity. We emphasize that our
calculations establish the opposite: The CDW hosts the charge
domains and the local Cooper pairs in alternating domains, but
they spread through the system when LRO sets in at T � Tc.
This is shown schematically at the bottom of Fig. 1(b).

Following the above arguments, Tc is determined by the
competition between thermal disorder and the average planar
Josephson energy 〈EJ(p, T )〉 that also depends on the spatially
averaged d-wave pair amplitude

〈	d (p, T )〉 =
N∑
i

	d (ri, p, T )/N, (3)

where the sum, like in the case of 〈VGL(p)〉, is over the N unit
cells of a CuO plane. As explained previously [8,9], the d-
wave relation for the average Josephson coupling energy is
proportional to the s-wave expression [31]:

〈EJ(p, T )〉 = π h̄〈	d (p, T )〉
4e2Rn(p)

tanh

[ 〈	d (p, T )〉
2kBT

]
. (4)

Here Rn(p) is the average planar tunneling resistance between
the grains that is assumed to be proportional to the in-plane
normal state resistance just above Tc. In the array of the
Josephson junction model, the current is composed of Cooper
pairs tunneling between the CDW domains and by the normal
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carriers or quasiparticle plane current [32]. For a d-wave HTS
near Tc the supercurrent is dominant [32], which justifies the
use of the experimental Rn(p) in the above equation. There-
fore, LRO is attained when the average 〈EJ(p, T )〉 is strong
enough to overcome thermal phase disorder, or 〈EJ(p, Tc)〉 =
kBTc, and that is how we derive Tc [8,9,33,34].

These in-plane calculations are the basic pillars of the
three-dimensional LRO in the whole system, which we may
infer from transport measurements. For low p, just above Tc,
the z-direction resistivity ρc is ≈103–106 larger than the a-
or b-axis resistivity [35,36]. Despite this large difference, it
is surprising that both ρc(T ) and ρab(T ) fall to zero at the
same temperature (Tc), and this puzzling behavior can be
understood in terms of the Josephson coupling in Eq. (4). The
smaller planar resistances yield larger EJ that first promote
LRO in the planes, but each plane i would have its own SC
phase θi if it were not for the weaker interplane EJ coupling.
Thus, the z-direction Josephson coupling connects the planes,
leading to only a single phase θ in the whole system, and
both z and ab resistivities drop off together at Tc, which is
a plausible explanation for this long-known nonconventional
result. Again using Eq. (4), a smaller low-temperature super-
fluid density is expected along the z direction than along the
plane, which is confirmed by the measured large anisotropy
of the ab- and c-axis magnetic penetration depth [37,38].
Thus, although the z-direction coupling is fundamental, the
SC properties like the local SC amplitudes 	d (ri, p, T ) and
Tc(p) develop and depend entirely on the CuO planes.

IV. THE SUPERFLUID DENSITY

For low-temperature superconductors, the temperature Tθ

at which LRO disappears is very large compared with Tc,
but they are estimated to be comparable for HTSs [39]. Our
basic point is that Tc = Tθ , and at higher temperatures, the
Cooper pairs in the nanoscopic grains all have different θi and,
consequently, are in an incoherent state. This approach leads
us to infer a close connection between Josephson coupling and
superfluid phase stiffness.

The first thing we notice is that Jc(T ) is proportional to the
two-dimensional (2D) superfluid density ns(T ) or the local
Josephson current [14] that is also proportional to the phase
stiffness ρsc [40]. Along these lines, we made 〈EJ(p, 0)〉 equal
to the 2D zero-temperature superfluid phase stiffness [15,33]
ρsc(p, 0) and reproduced the measured scale relation between
the zero-temperature superfluid density and Tc(p). To under-
doped compounds, this relation is known as Uemura’s law
[41], and a similar relation for La-based overdoped films was
obtained more recently [40].

Along these lines, we show in Fig. 3 that 〈EJ(p, T )〉/kB −
T reproduces the measured [40] 2D phase stiffness ρsc(p, T )
temperature dependence. The plots show very good agreement
with p = 0.16 and 0.19 films according to Ref. [40]. For p =
0.22 we could extract with certainty only the experimental
values at T = 0 and Tc, but the theory also seems to reproduce
closely the intermediate data. In the plots we used 〈EJ(p, T )〉
from Eq. (4) with 〈	d (p, T )〉 and Rn(p) derived previously in
Refs. [15,33].

Another indication that 〈EJ(p, 0)〉/kB − T is equal to
ρsc(p, T ) comes from the proximity effect experiment on

FIG. 3. Comparison of the measured phase stiffness ρsc(p, T ) for
La-based films with p = 0.16, 0.19, and 0.22 from Ref. [40] and
〈EJ(p, T )〉/kB − T (dashed lines), with almost perfect agreement.
We also show the Josephson coupling 〈EJ(0.16, T )〉 that sets the SC
phase order scale Tθ derived in Ref. [15] and the temperature T to
make clear how to derive Tc(p = 0.16).

YBCO wires [16]. The authors measured the critical current
Ic through a small insulator region of size d inserted in the SC
wire. In their Fig. 2(b), they showed that the product IcRn at
low temperature is constant for several values of d from 40
to 110 nm, which is much larger than the estimated coherence
length ξSC of 9 nm[16]. We interpret this result while recalling
that the low-temperature Josephson current is [42]

IJ = EJ(0)

h̄/(2e)
= π	d (0)

2eRn
. (5)

Following the above discussion, taking IJ = Ic ∝
〈EJ(p, 0)〉 and according to Eq. (4), the product IcRn is
independent of the insulator spacer d , in perfect agreement
with the measurements for the S-I-S YBCO junctions. This
result, in the framework of our theory, suggests that the CDW
is also present in the underdoped insulator part of the YBCO
wire, in agreement with the connection between CDWs and
the antinodal PG mentioned in the previous section [43,44].

V. RESULTS AND DISCUSSION

In general, the critical current density is the product of the
superfluid velocity and density, that is, Jc = vsρsc. We showed
above that 〈EJ(p, T )〉/kB − T is equal to ρsc(T ) and that
the low-temperature critical current Ic(0) ∝ 〈EJ(p, 0)〉 on the
YBCO wires [16]. Based on these two results, we assume that
the average superfluid velocity is vs ∝ 〈EJ(p, T )〉/〈EJ(p, 0)〉
and that

Jc(T ) ∝ [〈EJ(p, T )〉/kB − T ]
〈EJ(p, T )〉
〈EJ(p, 0)〉 . (6)

This expression will be used to make a comparison with the
GPE measured critical currents [16,17].

The first system we deal with here is the trilayers along
the z direction composed of La1.85Sr0.15CuO4 films with Tc ≈
45 K (S) and the underdoped superconductor La2CuO4+δ with
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T ′
c ≈ 25 K (N′) sandwiched according to Ref. [17]. Initially,

we study S and N′ separately, with the average amplitudes
〈	d (p = 0.12, T )〉 and 〈	d (p = 0.15, T )〉 [15,33] and a
factor of 3 in their normal resistances Rn just above their Tc

according to Ref. [45]. For T � 25 K there is LRO in both
S and N′. Therefore, in principle, Jc would be limited by the
lower T ′

c ≈ 25 K, but the authors measured a persistent Jc al-
most to T = 35 K independently of the number of underdoped
N′ layers [17].

The main reason to have supercurrents above T ′
c = 25 K

is the presence of SC amplitudes 	d in the CDW charge do-
mains without LRO, which characterizes the PG region of the
N′ superconductor. Another important factor is the rearrange-
ment of the holes between the layers according to subsequent
experiments: using similar La-based materials but combining
undoped insulators with overdoped metallic La2−xSrxCuO4

with x = 0.38 [46] and 0.44 [47]. The authors of those studies
verified that the conducting holes pile up at the interface and
redistribute themselves from the hole-rich to the insulator
layers. Analysis with REXS and muon spin rotation (μSR)
revealed that this reorganization of the holes occurs near the
interface and they are not followed by the Sr dopant atoms.
The rearrangement of the hole densities adds or subtracts car-
riers and directly affects the local pair amplitudes 	d , which
depend on the local densities p(i) as discussed above. The
redistribution and uniformization of the charges will enhance
〈	d〉 in N′ with a concomitant decrease in S.

This enhancement or weakening was observed in Meiss-
ner effect studies using low-energy μSR [18]. These studies
showed that the local magnetic field 〈Bx〉 along the z direction
in a similar S-N′-S heterostructure is excluded like in a single
uniform superconductor even at temperatures more than 3
times larger than T ′

c . This reinforces our point that S and N′ at
T ′

c < T < Tc both have the same structure and differ only by
the presence or absence of LRO in the charge domains.

Now we will apply these ideas to the GPE in the La-based
trilayer system [40]. The effect of the checkerboard charge in-
homogeneities in the local SC properties was studied in detail
[33] in a system similar to N′ with p = 0.12, and the simu-
lations are shown in Fig. 2. The 	d (ri ) amplitude histogram
is shown in Fig. 2(d), and the calculations show that CDW
higher (lower) local hole densities have larger (smaller) local
SC amplitudes [9]. Therefore, when a supercurrent flows,
the S-N′-S system acquires a mean hole density close to the
average; that is, the mean hole density in N′ and S becomes
p′ ≈ 0.135. This rearrangement increases 〈	d (N ′, T )〉 by a
factor of approximately 1.5 and decreases 〈	d (S, T )〉 by a
factor of approximately 0.6. Taking these changes into ac-
count, we calculate the new Josephson couplings in N′ and
S while keeping their original Rn unchanged. The results of
these calculations are shown in Fig. 4, where we plot the
renormalized 〈EJ(p′, T )〉, that is, with p′ = 0.135 (green for
S and purple for N′) and ρsc(p′, T ) for the N′ (yellow) and
S (red) coupled layers. Since the critical current must be
constant through the layers and N′ takes the smaller values,
we exactly take this (yellow) lower current as the theoretical
critical current through the entire system (dashed line).

Since Jc = vsρsc, vs(p, T ) ∝ 〈EJ(p, T )〉/〈EJ(p, 0)〉, and
using the dashed ρsc(p′, T ) curve in Fig. 4, we obtain our
estimation of the critical current measurements [17] shown

FIG. 4. S and N′ layer plots after they are connected in the S-N′-
S structure with average hole density p′ = 0.135. 〈EJ(p′, T )〉 for S
(green) and N′ (purple) are shown. We also plot [〈EJ(p′, T )〉/kB − T ]
= ρsc(p′, T ) for S (red) and N′ (yellow). The smaller ρsc(p′, T ) of
N′ is the maximum critical current through the S-N′-S system [the
superfluid density through S (red line) is larger] and is assumed to be
proportional to the theoretical critical current Jc (dashed line).

in Fig. 5. To perform this comparison, we made our results
equal to the lowest measured temperature T ≈ 5 K, where
our estimation to vs(T ) is more precise. Our results are close
to the experimental Jc(T ) but do not have the round features
displayed by the red curve that was taken from Ref. [17].
This is mainly because of the poor estimation of vs(T ) at
finite temperatures. Another reason is that the S-N′-S system
is formed with stacked layers along the z direction and our
calculations are for layers in the CuO plane, as shown in the
inset of Fig. 5. But as discussed before, the calculations follow

FIG. 5. The solid red line shows the S-N′-S experimental results
from Fig. 2 of Ref. [17], and the dashed line shows our calcula-
tions, which are proportional to Jc. We made both curves equal near
T = 5 K because our estimates are more precise at low temperatures.
The inset shows schematically the coupled systems used in the cal-
culations. In the trilayer experiments [17,18] the layers are on top of
each other and connected by a small Josephson coupling, but in the
text, we explain that the calculations are similar.
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along the same lines in the sense that LRO is attained first in
CuO planes and, afterward, by interlayer Josephson coupling,
the whole system becomes superconducting. Another possible
correction is that the z-direction current may enhance the
influence of out-of-plane dopants or oxygen interstitials [30].

We argued that the formation of granular superconductivity
in the CO domains is the most basic property of cuprate su-
perconductors. We showed that phase-ordering kinetics may
describe electronic phase separation transitions by the GL
potential VGL with incommensurate free-energy wells that
generate the observed CDW. Charge fluctuations inside the
domains may induce hole-hole SC interaction proportional
to the depth of the VGL wells averaged over the whole sys-
tem, that is, 〈VGL(p)〉 [9,15]. The average Josephson coupling
〈EJ(p, T )〉 between the local SC order parameters yields the
LRO or phase-ordering temperature that becomes equal to Tc.
Furthermore, 〈EJ(p, T )〉 − kBT provides perfect agreement
with the measured superfluid density temperature dependence
of La-based overdoped films [40]. The granular superconduc-

tivity is also the key mechanism behind the GPE because both
S, N′, and I (with nonzero doping) used in the experiments
all have localized SC order parameters and differ only by the
absence or presence of LRO.

We should emphasize that the Josephson coupling in
Eq. (4) is inversely proportional to the resistivity, which
leads to much smaller EJ interplane coupling, and its iden-
tification with the local superfluid density is confirmed by
the anisotropic magnetic penetration length measurements
[37,38]. We finish by pointing out that the presence of CDWs
in electron-doped compounds [48] is a further indication that
the method applies to all cuprates, which we will explore
further in the future.
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