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Kinetic formation of trimers and multimers in a spinless fermionic chain
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We study a chain of spinless fermions with a multimer hopping term which kinematically favors the formation
of multimers and competes with single-particle hopping. We argue that this model generically stabilizes two
different multimer phases, as well as intermediate phases where the free-fermion and multimer fluids coexist and
do not spatially separate. Using density-matrix renormalization group techniques, we establish the phase diagram
of the model in the case of trimers. For one of the intermediate phases, hybridization between the fermions and
trimers liquids does occur and the onset of their correlations is well captured by a generalized BCS-like ansatz.
The case of tetramers is finally addressed.
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I. INTRODUCTION

Pairing of more than two particles to form multimers,
is a transverse topic in physics, from nuclear and particle
physics to condensed matter and cold-atom gases [1–4]. The
first kind of multimers beyond pairs are naturally trimers, a
three-body bound state. Beyond neutrons and protons made
of three bound quarks, trimers have been widely discussed
in the context of Efimov states [5–9] and in helium physics
[10,11]. With the versatility of cold-atom platforms in terms of
internal degrees of freedom and interactions, many proposals
for trimers formation arose in the quantum matter literature,
using spin-balanced [12–20] or spin-imbalanced fermionic
mixtures [21–23], or fermions with different masses [24–26].
Signatures of bosonic trimers have also been discussed both
in one [27–30], two [31–33], and three dimensions [34].

Forming trimers composed of a unique fermionic
species—spin-polarized fermions—is particularly challeng-
ing despite seminal results in the context of the quantum
Hall effect [35]. The pairing of spinless fermions already
shows a rich phenomenology [36–46], and it is a crucial
mechanism for some topological phases of matter, motivat-
ing further investigations in this direction. An intuitive route
is to use attractive density interactions [43] on a chain and
stabilize trimers using a third neighbor repulsion to prevent
phase separation. In order to develop a low-energy descrip-
tion, as a trimer phase cannot be interpreted as an instability
of the Luttinger liquid theory, the authors of Ref. [43] propose
an emergent-mode description, which is then treated with
bosonization tools. Unfortunately, such an approach is not
conclusive on the nature of the transition from the Luttinger
liquid to the trimer phase.

In this paper, instead of using interactions, we propose
and study a simple microscopic model that realizes multimer
and trimer phases thanks to a multimer-hopping term, extend-

*lorenzo.gotta@universite-paris-saclay.fr

ing the pairing mechanism foreseen in Ref. [41]. It contains
tightly bound multimers and allows for a detailed study of the
transitions between the fermionic and the multimer phases.
On phenomenological grounds, it is also likely to support
two two-fluid coexistence phases for which we derive the
phase boundaries. Remarkably, the case of trimers does re-
alize these two intervening phases in which a liquid of trimers
spatially coexists with a liquid of unbound fermions. Our
analysis generalizes the pioneering work of Ref. [42], where
pairing physics is described with the help of two fictitious
fluids of unpaired and paired fermions, a method that was
successfully applied [45,46] to the model of Ref. [41]. The
model we study here offers an exciting playground in which
the trimer density and effective interaction with the unbound
fermions is controlled by a single parameter. When the mo-
menta of the trimers and of the unbound fermions in their
respective Fermi seas are significantly displaced from each
other in reciprocal space, the two fluids hardly interact. This
corresponds to one of the intervening phases. However, when
the Fermi sea of the unbound fermions and the one of the
trimers overlap in reciprocal space, momentum-conserving
processes turning fermions into trimers and vice versa take
place. This occurs for the second intervening phase which is
thus a correlated two-fluid phase. To capture such physics,
we develop a generalized BCS wave function ansatz which
encapsulates the coherent conversion between three fermions
and a trimer and vice versa (we dubbed it the 3BCS ansatz
as it involves trimers). Such ansatz well describes quantum
correlations between the two fluids and also allows analytical
calculations which qualitatively compare well with DMRG
calculations. Finally, we turn to the case of tetramers forma-
tion. Although the phase diagram shares similar features with
the pair and trimer cases, the intervening phases are extremely
well described by the two-fluid model, supporting that the two
fluids are almost uncorrelated.

The plan of the paper is as follows. In Sec. II we introduce
our model Hamiltonian with a multimer correlated hopping
term and our phenomenological and general two-fluid picture.

2469-9950/2022/105(13)/134512(11) 134512-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3917-7594
https://orcid.org/0000-0002-9294-5663
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.134512&domain=pdf&date_stamp=2022-04-19
https://doi.org/10.1103/PhysRevB.105.134512


GOTTA, MAZZA, SIMON, AND ROUX PHYSICAL REVIEW B 105, 134512 (2022)

In Sec. III we specialize in trimers and present an extensive
study of the phase diagram together with the intermediate
phases where both liquids coexist. The 3BCS ansatz is in-
troduced in this section. Section IV presents the study of
the tetramers where we emphasize that the phenomenology
becomes somehow simpler than for pairs and trimers. Finally,
Sec. V presents a brief conclusion and summary of our results.

II. HAMILTONIAN AND TWO-FLUID PHENOMENOLOGY

A. Multimer model

We consider a chain of size L with N spinless fermions
described by creation and annihilation operators ĉ(†)

j . In what
follows, we choose a fermion density n = N/L = 0.25. We
generalize the pair-hopping model of Ruhman and Altman
[41] by introducing a multimer-hopping term t ′ competing
with the single-particle hopping t > 0:

Ĥ = − t
∑

j

(ĉ†
j ĉ j+1 + H.c.)

− t ′ ∑
j

ĉ†
j

( M−1∏
m=1

n̂ j+m

)
ĉ j+M + H.c. (1)

In order to highlight the physical meaning of the interaction
term, Hamiltonian (1) is recast in the form

Ĥ = − t
∑

j

(ĉ†
j ĉ j+1 + H.c.)

− (−1)M−1t ′ ∑
j

(M̂†
j M̂ j+1 + H.c.), (2)

where M̂ j = ĉ j ĉ j+1 · · · ĉ j+M−1 is the multimer operator. We
have M = 2 for pairs (bosons), M = 3 for trimers (fermions),
and M = 4 for tetramer (bosons), etc. For relative distances
larger than M, the M̂ j operators commute or anticommute
depending on their statistics. They also have a hard-core-
like feature M̂2

j = 0 but cannot be exactly mapped onto
fermionic or hard-core bosonic operators due to their spa-
tial extension. Models featuring M̂ j as the interaction term
have been discussed, e.g., in the form of generalized Ki-
taev chains with even multiplet pairing fields [47], leading to
the prediction of nontopological parafermions. For numerical
calculations we compute the ground state properties of (1)
using state-of-the-art density-matrix renormalization group
(DMRG) simulations [48–51] implemented from the ITensor
library [52].

B. t ′ = 0 and multimer formation

While t ′ = 0 is the free fermions limit, the t = 0 limit is
also intuitive. Indeed, configurations that gain the most kinetic
energy in a low-density picture are the ones with multimers, a
multimer being M occupied neighboring sites surrounded by
two empty sites. At the configurations level, this observation
allows us to restrict the Hilbert space to configurations on
which the Hamiltonian (1) can act to minimize energy. If one
takes the examples of trimers, for which we use the label T ,
we assume that the ground state only explores the trimer sub-
space HT spanned by Fock states with clusters of 3n fermions

FIG. 1. DMRG ground state energy EGS = NεGS for M = 3 and
L = 42 sites with PBC with t ′ = 1 and t = 10−4 as a function of
the filling n and compared with the analytical expression provided in
Eq. (3).

with integer n. For instance, | ◦ • • • ◦ • • • • ••〉 belongs to
HT , whereas | • • • • ◦ ◦ ◦ • ◦ ◦ • ••〉 does not.

Regardless of the value of M, the energy will be that of
a one-dimensional band filled with NM = N/M multimers.
Effectively, due to excluded volume effects, the center-of-
mass of multimers live over a lattice of size L − (M − 1)NM .
The band dispersion of the multimers is given by εM (k) =
(−1)M2t ′ cos(k), in which the sign depends on the statistics.
The minimum either lies k0 = 0 (t ′ > 0 for trimers) or at
k0 = π (t ′ < 0 for trimers). The Fermi points are located at
k0 ± π NM

L−(M−1)NM
. Consequently and at a phenomenological

level we thus expect the ground state energy density εGS =
EGS/N to follow:

εGS = −2|t ′|
π

(
1 − (M − 1)n

M

)
sin

(
πn

M − (M − 1)n

)
. (3)

The prediction of Eq. (3) is compared to numerical results
in Fig. 1. The result as a function of the filling n of the
system shows an excellent agreement. We perform DMRG
simulations on a system of size L = 42 in PBC for t ′ = 1 and
t = 10−4. A nonvanishing but negligible value of t is used to
allow the DMRG algorithm to converge to the ground state of
the system irrespectively of the initial state.

C. The two-fluid picture

When both terms are competing, a simple picture is that the
system forms a mixture of a free fermions fluid and of a mul-
timers fluid, whose densities are adjustable to minimize the
total energy. Such an ansatz gave remarkably good predictions
for M = 2 and t ′/t > 0 [45,46]. Assuming the two fluids are
noninteracting, the two-fluid model (2F) Hamiltonian splits
into

Ĥ (M )
2F =

∑
k

εF (k)â†
k âk +

∑
k

εM (k)d̂†
k d̂k, (4)

where εF (k) = −2t cos k is the free fermion dispersion rela-
tion associated with unbound fermions operators âk . The d̂k

are fermionic or bosonic effective multimer operators. Nor
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FIG. 2. Optimal fermionic density nF and trimer density nT as a
function of τ = |t ′/t | obtained by minimizing the total energy 〈Ĥ (3)

2F 〉
for a density n = 0.25. We observe (i) the F phase (nF = n) for τ <

τc1 � 2.12, (ii) the T phase (nF = 0) for τ > τc2 � 3.11, and (iii) the
T F -C phase (0 < nF < n) for τc1 < τ < τc2.

the âk or the d̂k have any exact connection with the lattice
operators ĉ j . Note that, in this typically low-density approxi-
mation, we neglect excluded volume effects. Since the total
number of particles is fixed, the unbound fermions density
nF and the multimer density nM must satisfy the constraint
nF + MnM = n. The evolution of the densities nF,M when in-
creasing τ = |t ′/t | is obtained by minimizing the total energy
of Hamiltonian (4) under this constraint.

We present in Fig. 2 the general structure of the resulting
phase diagram for the case M = 3 by showing the fermionic
density profile nF and the trimer density profile nT as a func-
tion of τ . At small values of τ we find a purely fermionic
region (F phase) with nF = n and nM = 0. At large values
of τ , we find a purely multimer region (trimer T phase)
with nF = 0 and nM = n/M. In between, there exists an in-
tervening coexistence phase of fermions and multimers with
0 < nF < n and 0 < nM < n/M (the MF -C phase) such that
both bands are partially filled.

In order to determine the phase boundaries of the MF -C
phase, we consider the minimization condition determining
the optimal fermionic density, namely,

cos(πnF ) = τ

M
cos

(
π

n − nF

M

)
. (5)

The first transition point τc1 separating the F phase from
the MF -C phase is obtained by taking the limit nF → n in
Eq. (5), which gives τ

(M )
c1 = M cos(πn). With n = 1/4, the

values for M = 3 and M = 4 are, respectively, τ
(3)
c1 � 2.12

and τ
(4)
c1 � 2.83. Similarly, the critical point τc2 separating the

MF -C phase from the M phase is obtained from the limit
nF → 0 in Eq. (5) and gives τ

(M )
c2 = M/ cos( πn

M ). The two pre-
dictions for M = 3 and M = 4 are, respectively, τ

(3)
c2 � 3.11

and τ
(4)
c2 � 4.08.

We underline that, at the level of the noninteracting two-
fluid Hamiltonian (4), the behavior of the densities nF,M is
identical for both positive and negative values of t ′. However,

FIG. 3. (a) Phase diagram of the model in Eq. (1) (not in scale).
(b) and (c) Correlators for t ′/t = −3.5 [blue cross in (a)]: G(r) for
single-particle, P(r) for pairs (both exponential), T (r) for trimers
(algebraic), and Tfit(r) for the fitting function of trimer two-point
correlators.

it is known that, e.g., for M = 2 [45,46], this approach pro-
vides a rather good account of the phase diagram for t ′ > 0
but not for t ′ < 0, because of the difference in the scattering
between unpaired fermions and pairs. The parameter regimes
where interspecies interactions introduce deviations from the
phenomenology presented in Fig. 2 will thus be highlighted in
the following sections.

III. TRIMER FORMATION AND
TRIMER-FERMION MIXTURES

We now focus on the actual phase diagram of Hamiltonian
(1) in the case of trimers M = 3 and for which we rather use
the label T instead of M.

A. Phase diagram

We denote by T̂j = ĉ j ĉ j+1ĉ j+2 the trimer operator, keeping
in mind that they are almost fermions. In order to systemat-
ically probe the phase diagram summarized in Fig. 3(a), we
compute local observables and the single-particle, pair and
trimer two-point correlators

G(r) = 〈ĉ†
j ĉ j+r〉, P(r) = 〈P̂†

j P̂j+r〉, T (r) = 〈T̂ †
j T̂j+r〉,

with P̂j = ĉ j ĉ j+1. When t ′/t = −3.5, Figs. 3(b) and 3(c) show
clear evidence for a trimer phase: the trimer correlator T (r)
displays an algebraic decay, whereas single-particle and pair
correlators G(r) and P(r) decay exponentially. Moreover, the
single-particle and pair correlation lengths coincide. This re-
flects the existence of both single and two-particle gaps, while
the three-particle excitations remain gapless. The t ′ > 0 and
t ′ < 0 phases have a different nature and are respectively
denoted by T0 and Tπ as we will see. The fit in Fig. 3(c)
of T (r) to the modulated algebraic decay Tfit(r) = A cos(kr+ϕ)

rα

(A, k, ϕ, and α being fit parameters) shows that the effec-
tive Luttinger liquid behavior of the trimer fluid is that of
almost free fermions with algebraic decay exponent α � 1
and oscillations at kT = πnT . The t ′ = 0 free fermions point
extends in a regular fermionic Luttinger-liquid phase F in
which all correlators are algebraically decaying. The analysis

134512-3



GOTTA, MAZZA, SIMON, AND ROUX PHYSICAL REVIEW B 105, 134512 (2022)

FIG. 4. (a) Second derivative of the ground state energy density
ε ′′

GS with respect to t ′/t for the Hamiltonian in Eq. (1) (continuous
line) and for the model Ĥ2F (dashed line). (b) Central charge c as a
function of t ′/t .

of the energy density and its derivatives as a function of t ′/t
allows us to find the boundaries of these five different phases:
the two coexistence phases appear for −2.95 ± 0.05 < t ′/t <

−2.25 ± 0.05 and 1.75 ± 0.20 < t ′/t < 2.95 ± 0.05.
As regards the two intermediate phases T F -C and T F -H ,

they show two kinds of coexistence phases between trimers
and fermions. The T F -H coexistence phase is a phase in
which trimers and unbound fermions significantly interact, so
we postpone its analysis to Sec. III C. On the contrary, the
T F -C is already well interpreted by the two-fluid model. In
Fig. 4(a) we compare the behavior of the second derivative of
the energy density computed using Ĥ2F with the one obtained
from ground state DMRG simulations for the Hamiltonian (1).
They agree qualitatively well, and almost quantitatively for
the transition points, despite the simplicity of the 2F ansatz.
In addition, the numerical calculation of the central charge c
gives c = 2 for T F -C and c = 1 for Tπ and F , as shown in
Fig. 4(b). This probes the number of gapless modes of the sys-
tem and further supports the proposed two-fluid interpretation.
We thus conclude that two Lifshitz transitions characterized
by a nonperturbative reshaping of the Fermi points separate
the three phases for t ′ < 0.

The remarkable agreement shows that the residual inter-
action between unbound fermions and trimers is negligible,
so that the two fluids hardly hybridize. The reason is that the
fermionic and trimer Fermi seas are significantly displaced
in momentum space. Any interaction process responsible for
turning a trimer into three fermions (or vice versa) must
conserve the lattice momentum, which makes the process
extremely unlikely. At most, density-density interactions be-
tween fermions and trimers might only shift the locations of
the phase boundaries.

B. Fourier transform of the density profile

We analyze the behavior of the Fourier transform of the
density profile in the parameter regions where the transi-
tion from Tπ and T0 phases to the F phase takes place,
respectively. The result, presented in Figs. 5(c) and 5(d),
shows that the behavior in the two cases is qualitatively
similar.

In the fermionic phase, a peak at k = 2πn is ob-
served, in agreement with the Luttinger liquid prediction

FIG. 5. (a) and (b) Fourier transform of the density profile in the
ground state of the model with correlated pair hopping studied in
[44,45] for t ′/t < 0 (a) and t ′/t > 0 (b). (c) and (d) Fourier transform
of the density profile in the ground state of the model defined in
Eq. (1) of the main text for t ′/t > 0 (c) and t ′/t < 0 (d).

of the wave vector associated with the leading modula-
tion in the density fluctuations. Similarly, in the trimer
phase, the effective Luttinger liquid density is nT = n/3
due to trimer formation, thus resulting in a leading peak at
k = 2πnT .

The situation is richer in the intermediate phase separating
the two aforesaid limits. We first observe a peak interpolating
between the one in the F phase and the one in the Tπ and
T0 phases. This observable is actually a way to track the
effective densities of fermions nF and trimers nT . This signal
can be interpreted as the leading density modulation in a Lut-
tinger liquid phase at density nF + nT where both uncoupled
fermions and trimers populate the lattice. The peak is less
sharply defined close to the transition from the F phase to the
T F -H phase, where the two species are strongly hybridized.
Consistently with the picture of a coexistence between uncou-
pled fermions and trimers, we additionally observe a peak due
to trimer formation at k = 2πnT . One also observes a sublead-
ing peak at k = 2πnF which goes to zero when entering the
Tπ and T0 phases.

For completeness we provide in Figs. 5(a) and 5(b) the
same quantity for the ground state of the Hamiltonian (1)
with M = 2 studied in Refs [45,46], whose interaction term
implements correlated pair hopping processes. For t ′/t > 0,
a coexistence phase between paired and unpaired fermions
is observed. If we denote the effective pair density as nP,
it results in the appearance of two distinct peaks at k =
2π (nF + nP ) and k = 2πnP, together with a subleading one
at k = 2πnF . On the other hand, when t ′/t < 0, a critical
point belonging to the Ising universality class separates the
F phase from a Luttinger liquid of pairs. The latter originates
as a result of relevant pair-fermion interactions in an effective
two-fluid description. Thus, it is not possible to observe an
extended parameter region featuring well-defined peaks as-
sociated with effective gapless modes for pairs and unpaired
fermions, respectively.
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C. A BCS-like approach for the transition from T0 to F

Since both bands minima are at k = 0 for t ′ > 0, the study
of the transition from the F phase to the T0 phase is more
challenging. In this case, the two Fermi seas are overlapping
and momentum-conserving processes turning fermions into
trimers (and vice versa) can take place. We need to include in
the Hamiltonian a new term such that Ĥ2F = ĤF + ĤT + Ĥint.
To model the interaction, we consider a recombining term
Ĥint = g

∑
j d†

j â j−1â j â j+1 + H.c. The value of the parameter
g is introduced on a purely phenomenological basis.

We propose an approach based on a BCS-like ansatz wave
function that we dub the 3BCS ansatz, which aims at capturing
the emergence of the trimers. First, we introduce |nF 〉 as the
Fermi sea state with fermionic density nF = n and Fermi
momentum kF = πn. Concerning trimers, we start from the
vacuum |vT 〉. Our ansatz wave function reads

|�3〉 =
∏

− kF
3 <k<

kF
3

(αk + βkd̂†
k â−kF +δk âk âkF −δk )|nF 〉⊗|vT 〉, (6)

where δk = 2k for k � 0 and δk = −2k − 2π/L for k < 0.
The wave function interpolates from the fermionic limit βk =
0 to the trimer phase limit αk = 0. In the former case, the
state reduces to |nF 〉 ⊗ |vT 〉, while in the latter case, trimers
form a Fermi sea with Fermi momentum kT = πn/3 and the
fermionic system is empty. When both αk and βk are differ-
ent from zero, |�3〉 includes quantum correlations between
fermions and trimers: the creation of a trimer with momentum
k is accompanied by the annihilation of three fermions at
momenta k and ∼ ± (kF − 2|k|). This choice is motivated by
a minimization calculation showing that in order to create
a trimer with momentum k = 0, the most favorable choice
is to annihilate three fermions at k = 0 and k = ±kF (see
Appendix 1 for a detailed discussion). The ansatz (6) thus cap-
tures some physically relevant forms of quantum correlations
between the two fluids, and satisfies momentum conservation
in the trimer-fermion exchange process. In addition, |�3〉 of-
fers the advantage of being entirely composed of commuting
terms (like the standard BCS wave function) and is thus well
suited for analytical calculations.

By virtue of the normalization condition |αk|2 + |βk|2 =
1, we introduce the parametrization αk = cos θk and βk =
eiϕk sin θk , with θk ∈ [0, π ] and ϕk ∈ [0, 2π [. We compute the
expectation value of the Hamiltonian Ĥ2F in state |�3〉. Defin-
ing εGS = 〈Ĥ2F 〉−EFS

Lt , where EFS is the energy of the fermionic
Fermi sea filled up to momentum kF , we obtain

εGS = 2
∫ kF

3

0
[Ak sin2 θk − Bk sin 2θk sin ϕk]

dk

2π
, (7)

where

Ak =2(1 − t ′/t ) cos k + 4 cos(kF − 2k),

Bk =2g

Lt
[sin(kF − k) + sin(4k − 2kF ) + sin(kF − 3k)].

Minimizing the functional (7) yields the solutions

θk = 1

2
arctan

(
2Bk

Ak

)
+ π

2
�(−Ak ), ϕk = π

2
, (9)

FIG. 6. (a) First derivative of the ground state energy density ε ′
GS

with respect to t ′/t from DMRG and the 3BCS ansatz with g/t = 8.
(b) Interaction energy Eint for the 3BCS ansatz using g/t = 8. Verti-
cal lines are transition points predicted by the 3BCS model.

where �(x) is the Heaviside step function. The plot of the first
derivative of the ground state energy density obtained with
the 3BCS ansatz is shown in Fig. 6(a), where we compare it
with DMRG simulations of the Hamiltonian (1). By taking
g = 8t , we reproduce correctly the numerical results obtained
with L = 96 and L = 228, apart from a quantitative mismatch
in the first transition point.

The 3BCS ansatz reproduces two important features of the
numerical ε′

GS curve: first, the steplike behavior appearing
close to the T0 phase and, second, the smoother profile close
to the F phase. The first is a finite size effect that originates
from the absence of a strong fermion-trimer hybridization:
each step corresponds to the formation of a trimer. The second
is naturally associated with the fermion-trimer recombination
processes, which are here strongly relevant. This is further
supported by the behavior of the fermion-trimer interaction

energy Eint = − L
π

∫ kF
3

0 Bk sin 2θkdk plotted in Fig. 6(b). We
observe that the steplike behavior coincides with the weakly
interacting region, whereas the smoother one is associated
with strong interactions. Strictly speaking, the 3BCS ansatz
gives an interaction energy Eint that scales to zero in the ther-
modynamical limit (see Appendix 7), as seen in Fig. 6(b). Yet,
we believe that both in the DMRG and in the exact solution
of H2F, a residual hybridization remains relevant in the ther-
modynamical limit. The above considerations motivate the
wording trimer-fermion hybrid phase (T F -H) for a phase that
displays relevant hybridization processes at low trimer density
on finite size systems and likely in the thermodynamical limit.

D. Occupation factors

To further support the relevance of the hybridization
processes and their description with the 3BCS ansatz, we
introduce “isolated” operators

F̂ (M )
j = (1 − n̂ j )

(
M∏

m=1

ĉ j+m

)
(1 − n̂ j+M+1) (10)

that capture unbound fermions (M = 1) and isolated trimers
(M = 3). Using DMRG, we can access the momentum
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FIG. 7. Momentum distribution n(1)(k) and n(3)(k) with OBC and L = 96 in (a) the Tπ phase for t ′/t = −3.5, in (b) the F phase for
t ′/t = 1.0, in (c) the T0 phase for t ′/t = 3.5, in (d) the T F -C phase for t ′/t = −2.7, and in (e) the T F -H phase for t ′/t = 2.9.

distribution, or occupation factors

n(M )(k) =
∑
j, j′

e−ik( j− j′ )〈F̂ (M )†
j F̂ (M )

j′
〉

(11)

associated with each two-point correlators.
As an illustration for the relevance of these operators to

describe the physics, we show in Figs. 7(a)–7(c) the unbound
fermion and trimer momentum occupation functions, n(1)(k)
and n(3)(k), respectively, in the Tπ , T0, and F phases. The
two trimer phases feature a negligible n(1)(k) profile together
with a quasicondensate around k = π (k = 0) in the trimer
occupation profile n(3)(k). On the other hand, the F phase
shows a standard Fermi sea of unbound fermions around
k = 0 in n(1)(k) and a vanishing n(3)(k) profile. These results
are in striking agreement with the effective two-fluid approach
adopted in the analysis of the phase diagram, as they give di-
rect evidence for the band filling picture of unbound fermions
and trimers.

In Figs. 7(d) and 7(e) the momentum distributions fully
agree with the two-band picture and highlight the main differ-
ences between the T F -C and T F -H phases. In the latter case,
the unbound fermion distribution in black displays a remark-
able hollow around k = 0. Such a feature is perfectly coherent
with the structure of the 3BCS ansatz, according to which
the filling of the trimer states around k = 0 occurs via the
annihilation of fermions around k = 0 and k = ±kF . While
the fermionic occupation function is expected to develop a
minimum at k = 0, its trimer counterpart gets maximal at
k = 0. This feature is more visible close to the T0 phase, where
the transition is sharp and the trimer density higher, and less
visible close to the F phase.

IV. TETRAMER FORMATION AND HYBRIDIZATION

Lastly, we extend the analysis to the phase diagram
of Hamiltonian (1) for tetramers with M = 4. As in the
trimer case, we find a standard F phase when |t ′| � t
and two tetramer M phases with quasi-long-range-ordered
tetramer correlator M(r) = 〈M̂†

j M̂ j+r〉 and exponentially de-
caying G(r), P(r), and T (r).

In order to discuss the nature of the transition and the
comparison with the 2F model, we present in Figs. 8(a) and
8(b) the first derivative of the ground state energy density, the

total single-particle kinetic energy density

K1 = 1

L

∑
j

〈ĉ†
j ĉ j+1 + H.c.〉, (12)

and the total tetramer kinetic energy density

K4 = 1

L

∑
j

〈M̂†
j M̂ j+1 + H.c.〉. (13)

Superimposing the curves obtained for t ′/t < 0 and t ′/t > 0
shows a remarkable quantitative agreement. We conclude that
the two transitions have the same properties, differently from
what has been found for pairs and trimers [41,45,46].

In Fig. 8(a) the comparison of the DMRG data with the
2F model predictions shows an excellent agreement. Accord-
ingly, two Lifschitz transitions separate the coexistence phase
from the fermionic phase and the tetramer phase. The numeri-
cal data also indicate that the effective interactions between
the two fluids are thus strongly suppressed, even when the
tetramers quasicondense at k = 0 for t ′ < 0. A first qualitative
argument that supports this observation is that the larger the
molecule, the higher is the order in perturbation theory to
split it into M unbound fermions. Another one is an heuris-
tic argument supporting an emergent t ′ → −t ′ symmetry in
the Hamiltonian. Indeed, by highlighting the dependence of

FIG. 8. Energy observables in the ground state of (1) with M = 4
on a lattice with L = 96 sites as a function of |t ′/t | for both t ′ � 0
and t ′ � 0. Vertical lines are transition points predicted by the gener-
alized two-fluid model. (a) First derivative of the energy density with
respect to t ′/t from DMRG and two-fluid model. (b) Single-particle
and tetramer kinetic energy densities |K1| and 4|K4|.
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FIG. 9. Ak as a function of k for τ < τ1 (blue curve), τ1 < τ < τ2

(red line), and τ > τ2 (green line).

Hamiltonian (1) on the multimer size M, t , and t ′ via Ĥ ≡
ĤM (t, t ′), we see that the unitary transformation ĉ j → ei π

M j ĉ j

transforms ĤM (t, t ′) into ĤM (ei π
M t,−t ′). In the limit of large

molecules M → +∞, the phase factor multiplying t tends to
1, connecting ĤM (t, t ′) to ĤM (t,−t ′). Since the coexistence
phase is the generic scenario at low density when molecules
quasicondense at k = π , the same is expected for quasicon-
densation at k = 0 on the opposite side.

V. CONCLUSIONS

In this paper we have studied the ground state phase dia-
gram of a one-dimensional lattice model of spinless fermions
with multimer hopping, focusing on the case of trimers. By
means of an effective two-fluid model and numerical simula-
tions, two remarkable coexistence phases are found, with one
in which hybridization between unbound fermions and trimers
is well described by an effective BCS ansatz. This scenario is
generalized and becomes generic for a class of Hamiltonian
with a hopping of arbitrarily large molecules. This scenario

occurs for densities that are not too large. Intuitively, a higher
density n will increase hybridization and could even open the
path to new phases.

In the context of bound states formation with spinless
fermions, the success of our interacting two-fluid approach
provides a new set of interpretative ideas and technical tools
that are expected to shed further light on the properties of
experimentally relevant Hamiltonians for which multimer for-
mation has been predicted [43]. The possibility of having a
direct transition between fermionic and trimer phases remains
an open question in these models.
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APPENDIX: DETAILS OF CALCULATIONS FOR THE
3BCS MODEL

1. Optimal fermion-trimer recombination process

We now consider a Fermi sea of unpaired fermions with
Fermi edges at k = ±πn and study the formation of a trimer
with momentum k = 0 via a momentum-conserving process
of annihilation of three fermions and creation of a trimer.
We prove that the optimal way of creating a trimer with
momentum k = 0, i.e., at the bottom of the trimer band, via
annihilation of three fermions from a Fermi sea is realized
when the the latter have momenta k = 0,±kF , where kF =
πn is the Fermi momentum. To this goal we need to determine
a triplet of momenta (k1, k2, k3) ∈ [−πn, πn]3 satisfying∑3

i=1 ki = 0 such that the total energy loss −2t cos k1 −
2t cos k2 − 2t cos k3 due to the annihilation of fermions at
momenta k1, k2, k3 is maximal. By symmetry we can always
assume that k1 � 0 and k2, k3 � 0. This simple observation
allows the following manipulation:

max
(k1,k2,k3 )∈[−πn,πn]3

3∑
i=1

ki=0

{−2t cos k1 − 2t cos k2 − 2t cos k3} = max
−πn�k1�0

{−2t cos k1 + max
0�k2�−k1

{−2t cos k2 − 2t cos(k1 + k2)}}. (A1)

Since max0�k2�−k1{−2t cos k2 − 2t cos(k1 + k2)} is achieved
by choosing k2 = 0 (or equivalently k2 = −k1), we are left
with the problem of finding

max
−πn�k1�0

{−4t cos k1} − 2t, (A2)

which manifestly leads to the optimal value k1 = −πn. The
third momentum value is obtained from the constraint k3 =
−k1 − k2 = πn (or equivalently k3 = 0 after the alternative
choice k2 = −k1), thus confirming the aforementioned opti-
mal choice.

This observation motivates the form of the BCS-like wave
function proposed in Eq. (3) of the main text. As the reader
can observe, the creation of a trimer at momentum k is ac-
companied in the variational ansatz by the annihilation of

three fermions at momenta k and ∼ ± (kF − 2|k|), so that the
identified most prominent correlation effects between the two
fluids are qualitatively taken into account while preserving the
analytical tractability of the trial wave function.

2. The variational ansatz |�3〉
The introduction of δk in the definition of the variational

wave function |�3〉 is justified by following the thinking pro-
cess leading to Eq. (3) of the main text. Indeed, we want to
construct a state that gradually interpolates between a Fermi
sea of fermions occupying momenta −kF < k < kF and a
Fermi sea of trimers occupying momenta − kF

3 < k < kF
3 by

means of the most relevant correlation effects between the two
species. As the above calculation suggests, the latter are given
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by recombination processes where the creation of a trimer at
momentum k ∈ (− kF

3 , kF
3 ) is accompanied by the annihilation

of fermions at momenta −kF + A|k|, k, kF − A|k|, A being a
proportionality constant.

By imposing that the filling of the entire Fermi sea of
trimers must correspond to the full depletion of the Fermi
sea of fermions, one easily notices that it implies A = 2.
However, this condition alone is not sufficient for two rea-
sons: (i) the fermionic states at momenta ±(kF − 2|k| + 2π

L )
(i.e., separated by an odd number of momentum quantiza-
tion steps from kF ) are not getting depleted and (ii) the
fermionic momenta getting depleted while filling trimer states
at momenta k and −k coincide, thus hindering the analytical
tractability of an ansatz in the form of |�3〉. We solve these

issues by depleting the momenta of the form ±(kF − 2|k| +
2π
L ) when filling the k < 0 trimer states, relying on the fact

that a shift of 2π
L in the chosen momenta will not impact

the qualitative features of the results in the thermodynamic
limit.

3. Expression for the energy density and optimal
variational parameters

As discussed in the main text, when the bands of fermions
and trimers have both their minima at k = 0, we need to
enrich the noninteracting two-fluid model with an interspecies
coupling term in order to take recombination processes into
account.

The two-fluid model including an interaction term between fermions and trimers reads

Ĥ2F =
∑

k

(εk, f − μ)â†
k âk +

∑
k

(εk,t − 3μ)d̂†
k d̂k + ig

3L

∑
k1,k2,k3

f (k1, k2, k3)d̂†
k1+k2+k3

âk1 âk2 âk3 + H.c., (A3)

where the last term is the reciprocal space representation of

Ĥint = g
∑

j

d̂†
j â j−1â j â j+1 + H.c. (A4)

and f (k1, k2, k3) = sin(k3 − k1) + sin(k2 − k3) + sin(k1 − k2).
The evaluation of the expectation value of the energy over the variational state |�3〉 gives as a result:

〈Ĥ2F〉�3 − EFS =
∑

0�k<
kF
3

[
(εk,t − εk,F − εkF −2k,F − ε−kF +2k,F )|βk|2 + 4g

L
f (k, kF − 2k,−kF + 2k)Im{α∗

k βk}
]

+
∑

− kF
3 <k<0

[
(εk,t − εk,F − εkF +2k+ 2π

L ,F − ε−kF −2k− 2π
L ,F )|βk|2

+ 4g

L
f

(
k, kF + 2k + 2π

L
,−kF − 2k − 2π

L

)
Im{α∗

k βk}
]
, (A5)

where EFS is the energy of the fermionic Fermi sea filled up to the Fermi momentum kF .

At this point we perform the following approximations:
(i) we plug in the expressions εk,F = −2t cos k and εk,t =
−2t ′ cos k for the noninteracting dispersion relations of
fermions and trimers; (ii) due to the normalization condition,
we parametrize the unknown coefficients as αk = cos θk , βk =
eiϕk sin θk , as detailed in the main text; (iii) assuming that the
system size L is sufficiently large, we perform the replacement∑

k → L
2π

∫
dk, we neglect the shifts by 2π

L and we change
variable according to k → −k in the resulting integral ranging
over negative values of k; as a result one obtains Eq. (4) of the
main text.

The expression in Eq. (4) of the main text is a functional
of the variational parameters θk and φk , but it is trivial, as it
does not feature terms coupling the unknown functions θk and
φk in a nonlocal way. Thus, its minimization boils down to the
minimization of the integrand function with respect to the two
variables θk and φk for each value of k separately. A standard
calculation leads to the optimal values displayed in Eq. (6) of
the main text.

The value of the optimal parameters depends crucially on
the sign of Ak . Therefore, we plot in Fig. 9 the function

Ak in the interval 0 � k � kF /3 in three cases, representing,
respectively, the small τ , intermediate τ , and large τ behav-
ior of Ak . We observe that a small value of τ , where we
expect to predict the F phase, is linked to a strictly positive
Ak profile, while a large value of τ , where the T0 phase is
supposed to appear, is associated with a strictly negative Ak

profile.
In an intermediate regime of τ values, instead, Ak changes

sign at a value of k ∈ [0, kF /3] that continuously grows from
k = 0 to k = kF /3. The boundaries of the interval of τ values
where this happens are found by determining the values τ1

and τ2 of τ such that Ak=0 and Ak=kF /3 vanish, respectively.
The result reads

τ1 = 1 + 2 cos(πn),

τ2 = 3. (A6)

4. Behavior of the trimer density

In order to properly identify the phases predicted
by the variational ansatz, we compute the trimer
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density as a function of τ in the thermodynamic limit.
The expression of this observable is easily written
as

nT = 1

L

∑
k

〈d̂†
k d̂k〉 = 1

π

∫ kF
3

0
dk sin2 θk . (A7)

Since in the thermodynamic limit θk = π
2 �[−A(k)] be-

cause Bk ∝ L−1, the evaluation of nT becomes trivial. In
particular, when τ < τ1 one has a strictly positive A(k)
profile, which implies θk = 0 and thus nT = 0. Thus, we
identify this regime with the F phase. In a similar man-
ner, since A(k) is strictly negative when τ > τ2, we get
θk = π

2 , which results in nT = n/3. We link this result with
the T0 phase. Finally, when τ1 < τ < τ2, one has A(k) <

0 for 0 < k < K (τ ) and A(k) > 0 for K (τ ) < k < kF /3,
where K (τ ) denotes the intermediate zero of A(k) as a
function of τ . In this case, the trimer density takes the

form

nT = 1

π

(∫ K (τ )

0
dk sin2 θk +

∫ kF
3

K (τ )
dk sin2 θk

)

= 1

π

∫ K (τ )

0
dk = K (τ )

π
. (A8)

Hence, the trimer density takes an intermediate value 0 <

nT < n/3, which implies that the fermionic density nF =
n − 3nT is nonvanishing as well and the two species coexist,
as expected for a T F -H phase. Equation (A8) forces the
interpretation of the zero of A(k) as the Fermi momentum of
the trimer Fermi sea as a function of τ .

5. Critical behavior of the energy density

The behavior of the energy density in the thermodynamic
limit can be as well evaluated in the three phases. We assume
in the following that the g does not scale extensively as the
system size.

In the F phase, Ak > 0 ∀k ∈ [0, πn/3], implying that θk = 1
2 arctan( 2Bk

Ak
) and therefore resulting in the optimal energy:

〈Ĥ2F〉�3 − EFS

Lt
= 2

∫ kF
3

0

dk

2π

{
Ak sin2

[
1

2
arctan

(
2Bk

Ak

)]
− Bk sin

[
arctan

(
2Bk

Ak

)]}
. (A9)

As L → +∞, Bk ∝ L−1 vanishes and therefore

lim
L→+∞

〈Ĥ2F〉�3 − EFS

Lt
= 0, (A10)

indicating that the energy of the system equals the energy of the fermionic Fermi sea.
In the T0 phase, instead, one has Ak < 0 ∀k ∈ [0, πn/3], which implies that θk = 1

2 arctan( 2Bk
Ak

) + π
2 and gives as a result the

optimal energy:

〈Ĥ2F〉�3 − EFS

Lt
= 2

∫ kF
3

0

dk

2π

{
Ak sin2

[
π

2
+ 1

2
arctan

(
2Bk

Ak

)]
− Bk sin

[
π + arctan

(
2Bk

Ak

)]}
. (A11)

As L → +∞, the second term clearly vanishes, as it is bounded from above by an expression proportional to L−1, while the first
term converges to Ak and gives

lim
L→+∞

〈Ĥ2F〉�3 − EFS

Lt
= 1

π

∫ kF
3

0
Ak = − 2

π

(
τ − sin(πn)

sin
(

πn
3

))
sin

(πn

3

)
. (A12)

In the intermediate regime τ1 < τ < τ2, one has that Ak < 0 ∀k ∈ [0, K (τ )) and Ak > 0 ∀k ∈ (K (τ ), πn/3]; therefore, the
optimal energy takes the form

〈Ĥ2F〉�3 − EFS

Lt
= 2

∫ K (τ )

0

dk

2π

{
Ak sin2

[
π

2
+ 1

2
arctan

(
2Bk

Ak

)]
− Bk sin

[
π + arctan

(
2Bk

Ak

)]}

+ 2
∫ kF

3

K (τ )

dk

2π

{
Ak sin2

[
1

2
arctan

(
2Bk

Ak

)]
− Bk sin

[
arctan

(
2Bk

Ak

)]}
. (A13)

The second term goes to zero in the large size limit, while the first term gives

lim
L→+∞

〈Ĥ2F〉�3 − EFS

Lt
= 1

π

∫ K (τ )

0
Ak = 2

π
(1 − τ ) sin K (τ ) + 2

π
sin(πn) − 2

π
sin [πn − 2K (τ )]. (A14)

The asymptotic behavior of the energy as it approaches the critical points can then be obtained by deriving the one of the zero
K (τ ) when τ is close to either of the critical points; the latter is found by expanding the condition A(k) = 0 around k = 0 and
k = πn

3 , obtaining

K (τ ) ∼ τ − τ1

4 sin(πn)
and K (τ ) ∼ πn

3
− 1

6
cot

(πn

3

)
(τ2 − τ ). (A15)
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As a result, in the limit τ → τ+
1 , the energy density behaves as

〈Ĥ2F〉�3 − EFS

Lt
≈ − (τ − τ1)2

4π sin(πn)
, (A16)

while in the limit τ → τ−
2 , the energy density behaves as

〈Ĥ2F〉�3 − EFS

Lt
≈ 2

π
sin(πn) − 6

π
sin

(πn

3

)
+ 2

π
sin

(πn

3

)
(τ2 − τ ) − 1

6π

cos2
(

πn
3

)
sin

(
πn
3

) (τ2 − τ )2. (A17)

Hence, we recover the finite jump discontinuities in the second derivative associated with the appearance/disappearance of
a gapless mode when entering/exiting a coexistence phase of fermions and trimers, as expected from the vanishing of the
interspecies interaction energy in the thermodynamic limit.

We remark that the assumption that g = O(1) is crucial in
deriving the results above. As shown in Fig. 3 of the main
text, the predictions of the 3BCS model replicate in a reliable
manner the features of the DMRG data as for qualitative
aspects of the energy first derivative and its scaling with L.
Nevertheless, the numerical data do not show undisputedly the
critical behavior predicted by the 3BCS model and thus we are
unable to rule out with absolute certainty a different kind of
criticality separating the F phase from the T F -H phase.

6. Occupation functions

We characterize here the behavior of the fermionic occu-
pation function nF (k) = 〈â†

k âk〉 and of the trimer occupation
function nT (k) = 〈d̂†

k d̂k〉. The fermionic occupation function
takes the form

nF (k) =
{

cos2 θ|k|, |k| < kF
3 ,

cos2 θ kF −|k|
2

, kF
3 < |k| < kF ,

(A18)

whereas the trimer occupation function reads

nT (k) = sin2 θ|k|, |k| <
kF

3
. (A19)

Thus, in the thermodynamic limit we can identify the func-
tions nF (k) and nT (k) in the three phases of the model,
as shown in Figs. 10(a)–10(d): in the F phase, θk = 0 for
every value of k and nF (k) = 1[−kF ,kF ](k), recovering the
standard Fermi sea filled up to momentum kF , while nT (k)
vanishes; in the T F -H phase, θk = π

2 for 0 < k < K (τ ) and
θk = 0 for K (τ ) < k < kF

3 , and therefore one gets nF (k) =
1[−kF +2K (τ ),K (τ )]∪[K (τ ),kF −2K (τ )](k) and nT (k) = 1[−K (τ ),K (τ )](k)
(recovering the qualitative structure of the numerical data in

FIG. 10. Occupation functions nF (k) and nT (k) in the thermo-
dynamic limit in the (a) F phase for τ = 2.0, (b) T F -C phase for
τ = 2.55, (c) T F -C phase for τ = 2.9, and (d) T0 phase for τ = 3.1.

Fig. 4 of the main text); in the T0 phase, instead, θk = π
2 for

every value of k, resulting in a vanishing nF (k) and nT (k) =
1[−kF /3,kF /3](k), i.e., a Fermi sea of trimers at density n

3 .

7. Finite size effects from the variational energy density

The variational expression of Eq. (4) of the main text for
the energy density holds in the limit of large sizes, as it was
constructed by replacing discrete sums over momenta with
continuous integrals via the rule

∑
k → L

2π

∫
dk. If we take

the thermodynamic limit of the 3BCS model, the ratio g/L
tends to zero and the minimization of the energy functional
becomes particularly simple: ϕk is unconstrained and θk takes
only two values: 0 when Ak > 0 and π/2 when Ak < 0. Thus,
for each value of k, either αk = 1, βk = 0 or vice versa, and
the ansatz becomes a product state in momentum space, i.e.,
an uncorrelated state of delocalized fermions and trimers.

Therefore, we need to clearly identify which finite size
effects are induced by the presence of a nonvanishing value
of g

Lt and which ones appear as a result of a small value of
L. The answer to this question is presented in Figs. 11(a)
and 11(b), where the profile of the first derivative of the
variational ground state energy density is shown for different
choices of L and g. When the value of L is within reach of
numerical simulations but not necessarily sufficient to display
clear thermodynamic limit behavior [Fig. 11(a)], the compar-
ison between the curves corresponding to different values of
hybridization proves that trimer-fermion coupling smoothens
out the profile around the critical point separating the F phase

(a) (b)

FIG. 11. (a) First derivative of the energy density with respect to
t ′/t within our BCS-like approach for g = t, 8t and L = 96. (b) First
derivative of the energy density with respect to t ′/t within our BCS-
like approach for g = t, 103t and L = 104.
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from the T F -H phase; on the other hand, the steplike behavior
of the curves for L = 96 is present irrespectively of the value
of g and is purely a finite-size effect, as it disappears from
the plots displayed in Fig. 11(b) for L = 104. Furthermore,

the effect of a sufficiently large value of g relative to Lt
replicates the phenomenology observed at finite size, thus
confirming the aforementioned conclusion on the effect of the
interspecies coupling g.
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