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Bogoliubov Fermi surfaces from pairing of emergent j = 3
2 fermions on the pyrochlore lattice
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We examine the appearance of superconductivity in the strong-coupling limit of the Hubbard model on the
pyrochlore lattice. We focus upon the limit of half-filling, where the normal-state band structure realizes a j = 3

2
semimetal. Introducing doping, we show that the pairing is favored in a J = 2 quintet Eg state. The attractive
interaction in this channel relies on the fact that Eg pairing on the pyrochlore lattice avoids the detrimental onsite
repulsion. Our calculations show that a time-reversal symmetry-breaking superconducting phase is favored,
which displays Bogoliubov Fermi surfaces.
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I. INTRODUCTION

The physics of pyrochlore systems such as the iridate
compounds R2Ir2O7 (R is a rare-earth element) has attracted
much attention over the past decade [1–10]. These materials
are characterized by the interplay of strong electronic correla-
tions and strong spin-orbit coupling [11], which is predicted
to yield a variety of exotic correlated states, such as spin
liquids [1] and magnetically ordered states with nontrivial
topology [2–10]. The pyrochlore crystal structure of these ma-
terials is characterized by a lattice of corner-sharing tetrahedra
composed of Ir4+ ions, with the low-energy electronic states
deriving from the spin-orbit-split Jeff = 1

2 doublet of the t2g

manifold of the Ir 5d orbitals [1]. Due to the cubic structure
of the pyrochlore lattice, the low-energy Bloch states deriving
from the Jeff = 1

2 doublets of the four Ir ions in each unit
cell can possess a nontrivial emergent j = 3

2 angular momen-
tum. This emergent angular momentum describes states near
quadratic band touchings at the Brillouin-zone center, which
have been observed in a number of pyrochlore iridates [12,13].

Fermionic systems with j = 3
2 have been proposed to

host a number of exotic ordered phases and possibly non-
Fermi-liquid behavior [6,8,14]. In particular, the allowed
superconducting states are much enriched: in addition to
pairing in a spin-singlet (J = 0) or -triplet (J = 1) channel,
pairing in quintet (J = 2) or septet (J = 3) states is also al-
lowed [15]. These higher spin states can display gap functions
with remarkable nodal structures, e.g., Bogoliubov Fermi sur-
faces (BFSs) [16–20] or Dirac superconductors with quadratic
or cubic nodal dispersions [21]. So far, however, these states
have mostly been discussed in terms of the effective Lut-
tinger model valid near the quadratic band-touching point
[15,22–25], whereas theories of unconventional superconduc-
tors are more typically formulated in terms of tight-binding
models with local interactions. Using the latter perspective,
Laurell and Fiete [9] have studied superconductivity in a

quasi-two-dimensional model of a pyrochlore lattice, but the
breaking of cubic symmetry implies that the quasiparticles do
not have j = 3

2 character.
In this paper we motivate the pyrochlore lattice as a

minimal tight-binding model in which to study the super-
conductivity of fermions with an emergent j = 3

2 effective
angular momentum. Including an onsite Hubbard repulsion
U , we derive the pairing interaction in the strong-coupling
limit. We find that the dominant pairing instability will be
the extended s-wave Eg pairing channel corresponding to
J = 2 quintet pairing, which is likely to realize a time-reversal
symmetry-breaking state with BFSs.

Our paper is organized as follows: In Sec. II, we intro-
duce the tight-binding model of the pyrochlore lattice and
determine the parameter regime where the j = 3

2 fermionic
quasiparticles are the low-energy excitations at half-filling.
The parameters of the effective Luttinger model are obtained
in terms of the tight-binding parameters. In Sec. III A, we pos-
tulate a general interaction Hamiltonian for our tight-binding
model, including both onsite and nearest-neighbor interac-
tions. We project this interaction onto the low-energy states
and decouple it in the Cooper channel, restricting our attention
to the states with nonzero pairing amplitude at the Brillouin-
zone center, namely, the singlet A1g state and the quintet Eg

and T2g states. Specializing to the strong-coupling limit, where
the nearest-neighbor interaction potentials perturbatively arise
from virtual hopping events, we argue in Sec. III B that the
effective pairing interaction is repulsive in the A1g and T2g

channels. In contrast, the pairing interaction is attractive in the
Eg channel, which we show in Sec. III C is generically realized
in a time-reversal symmetry-breaking state supporting BFSs.

II. j = 3
2 FERMIONS ON THE PYROCHLORE LATTICE

The fundamental structural feature of the pyrochlore lat-
tice is corner-sharing tetrahedra. The tetrahedra which do not
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directly touch one another form an fcc lattice. Taking the cen-
ters of these tetrahedra as the lattice points, the basis vectors
for the four atoms are given by

b1 = a

4
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2
,−1

2
,−1

2

)
, (1)
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,
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)
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(
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)
, (3)

b4 = a

4

(
1

2
,−1

2
,

1

2

)
, (4)

where a is the lattice constant of the conventional fcc unit cell.
The standard electronic model for the pyrochlore iridates is

a tight-binding model extending up to next-nearest neighbors
for Ir Jeff = 1

2 doublets at each pyrochlore site [4]. For sim-
plicity, henceforth we label these doublets by a spin degree of
freedom {↑,↓}. The noninteracting model is described by the
Hamiltonian

H =
∑
〈i j〉

c†
i (t1 + it2di j · σ)c j

+
∑
〈〈i j〉〉

c†
i (t ′

1 + i[t ′
2Ri j + t ′

3Di j] · σ )c j, (5)

where ci = (ci,↑, ci,↓)T is the spinor of creation and annihila-
tion operators for the doublet states at site i, σ is the vector of
Pauli matrices, and the vectors appearing in Eq. (5) are defined
as [10]

di j = 2bi × b j, (6)

Ri j = (bi − bk ) × (bk − b j ), (7)

Di j = dik × dk j, (8)

where k is a common nearest neighbor of sites i and j. In
the context of the iridates, the hopping integrals appearing in
Eq. (5) can be expressed in terms of direct iridium-iridium
hopping via σ and π bonds (tσ , tπ , t ′

σ , t ′
π ) and also indirect

hopping via oxygen ions (tO). The Slater-Koster method then
predicts [4]

t1 = 130

243
tO + 17

324
tσ − 79

243
tπ , (9)

t2 = 28

243
tO + 15

243
tσ − 40

243
tπ , (10)

t ′
1 = 233

2916
t ′
σ − 407

2187
t ′
π , (11)

t ′
2 = 1

1458
t ′
σ + 220

2187
t ′
π , (12)

t ′
3 = 25

1458
t ′
σ + 460

2187
t ′
π . (13)

As mentioned in the Introduction, the pyrochlore structure
naturally gives rise to j = 3

2 fermionic excitations. This is
most easily understood by considering the electronic structure
of an isolated tetrahedron with an Ir ion with a Jeff = 1

2 doublet
at each vertex. The orbital component of the electron wave
functions for this four-site cluster can be decomposed into an

s-wave-like (A1 irrep of the point group Td of a tetrahedron)
and three p-wave-like (T2 irrep) wave functions. Spin-orbit
coupling splits the electronic states of the isolated tetrahedron
into two j = 1

2 doublets and a j = 3
2 quartet [26]. For the full

pyrochlore lattice, this emergent electronic structure persists
close to the � point. In the following, we will focus on the
case where the low-energy excitations are due only to the
j = 3

2 fermions. In particular, this is possible if the j = 3
2

bands are half-filled, in which case a semimetallic state with
a quadratic band-touching point may be realized. This is of
special interest as combining the half-filling condition with
interactions raises the possibility of strongly correlated j = 3

2
fermions [27].

To quadratic order in momentum, the j = 3
2 excitations

close to the � point are described by an effective Luttinger-
Kohn model with Hamiltonian matrix

HLK(k) = α|k|21̂ + β
∑

μ

k2
μĴ2

μ + γ
∑
μ �=ν

kμkν ĴμĴν, (14)

where α, β, and γ are constants, 1̂ is the 4×4 identity matrix,
and Ĵμ, μ = x, y, z, are the j = 3

2 angular-momentum matri-
ces; see Appendix A for a detailed derivation. The two distinct
eigenvalues of the Luttinger-Kohn model are

E±,k =
(

α+ 5

4
β

)
|k|2 ±

√
β2

∑
μ

k4
μ + (3γ 2 − β2)

∑
μ<ν

k2
μk2

ν .

(15)

Both are twofold degenerate. By considering the dispersion
along the [100] and [111] directions, the conditions for the
bands to have opposite curvature, and thus for a semimetal,
are

sgn

[(
α + 1

4
β

)(
α + 9

4
β

)]
= −1, (16)

sgn

[(
α + 5

4
β + |γ |

)(
α + 5

4
β − |γ |

)]
= −1. (17)

In Fig. 1(a), we plot the region in parameter space where these
conditions are satisfied.

Projecting the pyrochlore Hamiltonian onto the j = 3
2

subspace, we recover the Luttinger-Kohn model with the co-
efficients [8]

α + 5

4
β = 2

3
(t1 + 2t2 + 6t ′

1 − 12t ′
2 − 12t ′

3), (18)

√
3 γ = − 2√

3
(t1 + 2t2 − 2t ′

1 − 4t ′
2 + 12t ′

3), (19)

√
3

2
β = − 1√

3
(t1 − t2 − 6t ′

1 − 6t ′
2 − 6t ′

3). (20)

The five distinct Slater-Koster hopping integrals would give
a large parameter space to explore. However, we shall follow
convention and set tO = 1 as our reference and then further
impose that

t ′
σ = 0.08 tσ , t ′

π = 0.08 tπ . (21)

Thus, we shall regard tσ and tπ as free parameters. The pa-
rameter range in which the conditions (16) and (17) for a
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FIG. 1. (a) Range of parameters β and γ in the Luttinger-
Kohn Hamiltonian where a j = 3

2 semimetal is realized (shaded).
(b) Range of parameters tσ and tπ where a j = 3

2 semimetal state
is realized for the pyrochlore lattice: The pink (light gray) region
indicates where a semimetallic quadratic band touching is found at
the � point and is obtained by mapping the region in (a) to the
pyrochlore lattice using Eqs. (18)–(20). Within the enclosed dark
blue (dark gray) region, there are no other states elsewhere in the
Brillouin zone at the same energy as the quadratic band-touching
point. (c) Typical band structure along high-symmetry directions
showing the presence of a j = 3

2 semimetal state. The parameter
choice (tσ = −0.795tO, tπ = 0.53tO) is indicated by the yellow dot in
(b). The dashed red lines show the low-energy bands in the equivalent
Luttinger-Kohn model.

semimetallic quadratic band touching are satisfied is shown
by the pink region in Fig. 1(b). In this region, the j = 3

2 states
also lie between the two j = 1

2 bands at the � point, which is
a necessary condition for such a semimetallic state at half-
filling. Since the Luttinger-Kohn Hamiltonian is only valid
close to the � point, however, it is possible that other states
are present elsewhere in the Brillouin zone at the same energy
as the quadratic band touching. Accounting for this shaves off
some of the edges of the region identified by the conditions
(16) and (17), leaving the dark blue region in Fig. 1(b) as
the parameter range where the low-energy excitations result
solely from the quadratic band-touching point. Figure 1(c)
shows a comparison of the tight-binding and Luttinger-Kohn
model dispersions for the parameter values corresponding to
the yellow dot in Fig. 1(b).

III. SUPERCONDUCTING STATES

A. Pairing interactions

The most general interactions for spin- 1
2 electrons consis-

tent with the symmetry of the pyrochlore lattice up to nearest

neighbors have the form [3,9]

Hint = U0

∑
i

ni,↑ni,↓ + U1

∑
〈i, j〉

nin j + J
∑
〈i, j〉

Si · S j

+ D
∑
〈i, j〉

di j · (Si × S j ) +
∑
〈i, j〉

∑
μ,ν

Sμ
i �

μν
i j Sν

j , (22)

where ni,σ ≡ c†
i,σ ci,σ is a number operator and Si is a spin op-

erator with components Sμ
i ≡ ∑

σ,σ ′ c†
i,σ sμ

σσ ′ci,σ ′ , where sμ =
σμ/2 are the spin- 1

2 matrices. The first line of Eq. (22) con-
tains an onsite Hubbard repulsion as well as nearest-neighbor
charge-charge and Heisenberg interactions. The second line
contains the Dzyaloshinski-Moriya interaction and the trace-
less symmetric interaction

�
μν
i j = dμ

i j d
ν
i j (�0δμν + �1[1 − δμν]). (23)

In performing the sum over nearest neighbors 〈i, j〉, we count
each bond once.

The nearest-neighbor interactions in Hint naturally arise in
the strong-coupling limit of the Hubbard model [5,9]. Ignor-
ing next-nearest-neighbor hopping and assuming half-filling
and that the Hubbard energy U0 greatly exceeds t1 and t2,
we integrate out doubly occupied sites to obtain the effective
interaction strengths

U1 = − 2

U0

(
t2
1 + 2t2

2

)
, (24)

J = 4

U0

(
t2
1 − 2

3
t2
2

)
, (25)

D = 8

U0
t1t2, (26)

�0 = 8t2
2

3U0
, (27)

�1 = −8t2
2

U0
. (28)

To work in the more convenient j = 3
2 subspace, we project

the interactions onto the low-energy states. We express the
annihilation operator at site a of tetrahedron i in terms of the
local operators in the j = 3

2 subspace,

ci,a,σ ≈
3/2∑

α=−3/2

ua,σ ;α ci,α, (29)

where the coefficients ua,σ ;α are obtained in Appendix A.
Substituting Eq. (29) into Eq. (22), we obtain the effective
interaction in the low-energy subspace

Hint =
∑

i

∑
α,α′

∑
β,β ′

Vαα′;ββ ′ c†
i,αci,α′c†

i,βci,β ′

+
∑

〈i, j〉aa′

∑
α,α′

∑
β,β ′

[Va,a′]αα′;ββ ′ c†
i,αci,α′c†

j,βc j,β ′ , (30)

where the sum over 〈i, j〉aa′ contains all nearest-neighbor pairs
of sites a, a′ on tetrahedra i, j. The interaction potentials are
given by

Vαα′;ββ ′ = U0

∑
a

u∗
a,↑;αua,↑;α′u∗

a,↓;βua,↓;β ′ (31)
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TABLE I. Internal symmetries of Cooper pairs allowed for even-
parity pairing. The irreps of the point group Oh and the pairing
matrices are given. The matrix UT = exp(iπ Ĵy ) is the unitary part
of the time-reversal operator.

Irrep Pairing state

A1g 1̄ = UT

Eg (Ē1, Ē2) = 1√
3
(Ĵ2

x − Ĵ2
y , (2Ĵ2

z − Ĵ2
x − Ĵ2

y )/
√

3)UT

T2g (T̄1, T̄2, T̄3) = 1√
3
({Ĵy, Ĵz}, {Ĵz, Ĵx}, {Ĵx, Ĵy})UT

for the onsite interaction and

[Va,a′]αα′;ββ ′ = U1

∑
σ1,σ2

u∗
a,σ1;αua,σ1;α′u∗

a′,σ2;βua′,σ2;β ′

+
∑

σ1,σ2,σ3,σ4

∑
μ,ν

sμ
σ1σ2

sν
σ3σ4

×
(

Jδμν + D
∑

ρ

εμνρdρ

aa′ + �
μν

aa′

)
× u∗

a,σ1;αua,σ2;α′u∗
a′,σ3;βua′,σ4;β ′ (32)

for the nearest-neighbor interactions. Here, εμνρ is the Levi-
Civita symbol. The lengthy explicit expressions for the
coefficients ua,σ ;α and the potentials V and Va,a′ are relegated
to Appendix B.

We treat Hint in Eq. (30) as an effective pairing interaction,
which we eventually want to decouple in the Cooper channel.
To that end, we decompose the interaction into the even-parity
Cooper channels, using the generalized Fierz identity [14]

(ψ†Nψ )(φ†Mφ) =
∑
Â,B̂

fNM (Â, B̂) (ψ†Āφ†T )(φT B̄†ψ ),

(33)
where

fNM (Â, B̂) = 1
16 Tr(U †

T ÂNB̂UT MT ). (34)

The right-hand side of Eq. (33) represents a pairing inter-
action, where Ā ≡ ÂUT and UT = exp(iπ Ĵy) is the unitary
part of the time-reversal operator. The matrices Ā describe
the internal symmetry of the Cooper pairs in the j = 3

2 space
[17]. The six matrices compatible with even parity are listed
in Table I, together with the corresponding irreps. ψ and φ are
field operators on a basis of j = 3

2 fermions.
Transforming the interaction to momentum space and re-

stricting ourselves to the pairing of electrons with opposite
momenta, we write the pairing Hamiltonian as

Hpair = 1

2N

∑
k,k′

∑
α,β,α′,β ′

[Vk,k′]αβ;α′β ′c†
k,αc†

−k,βc−k′,α′ck′,β ′ ,

(35)

where N is the number of unit cells. The coupling strength
contains contributions from the onsite interaction, Eq. (31),
and from the nearest-neighbor interaction, Eq. (32). The
undoped semimetal has the Fermi energy at the quadratic
band-touching point and vanishing electronic density of
states, and thus does not show superconductivity at weak
coupling. Upon doping the semimetal, a small Fermi surface
will appear at the zone center. We hence restrict our study
to the even-parity channel since odd-parity superconductivity

has a vanishing pairing amplitude at the � point and is thus
typically weak at this small Fermi surface.

The decomposition into the even-parity Cooper channels
is performed in Appendix C. Here, we focus on the limit of
weak doping, i.e., kF � π/a. In this limit, only those terms
that remain nonzero for k → 0 are important. The resulting
pairing interaction then reads as

Vk,k′ ≈ U0

8
1̄ ⊗̄ 1̄′ + U0

24
�̄T ⊗̄ �̄T ′

+
(

U1

18
− J

216
− D

27
− �0

108
+ �1

54

)
cA1g ⊗̄ c′

A1g

+
(

U1

9
− J

108
+ D

27
− �0

54
− �1

54

)
�c (E )

Eg
⊗̄ �c (E ) ′

Eg

+
(

5U1

54
+ J

216
− D

27
+ �0

108
+ �1

54

)
�c (T )

T2g
⊗̄ �c (T ) ′

T2g
,

(36)

where we define the product ⊗̄ to simplify the notation such
that for a given field operator cT

k ≡ (ck, 3
2
, ck, 1

2
, ck,− 1

2
, ck,− 3

2
),∑

α,β,α′,β ′
(Ā ⊗̄ B̄)αβ;α′β ′ c†

k,αc†
−k,βc−k′,α′ck′,β ′

≡
∑

α,β,α′,β ′
Āαβ B̄∗

β ′α′ c†
k,αc†

−k,βc−k′,α′ck′,β ′

=
(∑

α,β

c†
k,α

Āαβc†
−k,β

)(∑
α′,β ′

c−k′,α′ B̄∗
β ′α′ck′,β ′

)

= (c†
kĀc†T

−k )(cT
−k′ B̄†ck′ ). (37)

The first line of Eq. (36) refers to onsite pairing, whereas
the remaining terms result from nearest-neighbor interactions.
The latter terms can be understood as extended s-wave pair-
ing, and contain the matrix-valued functions

cA1g = (cxcy + cycz + czcx ) 1̄, (38)

�c (E )
Eg

= (cxcy + cycz + czcx ) (Ē1, Ē2), (39)

�c (T )
T2g

= (cxcy + cycz + czcx ) (T̄1, T̄2, T̄3), (40)

with cμ = cos kμa. The prime signifies dependence on k′. Full
results are presented in Appendix C.

Equation (36) shows that onsite pairing in the A1g and T2g

channels is penalized by the Hubbard interaction; in contrast,
the onsite Eg pairing is immune to the Hubbard repulsion U0,
and there is no onsite interaction in this channel. This is a
key result of our work. The nearest-neighbor interactions in
Eq. (22) lead to the momentum-dependent, extended s-wave
pairing terms in Eq. (36). In the strong-coupling limit, the
pairing potentials for extended s-wave pairing are

A1g : − 1

378

(7t1 + 8t2)2

U0
− 121

567

t2
2

U0
, (41)

Eg : − 1

189

(7t1 + 4t2)2

U0
− 134

567

t2
2

U0
, (42)

T2g : − 1

486

(9t1 + 8t2)2

U0
− 31

243

t2
2

U0
. (43)
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It is clear from this formulation that the interaction in the
extended s-wave channels is always attractive.

B. A1g and T2g channels

Both the onsite and extended s-wave pairing potentials in
the A1g and T2g channels are nonzero. The states will in general
involve both components, e.g., in the case of the A1g irrep we
have �A1g = �o 1̄ + �e cA1g . Following Ref. [28], the critical
temperature of this mixed state is obtained from the solution
of the determinantal equation

det

(
χoo − 1

go
χoe

χoe χee − 1
ge

)
= 0, (44)

where go and ge are the interactions for the onsite and ex-
tended s-wave channels, respectively, and the generalized
superconducting susceptibilities are defined by

χab = N0

∫
dε

tanh(ε/kBT )

4ε
〈Tr(�̂aP�̂

†
bP )〉FS, (45)

where N0 is the density of states at the Fermi energy, and P
projects onto the states at the Fermi surface.

The off-diagonal components in Eq. (44) account for the
overlap between the onsite and extended s-wave states. Close
to the Brillouin-zone center, the form factor of the extended
s-wave states is

cxcy + cycz + czcx
∼= 3 − |k|2a2. (46)

Assuming weak mass anisotropy of the quadratic bands, the
extended s-wave potentials should open an approximately
isotropic gap at the Fermi surface; the gap opened by the
onsite potential is always isotropic. Accordingly, the response
of the system to the onsite and the extended s-wave gaps
will be very similar, and we expect the susceptibilities to be
proportional, i.e., χee ≈ r2χoo and χoe ≈ rχoo, where r is the
ratio of the gap opened by the extended to the onsite potential.
The determinantal equation then reduces to

χoo = 1

go + r2ge
. (47)

For sufficiently large U0, the onsite repulsion will dominate
over the attractive extended s-wave pairing in Eqs. (41)–(43),
and the effective coupling constant go + r2ge will be repul-
sive. As such, we do not expect pairing in the A1g or T2g

channels in the strong-coupling limit.

C. Eg channels

We now turn our attention to the extended s-wave Eg state.
Since the Eg pairing avoids the onsite Hubbard repulsion U0,
the interaction potential in this channel is always attractive,
and it should be favored for sufficiently large U0. In the fol-
lowing, we consider which Eg pairing state is expected to be
realized. The Eg pairing channel being two dimensional, the
properties of the superconducting state are determined by a
two-component order parameter �Eg ≡ (�1,�2). A general
Landau free-energy expansion in terms of these parameters
suggests three possible ground states: (1,0), (0,1), and (1, i)
[15,29]. The free energies of the (1,0) and (0,1) states are
not expected to be the same as the two states are not related

by any point-group operation [17,22]. The third state breaks
time-reversal symmetry (TRS) due to the imaginary number
i and thus has BFSs beyond infinitesimal coupling strength
[16,17].

Within the BCS formalism, the mean-field-decoupled pair-
ing interaction in the Eg channel takes the form

HBCS
pair = 1

2N

∑
k,k′

2∑
m=1

[
�m(k) f (k′) c†

k′ Ēmc†T
−k′

+�∗
m(k′) f (k) cT

−kĒ†
mck + �m(k)�∗

m(k′)
V0

]
, (48)

with the two components of the two-dimensional Eg order
parameter

�1,2(k) = −V0 f (k)
〈
cT
−kĒ†

1,2ck
〉
. (49)

Here, f (k) = cxcy + cycz + czcx is the extended s-wave form
factor, V0 is the absolute value of the interaction strength
given by Eq. (42), and Ē1,2 are the pairing matrices in the Eg

channel of j = 3
2 fermions [see Table I and Eqs. (A26)–(A28)

in Appendix A].
To study superconductivity, we numerically solve the gap

equation at T = 0,

�m = V0

2N

∑
k,i ∈ occ

∂|Ek,i|
∂�m

, (50)

where �m = N−1 ∑
k �m(k), m = 1, 2, i represents the band

index, and the sum is over all occupied states, i.e., all states
with Ek,i < 0. The derivatives can be calculated in analytical
form since the problem of finding the quasiparticle energies
Ek,i reduces to the solution of a quartic equation. Details of
the numerical method are relegated to Appendix D.

The free energy per unit cell at T = 0, i.e., the internal
energy per unit cell, reads as

F = − 1

N

∑
k,i ∈ occ

|Ek,i| +
2∑

m=1

|�m|2
V0

. (51)

We compare the free energies for the three pairing states and
plot the free-energy gain, i.e., the condensation energy, on a
logarithmic scale as a function of V0 and of U0 in Fig. 2. For
weak interactions V0 and thus small gap, the energy gain is
maximal for the TRS broken (1, i) state. Increasing V0, a first-
order transition occurs to the TRS preserving (0,1) state.

We can understand this result as follows: from Sigrist and
Ueda [29], (1, i) is expected to be the most stable state in the
weak-coupling limit since it has point nodes and thus lower
density of states close to the Fermi energy than the (1,0) and
(0,1) states with line nodes. For strong pairing interactions,
however, the (1, i) state develops large BFSs, which lead to
large density of states (DOS) and is thus no longer expected
to be favored. The TRS preserving (0,1) state is found to be
more stable than the also TRS preserving (1,0) state. They
both have two line nodes but for the (1,0) state these nodes
cross each other, whereas for (0,1) they do not. The crossing
leads to higher DOS at the Fermi energy and is thus disfavored
[29].

In Fig. 2(a), the data for small V0 also show the expected
weak-coupling behavior Fn − Fs ∼ e−A/V0 at T = 0 with some
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10−2
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s)

 /
 t O

Eg (0,1)

Eg (1,0)
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0.375 0.3810−7

0.055 0.06 0.065

U
0
 / tO

0.055 0.056 0.057
10−3

0.066 0.06710−7

(a) (b)

FIG. 2. Condensation energy Fn − Fs per unit cell for the three Eg pairing states as a function of (a) the interaction strength V0 and (b) the
Hubbard repulsion U0. The insets show closeups of regimes with weak and strong interaction. Note that the energetically preferred state
corresponds to the largest value. Here, parameters t1 = 0.321, t2 = −0.021, t ′

1 = −0.013, t ′
2 = 0.004, t ′

3 = 0.008 are used in the numerical
calculation. This corresponds to the band structure presented in Fig. 1.

constant A; see also Appendix D. It is thus safe to extrapolate
this curve down to zero interaction, which is not done here,
though. In Fig. 2(b), the energy gain vs the Hubbard repulsion
U0 shows nearly linear behavior, which follows from the fact
that ln(Fn − Fs) is linear in 1/V0 in weak-coupling BCS theory
and that V0 is inversely proportional to U0; see Eq. (42). The
energies in Fig. 2 are given in units of tO. To estimate the
absolute energy scale, we note that the bandwidth of the four
bands in the model is roughly 2.5 tO. Recent band-structure
calculations for various pyrochlore iridates by Antonov et al.
[30] predict bandwidths of about 600 to 800 meV. This yields
tO ≈ 300 meV. Using this value, we find that the condensation
energy in Fig. 2 is comparable to that predicted by weak-
coupling BCS theory in elemental superconductors.

0.38 0.4 0.42 0.44

V
0
 / tO

0.6

0.8

1.0

ΔF
 /

 Δ
F (

1
,i)

Eg (0,1)

Eg (1,0)

Eg (1,i)

FIG. 3. Ratios of the condensation energies �F ≡ Fn − Fs for
the Eg pairing states (0,1), (1,0), and (1, i) to the condensation energy
�F(1,i) for the (1, i) state. The parameters are the same as in Fig. 2.

The differences in condensation energy of the various
pairing states in Fig. 2 look rather small. This is in fact a
misleading impression of the logarithmic plot. The relevant
energy scale is the condensation energy itself. In Fig. 3, we
therefore plot the ratio of �F ≡ Fn − Fs for the (0,1), (1,0),
and (1, i) states to �F for the (1, i) state, which is favored
over much of the considered range of V0. Evidently, the en-
ergetic separation between the three states is sizable on the
relevant energy scale.

IV. CONCLUSIONS

In this work we have proposed the Hubbard model on
the pyrochlore lattice as a minimal tight-binding model in
which to study the superconductivity of emergent j = 3

2
fermions. In particular, we have demonstrated that doping the
strong-coupling limit of the half-filled Hubbard model on the
pyrochlore lattice generates an attractive interaction in the
extended s-wave quintet Eg channel. This attractive interaction
results solely from the Hubbard repulsion. The main point
here is that pairing in the Eg channel avoids a local repulsive
interaction and so is driven by nonlocal attractive magnetic
interactions. For sufficiently strong onsite interaction, the Eg

pairing channel will be favored over competing states in the
A1g and T2g channels. Our numerical calculation shows that
this Eg pairing state likely breaks time-reversal symmetry,
and hence will support BFSs. The time-reversal symmetry-
breaking state is compatible with the d + id state found for a
quasi-two-dimensional model [9].

Our analysis has focused entirely on pairing in the low-
energy j = 3

2 states, which emerge from the characteristic
tetrahedral structural elements of the pyrochlore lattice.
However, close to the boundaries of the j = 3

2 semimetal
phase shown in Fig. 1(b), doping the pyrochlore lattice will
typically produce Fermi pockets of other bands elsewhere in
the Brillouin zone. Since these states do not generally have
j = 3

2 character, care must be taken in considering the signifi-
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cance of the pairing interaction in these regions. In particular,
the condition that the gap be nonzero at the zone center is
less relevant, and the restriction to s-wave-like states is no
longer justified. Hence, it is promising to search for metallic
pyrochlores with small Fermi pockets around the � point.
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APPENDIX A: DERIVATION OF LUTTINGER-KOHN
HAMILTONIAN

In this Appendix, we review the derivation of the Luttinger-
Kohn Hamiltonian from the pyrochlore lattice [8]. The
Hamiltonian is obtained by projecting out the j = 1

2 sub-
spaces and then expanding up to the quadratic order in
momentum. To this end, we first provide the momentum-space
form of the Hamiltonian H = ∑

a,a′
∑

σσ ′
∑

k c†
a,σ,k[Ĥ0(k) +

ĤSO(k)]a,σ ;a′,σ ′ca′,σ ′,k with

Ĥ0(k) = F+
xy σ0 ⊗ λ̂1 + F+

yz σ0 ⊗ λ̂4 + F+
zx σ0 ⊗ λ̂9

+ F−
zx σ0 ⊗ λ̂6 + F−

yz σ0 ⊗ λ̂11 + F−
xy σ0 ⊗ λ̂13 (A1)

and

ĤSO(k) = (G+
xyσx − G+

xyσy + K−
xyσz ) ⊗ λ̂2

+ (G+
yzσy − G+

yzσz + K−
yzσx ) ⊗ λ̂5

+ (G+
zxσz − G+

zxσx + K−
zxσy) ⊗ λ̂10

+ (G−
zxσz + G−

zxσx + K+
zxσy) ⊗ λ̂7

− (G−
yzσy + G−

yzσz + K+
yzσx ) ⊗ λ̂12

+ (G−
xyσx + G−

xyσy + K+
xyσz ) ⊗ λ̂14, (A2)

where ca,σ,k is a fermion annihilation operator for sublattice
a = 1, 2, 3, 4 (see Fig. 4), and spin σ = ↑,↓. The momentum

yy

1

3

4

2

yy

x

z

FIG. 4. Positions of sublattice a = 1, 2, 3, 4 in the elementary
tetrahedron.

dependence is represented by functions F±
i j , G±

i j , and K±
i j such

that

F±
i j = 2t1 cos(ki ± k j ) + 4t ′

1 cos(2kl ) cos(ki ∓ k j ), (A3)

G±
i j = −2t2 cos(ki ± k j )

+ 4(t ′
2 + t ′

3) cos(2kl ) cos(ki ∓ k j ), (A4)

K±
i j = 4(t ′

2 − t ′
3) cos(2kl ) sin(ki ∓ k j ), (A5)

where l ∈ {x, y, z} \ {i, j} and the lattice constant has been
set to a = 4. σ0 is the 2×2 identity matrix, σi are the Pauli
matrices, and λ̂ j are the SU(4) generators

λ̂1 =

⎛⎜⎝0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠, λ̂2 =

⎛⎜⎝0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠, (A6)

λ̂3 =

⎛⎜⎝1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠, λ̂4 =

⎛⎜⎝0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎠, (A7)

λ̂5 =

⎛⎜⎝0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞⎟⎠, λ̂6 =

⎛⎜⎝0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎠, (A8)

λ̂7 =

⎛⎜⎝0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞⎟⎠, λ̂8 = 1√
3

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞⎟⎠,

(A9)

λ̂9 =

⎛⎜⎝0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎠, λ̂10 =

⎛⎜⎝0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞⎟⎠,

(A10)

λ̂11 =

⎛⎜⎝0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞⎟⎠, λ̂12 =

⎛⎜⎝0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞⎟⎠,

(A11)

λ̂13 =

⎛⎜⎝0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎠, λ̂14 =

⎛⎜⎝0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞⎟⎠,

(A12)

λ̂15 = 1√
6

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞⎟⎠. (A13)

We first examine the band degeneracy at the � point. In the
absence of spin-orbit coupling (t2 = t ′

2 = t ′
3 = 0), the eight

bands split into sixfold- and twofold-degenerate bands. This
can be seen by diagonalizing H0(k) through the unitary trans-
formation

S†
1Ĥ0(0)S1 = −2(t1 + 2t ′

1)
√

6 σ0 ⊗ λ̂15, (A14)
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with

S1 = 1

2
σ0 ⊗

⎛⎜⎝ 1 −1 1 −1
−1 1 1 −1
1 1 −1 −1

−1 −1 −1 −1

⎞⎟⎠. (A15)

When the spin-orbit couplings are turned on, the sixfold degeneracy further splits into twofold- and fourfold-degenerate bands:

S†
2S†

1[H0(0) + HSO(0)]S1S2 = −2(t1 + 2t ′
1)

√
6 σ0 ⊗ λ̂15 − 4[t2 − 2(t ′

2 + t ′
3)]

√
3 σ0 ⊗ λ̂8, (A16)

under the unitary transformation with

S2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
2

i
2

1
2
√

3
− 1

2
√

3
0 − 1√

3
0 0

− 1
2
√

3
1

2
√

3
− i

2 − i
2

1√
3

0 0 0

1
2

1
2

i
2
√

3
− i

2
√

3
0 − i√

3
0 0

i
2
√

3
− i

2
√

3
1
2

1
2 − i√

3
0 0 0

1√
3

− 1√
3

0 0 1√
3

0 0 0

0 0 1√
3

− 1√
3

0 1√
3

0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A17)

As a result, the eight energy bands are split into a j = 3
2

quartet and two j = 1
2 doublets. Since we are interested in the

j = 3
2 quartet, we hereafter project the Hamiltonian onto the

j = 3
2 subspace and discard the j = 1

2 doublets. The disper-
sion relation around the � point can be obtained by expanding
the projected Hamiltonian up to the quadratic order in mo-
mentum. Applying yet another unitary transformation with

S3 = 1

2

⎛⎜⎝1 − i −1 − i 0 0
1 − i 1 + i 0 0

0 0 −1 − i 1 − i
0 0 1 + i 1 − i

⎞⎟⎠ (A18)

to the projected Hamiltonian results in a Luttinger-Kohn
Hamiltonian of the canonical form

ĤLK(k) = (
E0 + α′|k|2)14×4

+ β ′(√3kykz�̂1 +
√

3kzkx�̂2 +
√

3kxky�̂3
)

+ γ ′
[√

3(k2
x − k2

y )

2
�̂4 + (2k2

z − k2
x − k2

y )

2
�̂5

]
,

(A19)

with

E0 = −2[t1 + 2(t2 + t ′
1) − 4(t ′

2 + t ′
3)], (A20)

α′ = 2

3
[t1 + 2t2 + 6t ′

1 − 12(t ′
2 + t ′

3)], (A21)

β ′ = −2

3
[t1 + 2(t2 − t ′

1 − 2t ′
2 + 6t ′

3)], (A22)

γ ′ = −2

3
[t1 − t2 − 6(t ′

1 + t ′
2 + t ′

3)]. (A23)

Five mutually anticommuting � matrices are defined as

�̂1 = 1√
3

{Ĵy, Ĵz}, �̂2 = 1√
3

{Ĵz, Ĵx}, �̂3 = 1√
3

{Ĵx, Ĵy},

(A24)

�̂4 = Ĵ2
x − Ĵ2

y√
3

, �̂5 = 2Ĵ2
z − Ĵ2

x − Ĵ2
y

3
, (A25)

where the Ĵμ are the spin- 3
2 matrices

Ĵx = 1

2

⎛⎜⎜⎝
0

√
3 0 0√

3 0 2 0
0 2 0

√
3

0 0
√

3 0

⎞⎟⎟⎠, (A26)

Ĵy = i

2

⎛⎜⎜⎝
0 −√

3 0 0√
3 0 −2 0

0 2 0 −√
3

0 0
√

3 0

⎞⎟⎟⎠, (A27)

Ĵz = 1

2

⎛⎜⎝3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞⎟⎠. (A28)

Comparing Eq. (A19) with Eq. (14), we obtain the relation-
ship between the coefficients in the two Hamiltonians

α′ =
(

α + 5

4
β

)
, β ′ = γ , γ ′ = β. (A29)

From the elements of the full unitary transformation matrix
S1S2S3, we can express the projection of the annihilation oper-
ators in the site-spin basis onto the low-energy j = 3

2 subspace
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at the Brillouin zone center:

c0,1,↑ = i

2
c0,3/2 − 1 + i

2
√

3
c0,1/2 − 1

2
√

3
c0,−1/2, (A30)

c0,1,↓ = i

2
√

3
c0,1/2 − 1 + i

2
√

3
c0,−1/2 − 1

2
c0,−3/2, (A31)

c0,2,↑ = − i

2
c0,3/2 − 1 + i

2
√

3
c0,1/2 + 1

2
√

3
c0,−1/2, (A32)

c0,2,↓ = − i

2
√

3
c0,1/2 − 1 + i

2
√

3
c0,−1/2 + 1

2
c0,−3/2, (A33)

c0,3,↑ = 1

2
c0,3/2 + 1 + i

2
√

3
c0,1/2 − i

2
√

3
c0,−1/2, (A34)

c0,3,↓ = 1

2
√

3
c0,1/2 + 1 + i

2
√

3
c0,−1/2 − i

2
c0,−3/2, (A35)

c0,4,↑ = −1

2
c0,3/2 + 1 + i

2
√

3
c0,1/2 + i

2
√

3
c0,−1/2, (A36)

c0,4,↓ = − 1

2
√

3
c0,1/2 + 1 + i

2
√

3
c0,−1/2 + i

2
c0,−3/2, (A37)

where ck,n,σ annihilates an electron with momentum k
and spin σ at site n of the tetrahedron, and ck,s̃ annihi-
lates an electron with momentum k and s̃ = − 3

2 ,− 1
2 , 1

2 , 3
2 .

Although the coefficients in Eqs. (A30)–(A37) will be mo-
mentum dependent away from k = 0, we continue to use
the k = 0 coefficients since the j = 3

2 description is only
valid sufficiently close to the Brillouin-zone center, where
the zero-order contributions to these coefficients dominate.
Within this approximation, it follows that the coefficients
ua,σ, j in Eq. (29) are identical to the coefficients appearing in
Eqs. (A30)–(A37).

APPENDIX B: INTERACTIONS PROJECTED
ONTO THE j = 3

2 SUBSPACE

In this Appendix, we derive the explicit form of the on-
site and nearest-neighbor interactions V and Va,a′ projected
onto the j = 3

2 subspace. These are obtained by substituting
Eqs. (A30)–(A37) into Eqs. (31) and (32). To obtain a com-
pact description, we employ a symmetric form presented in
Ref. [14]. A local interaction term can be written as

gNM (ψ†Nψ )(φ†Mφ), (B1)

with coupling gNM , field operators in a basis of j = 3
2

fermions ψ and φ, and 4×4 Hermitian matrices N and M. In
order to cover all possible interactions, we introduce a basis of
16 matrices that are irreducible tensor operators of the point
group Oh [14,18]:

Ê1 = �̂4, (B2)

Ê2 = �̂5, (B3)

T̂i = �̂i, (B4)

Ĵi = 2√
5

Ĵi, (B5)

Ŵi = 2
√

5

3

(
Ĵ3

i − 41

20
Ĵi

)
, (B6)

Ŵ ′
i = 1√

3

[
Ĵi,

(
Ĵ2

i+1 − Ĵ2
i+2

)]
, (B7)

Ŵ7 = 2√
3

(ĴxĴyĴz + ĴzĴyĴx ), (B8)

and the 4×4 identity matrix 1. Here, i = x, y, z and i + 1 and
i + 2 are understood cyclically. These 16 matrices satisfy

Tr(ÂB̂) = 4δÂ,B̂. (B9)

Of these matrices, 1 belongs to the irrep A1g, Ê1 and Ê2 belong
to Eg, T̂i belong to T2g, Ĵi and Ŵi belong to T1g, Ŵ ′

i belong to
T2g, and Ŵ7 belongs to A2g [18].

In the following, we show an explicit form of onsite and
nearest-neighbor interactions using the 16 basis matrices. We
employ a vector notation with

�̂T = (T̂1, T̂2, T̂3), (B10)

etc.

1. Onsite interaction

We first consider the onsite interaction, which is readily
calculated as

V = U0

8
1̂ ⊗̂ 1̂ + U0

24
�̂T ⊗̂ �̂T, (B11)

where the product ⊗̂ is defined by∑
α,α′,β,β ′

(Â ⊗̂ B̂)αα′;ββ ′ ψ†
αψα′ψ

†
βψβ ′

=
∑

α,α′,β,β ′
Âαα′ B̂ββ ′ ψ†

αψα′ψ
†
βψβ ′

=
(∑

α,α′
ψ†

αÂαα′ψα′

)(∑
β,β ′

ψ
†
β B̂ββ ′ψβ ′

)
≡ (ψ†Âψ )(ψ†B̂ψ ) (B12)

and if Â and B̂ are vectors of equal dimension, summation
over their components is implied. The results for the effective
interactions in each channel reveal that the onsite Hubbard
interaction is relevant for the s-wave A1g and T2g channels, but
that the s-wave Eg channels are insensitive to this interaction.

2. Charge-charge interaction

Next, we consider the nearest-neighbor interactions, given
by the second term in Hint [see Eq. (30)]. We make the num-
bers i, j of the tetrahedra, i.e., the sites, explicit by writing∑

〈i, j〉aa′

∑
α,α′

∑
β,β ′

[Va,a′]αα′;ββ ′c†
i,αci,α′c†

j,βc j,β ′

=
∑

〈i, j〉aa′

∑
α,α′

∑
β,β ′

[Via, ja′ ]αα′;ββ ′c†
i,αci,α′c†

j,βc j,β ′ (B13)

and symmetrize the interaction by rewriting the previous ex-
pression as

1

2

∑
〈i, j〉aa′

∑
α,α′

∑
β,β ′

[Via, ja′ + Vja′,ia]αα′;ββ ′c†
i,αci,α′c†

j,βc j,β ′ . (B14)
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The interaction strength is given by Eq. (32). It can be written
in terms of expressions depending on the sites i, j and expres-
sions depending on the orientation of the bond (aa′) between
the corners a and a′ of the elementary tetrahedron (see Fig. 4)
as

Via, ja′ + Vja′,ia = V 0
i j + ŷz2

aa′V 1
i j + x̂z2

aa′V 2
i j + x̂y2

aa′V 3
i j

+ ŷzaa′V 4
i j + x̂zaa′V 5

i j + x̂yaa′V 6
i j , (B15)

where

ŷzaa′ =
⎧⎨⎩1 if (aa′) = (13),

−1 if (aa′) = (24),
0 otherwise,

(B16)

x̂zaa′ =
⎧⎨⎩1 if (aa′) = (14),

−1 if (aa′) = (23),
0 otherwise,

(B17)

x̂yaa′ =
⎧⎨⎩1 if (aa′) = (12),

−1 if (aa′) = (34),
0 otherwise.

(B18)

Here, we take (aa′) = (a′a). The coefficients V 0
i j , etc., can

be obtained by substituting the coefficients from Eqs. (A30)–
(A37) into Eq. (32).

The charge-charge interaction is given by the first term in
Eq. (32). Substituting the coefficients from Eqs. (A30)–(A37)
into Eq. (32), this interaction is calculated as

V U1,0
i j = U1

8
1̂i ⊗̂ 1̂ j−U1

24

(
T̂1i ⊗̂ T̂1 j + T̂2i ⊗̂ T̂2 j + T̂3i ⊗̂ T̂3 j

)
,

(B19)

V U1,1
i j = U1

12
T̂1i ⊗̂ T̂1 j, (B20)

V U1,2
i j = U1

12
T̂2i ⊗̂ T̂2 j, (B21)

V U1,3
i j = U1

12
T̂3i ⊗̂ T̂3 j, (B22)

V U1,4
i j = − U1

4
√

3
{1̂, T̂1}i j − U1

12
{T̂2, T̂3}i j, (B23)

V U1,5
i j = − U1

4
√

3
{1̂, T̂2}i j − U1

12
{T̂1, T̂3}i j, (B24)

V U1,6
i j = − U1

4
√

3
{1̂, T̂3}i j − U1

12
{T̂1, T̂2}i j, (B25)

where we define {Â, B̂}i j ≡ 1
2 (Âi ⊗̂ B̂ j + B̂i ⊗̂ Â j ).

3. Heisenberg interaction

The Heisenberg interaction is given by the second term in
Eq. (32). In a similar manner, the Heisenberg interaction is
also represented by the irreducible spin tensors, which yields

V J,0
i j = 5J

288

(
Ĵ1i ⊗̂ Ĵ1 j + Ĵ2i ⊗̂ Ĵ2 j + Ĵ3i ⊗̂ Ĵ3 j

) − J

96
Ŵ7i ⊗̂ Ŵ7 j, (B26)

V J,1
i j = − J

720
Ĵ1i ⊗̂ Ĵ1 j − J

80
Ŵ1i ⊗̂ Ŵ1 j − J

48
Ŵ ′

1i ⊗̂ Ŵ ′
1 j

+ J

120
{Ĵ1,Ŵ1}i j − J

8
√

15

({Ŵ2,Ŵ ′
2}i j − {Ŵ3,Ŵ ′

3}i j
) + J

24
√

15

({Ĵ2,Ŵ ′
2}i j − {Ĵ3,Ŵ ′

3}i j
)
, (B27)

V J,2
i j = − J

720
Ĵ2i ⊗̂ Ĵ2 j + J

80
Ŵ2i ⊗̂ Ŵ2 j − J

48
Ŵ ′

2i ⊗̂ Ŵ ′
2 j

+ J

120
{Ĵ2,Ŵ2}i j − J

8
√

15

({Ŵ3,Ŵ ′
3}i j − {Ŵ1,Ŵ ′

1}i j
) + J

24
√

15

({Ĵ3,Ŵ ′
3}i j − {Ĵ1,Ŵ ′

1}i j
)
, (B28)

V J,3
i j = − J

720
Ĵ3i ⊗̂ Ĵ3 j − J

80
Ŵ3i ⊗̂ Ŵ3 j − J

48
Ŵ ′

3i ⊗̂ Ŵ ′
3 j

+ J

120
{Ĵ3,Ŵ3}i j − J

8
√

15

({Ŵ1,Ŵ ′
1}i j − {Ŵ2,Ŵ ′

2}i j
) + J

24
√

15

({Ĵ1,Ŵ ′
1}i j − {Ĵ2,Ŵ ′

2}i j
)
, (B29)

V J,4
i j = −11J

720
{Ĵ2, Ĵ3}i j − J

80
{Ŵ2,Ŵ3}i j + J

8
√

15
{Ŵ1,Ŵ7}i j + J

48
{Ŵ ′

2,Ŵ ′
3}i j + J

16
√

15

({Ŵ2,Ŵ ′
3}i j − {Ŵ3,Ŵ ′

2}i j
)

− 7J

48
√

15
{Ĵ1,Ŵ7}i j + J

40

({Ĵ2,Ŵ3}i j + {Ĵ3,Ŵ2}i j
) + J

12
√

15

({Ĵ2,Ŵ ′
3}i j − {Ĵ3,Ŵ ′

2}i j
)
, (B30)

V J,5
i j = −11J

720
{Ĵ3, Ĵ1}i j − J

80
{Ŵ3,Ŵ1}i j + J

8
√

15
{Ŵ2,Ŵ7}i j + J

48
{Ŵ ′

3,Ŵ ′
1}i j + J

16
√

15

({Ŵ3,Ŵ ′
1}i j − {Ŵ1,Ŵ ′

3}i j
)

− 7J

48
√

15
{Ĵ2,Ŵ7}i j + J

40

({Ĵ3,Ŵ1}i j + {Ĵ1,Ŵ3}i j
) + J

12
√

15

({Ĵ3,Ŵ ′
1}i j − {Ĵ1,Ŵ ′

3}i j
)
, (B31)
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V J,6
i j = −11J

720
{Ĵ1, Ĵ2}i j − J

80
{Ŵ1,Ŵ2}i j + J

8
√

15
{Ŵ3,Ŵ7}i j + J

48
{Ŵ ′

1,Ŵ ′
2}i j + J

16
√

15

({Ŵ1,Ŵ ′
2}i j − {Ŵ2,Ŵ ′

1}i j
)

− 7J

48
√

15
{Ĵ3,Ŵ7}i j + J

40

({Ĵ1,Ŵ2}i j + {Ĵ2,Ŵ1}i j
) + J

12
√

15

({Ĵ1,Ŵ ′
2}i j − {Ĵ2,Ŵ ′

1}i j
)
. (B32)

4. Dzyaloshinski-Moriya interaction

The Dzyaloshinskii-Moriya interaction is given by the third term in Eq. (32), where di j = −d ji is a vector perpendicular to
the bond (i j) and takes the values d12 = (1,−1, 0), d13 = (0, 1,−1), d14 = (−1, 0, 1), d23 = (1, 0, 1), d24 = (0,−1,−1), and
d34 = (1, 1, 0). Here, we have set the lattice constant to a = 4. We obtain the interaction terms

V D,0
i j = D

180

(
Ĵ1i ⊗̂ Ĵ1 j + Ĵ2i ⊗̂ Ĵ2 j + Ĵ3i ⊗̂ Ĵ3 j

) − D

80

(
Ŵ1i ⊗̂ Ŵ1 j + Ŵ2i ⊗̂ Ŵ2 j + Ŵ3i ⊗̂ Ŵ3 j

)
+ D

48

(
Ŵ ′

1i ⊗̂ Ŵ ′
1 j + Ŵ ′

2i ⊗̂ Ŵ ′
2 j + Ŵ ′

3i ⊗̂ Ŵ ′
3 j

) − D

80

({Ĵ1,Ŵ1}i j + {Ĵ2,Ŵ2}i j + {Ĵ3,Ŵ3}i j
) + D

24
Ŵ7i ⊗̂ Ŵ7 j, (B33)

V D,1
i j = − 7D

360
Ĵ1i ⊗̂ Ĵ1 j + D

80
Ŵ1i ⊗̂ Ŵ1 j − D

48
Ŵ ′

1i ⊗̂ Ŵ ′
1 j + 13D

240
{Ĵ1,Ŵ1}i j − 5D

48
√

15

({Ĵ2,Ŵ ′
2}i j − {Ĵ3,Ŵ ′

3}i j
)
, (B34)

V D,2
i j = − 7D

360
Ĵ2i ⊗̂ Ĵ2 j + D

80
Ŵ2i ⊗̂ Ŵ2 j − D

48
Ŵ ′

2i ⊗̂ Ŵ ′
2 j + 13D

240
{Ĵ2,Ŵ2}i j − 5D

48
√

15

({Ĵ3,Ŵ ′
3}i j − {Ĵ1,Ŵ ′

1}i j
)
, (B35)

V D,3
i j = − 7D

360
Ĵ3i ⊗̂ Ĵ3 j + D

80
Ŵ3i ⊗̂ Ŵ3 j − D

48
Ŵ ′

3i ⊗̂ Ŵ ′
3 j + 13D

240
{Ĵ3,Ŵ3}i j − 5D

48
√

15

({Ĵ1,Ŵ ′
1}i j − {Ĵ2,Ŵ ′

2}i j
)
, (B36)

V D,4
i j = D

90
{Ĵ2, Ĵ3}i j − D

40
{Ŵ2,Ŵ3}i j − D

8
√

15
{Ŵ1,Ŵ7}i j − D

6
√

15
{Ĵ1,Ŵ7}i j + 5D

48
√

15

({Ĵ2,Ŵ ′
3}i j − {Ĵ3,Ŵ ′

2}i j
)

− D

24
{Ŵ ′

2,Ŵ ′
3}i j − D

80

({Ĵ2,Ŵ3}i j + {Ĵ3,Ŵ2}i j
)
, (B37)

V D,5
i j = D

90
{Ĵ3, Ĵ1}i j − D

40
{Ŵ3,Ŵ1}i j − D

8
√

15
{Ŵ2,Ŵ7}i j − D

6
√

15
{Ĵ2,Ŵ7}i j + 5D

48
√

15

({Ĵ3,Ŵ ′
1}i j − {Ĵ1,Ŵ ′

3}i j
)

− D

24
{Ŵ ′

3,Ŵ ′
1}i j − D

80

({Ĵ3,Ŵ1}i j + {Ĵ1,Ŵ3}i j
)
, (B38)

V D,6
i j = D

90
{Ĵ1, Ĵ2}i j − D

40
{Ŵ1,Ŵ2}i j − D

8
√

15
{Ŵ3,Ŵ7}i j − D

6
√

15
{Ĵ3,Ŵ7}i j + 5D

48
√

15

({Ĵ1,Ŵ ′
2}i j − {Ĵ2,Ŵ ′

1}i j
)

− D

24
{Ŵ ′

1,Ŵ ′
2}i j − D

80

({Ĵ1,Ŵ2}i j + {Ĵ2,Ŵ1}i j
)
. (B39)

5. Traceless symmetric interaction

The traceless symmetric interaction is given by the fourth term in Eq. (32), where �
μν
i j splits into diagonal and off-diagonal

parts: �
μν
i j = dμ

i j d
ν
i j (�0δμν + �1[1 − δμν]). The corresponding interaction terms are given by

V �,0
i j = 13�0 − 5�1

720

(
Ĵ1i ⊗̂ Ĵ1 j + Ĵ2i ⊗̂ Ĵ2 j + Ĵ3i ⊗̂ Ĵ3 j

) + �0

160

(
Ŵ1i ⊗̂ Ŵ1 j + Ŵ2i ⊗̂ Ŵ2 j + Ŵ3i ⊗̂ Ŵ3 j

)
+ �0

96

(
Ŵ ′

1i ⊗̂ Ŵ ′
1 j + Ŵ ′

2i ⊗̂ Ŵ ′
2 j + Ŵ ′

3i ⊗̂ Ŵ ′
3 j

) − �0 − 5�1

240

({Ĵ1,Ŵ1}i j + {Ĵ2,Ŵ2}i j + {Ĵ3,Ŵ3}i j
) − �0 + �1

48
Ŵ7i ⊗̂ Ŵ7 j,

(B40)

V �,1
i j = −7�0 − 2�1

360
Ĵ1i ⊗̂ Ĵ1 j − 3�0 + 2�1

160
Ŵ1i ⊗̂ Ŵ1 j − 3�0 − 2�1

96
Ŵ ′

1i ⊗̂ Ŵ ′
1 j + �0 + �1

120
{Ĵ1,Ŵ1}i j

− �0

16
√

15

({Ŵ2,Ŵ ′
2}i j − {Ŵ3,Ŵ ′

3}i j
) + �0 − 5�1

48
√

15

({Ĵ2,Ŵ ′
2}i j − {Ĵ3,Ŵ ′

3}i j
)
, (B41)

V �,2
i j = −7�0 − 2�1

360
Ĵ2i ⊗̂ Ĵ2 j − 3�0 + 2�1

160
Ŵ2i ⊗̂ Ŵ2 j − 3�0 − 2�1

96
Ŵ ′

2i ⊗̂ Ŵ ′
2 j + �0 + �1

120
{Ĵ2,Ŵ2}i j

− �0

16
√

15

({Ŵ3,Ŵ ′
3}i j − {Ŵ1,Ŵ ′

1}i j
) + �0 − 5�1

48
√

15

({Ĵ3,Ŵ ′
3}i j − {Ĵ1,Ŵ ′

1}i j
)
, (B42)
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V �,3
i j = −7�0 − 2�1

360
Ĵ3i ⊗̂ Ĵ3 j − 3�0 + 2�1

160
Ŵ3i ⊗̂ Ŵ3 j − 3�0 − 2�1

96
Ŵ ′

3i ⊗̂ Ŵ ′
3 j + �0 + �1

120
{Ĵ3,Ŵ3}i j

− �0

16
√

15

({Ŵ1,Ŵ ′
1}i j − {Ŵ2,Ŵ ′

2}i j
) + �0 − 5�1

48
√

15

({Ĵ1,Ŵ ′
1}i j − {Ĵ2,Ŵ ′

2}i j
)
, (B43)

V �,4
i j = −5�0 + 13�1

360
{Ĵ2, Ĵ3}i j + �1

80
{Ŵ2,Ŵ3}i j − �1

48
{Ŵ ′

2,Ŵ ′
3}i j + �1

16
√

15

({Ŵ2,Ŵ ′
3}i j − {Ŵ3,Ŵ ′

2}i j
)

+ 5�0 − �1

240

({Ĵ2,Ŵ3}i j + {Ĵ3,Ŵ2}i j
) + 5�0 − �1

48
√

15

({Ĵ2,Ŵ ′
3}i j − {Ĵ3,Ŵ ′

2}i j
)

+ �0 + �1

8
√

15
{Ŵ1,Ŵ7}i j − �0 + �1

24
√

15
{Ĵ1,Ŵ7}i j, (B44)

V �,5
i j = −5�0 + 13�1

360
{Ĵ3, Ĵ1}i j + �1

80
{Ŵ3,Ŵ1}i j − �1

48
{Ŵ ′

3,Ŵ ′
1}i j + �1

16
√

15

({Ŵ3,Ŵ ′
1}i j − {Ŵ1,Ŵ ′

3}i j
)

+ 5�0 − �1

240

({Ĵ3,Ŵ1}i j + {Ĵ1,Ŵ3}i j
) + 5�0 − �1

48
√

3

({Ĵ3,Ŵ ′
1}i j − {Ĵ1,Ŵ ′

3}i j
)

+ �0 + �1

8
√

15
{Ŵ2,Ŵ7}i j − �0 + �1

24
√

15
{Ĵ2,Ŵ7}i j, (B45)

V �,6
i j = −5�0 + 13�1

360
{Ĵ1, Ĵ2}i j + �1

80
{Ŵ1,Ŵ2}i j − �1

48
{Ŵ ′

1,Ŵ ′
2}i j + �1

16
√

15

({Ŵ1,Ŵ ′
2}i j − {Ŵ2,Ŵ ′

1}i j
)

+ 5�0 − �1

240

({Ĵ1,Ŵ2}i j + {Ĵ2,Ŵ1}i j
) + 5�0 − �1

48
√

3

({Ĵ1,Ŵ ′
2}i j − {Ĵ2,Ŵ ′

1}i j
)

+ �0 + �1

8
√

15
{Ŵ3,Ŵ7}i j − �0 + �1

24
√

15
{Ĵ3,Ŵ7}i j . (B46)

APPENDIX C: EFFECTIVE INTERACTIONS
IN THE EVEN-PARITY COOPER CHANNEL

We here demonstrate a decomposition of the interaction
terms (31) and (32) into the even-parity Cooper channels.
The decomposition takes place through the generalized Fierz
identity [14]

(ψ†Nψ )(φ†Mφ) =
∑
Â,B̂

fNM (Â, B̂) (ψ†Āφ†T )(φT B̄†ψ ),

(C1)
with

fNM (Â, B̂) = 1

16
Tr(U †

T ÂNB̂UT MT ) (C2)

and Ā ≡ ÂUT , where UT is the unitary part of the time-reversal
operator. In deriving Eq. (C1), we have used the orthogonality
relation in Eq. (B9). This approach is useful for the con-
struction of the effective interaction because the coefficients
fNM (Â, B̂) are given explicitly by the trace formula (C2).

In the following, we apply Eq. (C1) to the interaction
terms and decompose them into the even-parity channels,
i.e., Â, B̂ ∈ {1, Ê1, Ê2, T̂1, T̂2, T̂3}. The even-parity pairs sat-
isfy (ÂUT )T = −ÂUT due to the Fermi statistics. To this end,
we first transform the interaction to momentum space and
restrict it to pairing of electrons with opposite momenta,

Hpair = 1

2N

∑
k,k′

∑
α,β,α′,β ′

[Vk,k′]αβ;α′β ′

× c†
k,αc†

−k,βc−k′,α′ck′,β ′ . (C3)

The coupling strength contains contributions from the onsite
interaction (31) and from the nearest-neighbor interaction (32)
as

Vk,k′ = V o
k,k′ + V e

k,k′ . (C4)

From the trace formula (C2), we obtain the onsite part

V o
k,k′ = U0

8
1̄ ⊗̄ 1̄ + U0

24
�̄T ⊗̄ �̄T, (C5)

where the product ⊗̄ is defined by, for a given field operator
cT

k ≡ (ck, 3
2
, ck, 1

2
, ck,− 1

2
, ck,− 3

2
),∑

α,β,α′,β ′
(Ā ⊗̄ B̄)αβ;α′β ′ c†

k,αc†
−k,βc−k′,α′ck′,β ′

≡
∑

α,β,α′,β ′
Āαβ B̄∗

β ′α′ c†
k,αc†

−k,βc−k′,α′ck′,β ′

=
(∑

α,β

c†
k,αĀαβc†

−k,β

)(∑
α′,β ′

c−k′,α′ B̄∗
β ′α′ck′,β ′

)

= (
c†

kĀc†T
−k

)(
cT
−k′ B̄†ck′

)
. (C6)

If Ā and B̄ are vectors of equal dimension, summation over
their components is implied.

The coefficients of the nearest-neighbor interaction are also
determined from the trace formula; the result comprises ex-
tended s-wave and d-wave channels. For instance, the charge-
charge interaction is decomposed into Cooper channels
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TABLE II. All even-parity nearest-neighbor pairing states and the corresponding irreps of the point group Oh. We adopt the abbreviations
cμ = cos kμa, sμ = sin kμa. The symbols 1̄, etc., are defined in Table I. Entries that are nonzero at the � point are marked in the rightmost
column.

Irrep Pairing state Nonzero at �

A1g cA1g = (cycz + cxcz + cxcy )1̄
√

c(E )
A1g

= (cxcz − cycz )Ē1 + 1√
3
(cycz + cxcz − 2cxcy )Ē2

s(T )
A1g

= syszT̄1 + sxszT̄2 + sxsyT̄3

A2g c(E )
A2g

= (cxcz − cycz )Ē2 − 1√
3
(cycz + cxcz − 2cxcy )Ē1

Eg �cEg = (cxcz − cycz,
1√
3
(cycz + cxcz − 2cxcy ))1̄

�c (E )
Eg

= (cycz + cxcz + cxcy )(Ē1, Ē2)
√

�̃c (E )
Eg

= ((cxcz − cycz )Ē2 + 1√
3
(cycz + cxcz − 2cxcy )Ē1, (cxcz − cycz )Ē1 − 1√

3
(cycz + cxcz − 2cxcy )Ē2)

�s (T )
Eg

= (syszT̄1 − sxszT̄2,
1√
3
(2sxsyT̄3 − syszT̄1 − sxszT̄2))

T1g �c (T )
T1g

= ((cxcz − cxcy )T̄1, (cxcy − cycz )T̄2, (cycz − cxcz )T̄3)

�s (E )
T1g

= ( 1
2 sysz(

√
3Ē2 + Ē1), 1

2 sxsz(
√

3Ē2 − Ē1), sxsyĒ1)

�s (T )
T1g

= ((sxsyT̄2 − sxszT̄3), (syszT̄3 − sxsyT̄1), (sxszT̄1 − syszT̄2))

T2g �c (T )
T2g

= (cycz + cxcz + cxcy )(T̄1, T̄2, T̄3)
√

�̃c (T )
T2g

= ((cxcy + cxcz − 2cycz )T̄1, (cxcy + cycz − 2cxcz )T̄2, (cycz + cxcz − 2cxcy )T̄3)

�sT2g = (sysz, sxsz, sxsy )1̄

�s (E )
T2g

= ( 1
2 sysz(

√
3Ē1 − Ē2),− 1

2 sxsz(
√

3Ē1 + Ē2), sxsyĒ2)

�s (T )
T2g

= ((sxsyT̄2 + sxszT̄3), (syszT̄3 + sxsyT̄1), (sxszT̄1 + syszT̄2))

in terms of irreps of Oh as

V e,U1
k,k′ = U1

18
cA1g ⊗̄ c′

A1g
+ U1

12
c(E )

A1g
⊗̄ c(E )′

A1g
+ U1

6
s(T )

A1g
⊗̄ s(T )′

A1g
− U1

6
√

3

(
cA1g ⊗̄ s(T )′

A1g
+ s(T )

A1g
⊗̄ c′

A1g

) + U1

12
c (E )

A2g
⊗̄ c (E )′

A2g

+ U1

12
�cEg ⊗̄ �c ′

Eg
+ U1

9
�c (E )

Eg
⊗̄ �c (E )′

Eg
+ U1

12
�̃c (E )

Eg
⊗̄ �̃c (E )′
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, (C7)

where the representations of pairing states (matrix-valued
functions) are tabulated in Table II and the prime refers to
the primed momentum coordinates. A general analysis taking
into account all contributions to the interaction and all pairing
channels would be extremely laborious. However, we should
bear in mind that the projection to the j = 3

2 subspace is
only valid close to the � point. Most of the states tabulated
in Table II are quadratic in k close to � (i.e., d-wave like);
the exceptions are the three states marked in Table II, which
correspond to the extended s-wave form factor, and which
have a finite value at the � point. Since the extended s-wave
states have similar coupling constants compared to the d-wave
states, we expect that for sufficiently small chemical potential

relative to the band-touching point the extended s-wave states
will be the leading instabilities since the d-wave states will
open a much smaller gap at the Fermi surface. We similarly
expect that p-wave states in the odd-parity channel will not be
leading instabilities. We can thus ignore the d-wave states and
focus upon the s-wave states, and so approximate the pairing
interaction from the charge-charge coupling as

V e,U1
k,k′ ≈ U1

18
cA1g ⊗̄ c′

A1g
+ U1

9
�c (E )

Eg
⊗̄ �c (E )′

Eg

+ 5U1

54
�c (T )

T2g
⊗̄ �c (T )′

T2g
. (C8)
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For the same reason, we ignore the d-wave states for the spin
interactions. Using the same procedure, the pairing interaction
from the spin coupling is obtained as

V e, spin
k,k′ ≈

(
− J

216
− D

27
− �0 − 2�1

108

)
cA1g ⊗̄ c′

A1g

+
(

− J

108
+ D

27
− �0 + �1

54

)
�c (E )

Eg
⊗̄ �c (E )′

Eg

+
(

J

216
− D

27
+ �0 + 2�1

108

)
�c (T )

T2g
⊗̄ �c (T )′

T2g
. (C9)

Equations (C5), (C8), and (C9) correspond to Eq. (36).

APPENDIX D: DETAILS OF NUMERICAL SOLUTION
OF THE GAP EQUATION

In this Appendix, we provide some background on the
numerical solution of the BCS gap equation for the Eg or-
der parameter (�1,�2). A more detailed discussion will be
given in a future work [31]. Both the gap equation (50) and
Eq. (51) for the internal energy involve integration over the
three-dimensional Brillouin zone, which is the main compli-
cation compared to the textbook calculation for a parabolic
band. In Eq. (51), we take the difference of the momentum
contributions to the internal energy in the normal state and in
the superconducting state first and then perform the integral to
get Fn − Fs plotted in Fig. 2. This strongly reduces round-off
errors.

The main problem for accurate numerics then stems from
the form of the integrand. We here discuss the case of Eq. (51),
the situation for Eq. (50) is analogous. For a simple parabolic
band and constant pairing amplitude �, the integrand is pro-
portional to

δεk =
√

ξ 2
k + �2 − ξk, (D1)

where ξk is the normal-state dispersion relative to the chemical
potential. (In our case the expression is more complicated
but the essential points remain.) The radial integral diverges
logarithmically at large momenta k. The integral is cut off at
large k corresponding to an energy scale �, leading to a term
proportional to ln(�/�). The appearance of the large scale �

and the small scale � shows that the integral is sensitive to the
whole of momentum space. For our lattice model, the integral

is naturally cut off by the finite Brillouin zone but still the full
Brillouin zone is important for accurate results.

We perform the integrals using spherical coordinates. The
radial integral is performed first, inside the angular integrals.
From Eq. (D1), we expect that momenta close to the normal-
state Fermi momentum kF will contribute most and, since ξk
is linear in k, the integrand changes on a momentum scale
proportional to �. Therefore, we split the radial integral into
four parts [0, kF − k1], [kF − k1, kF ], [kF , kF + k2], and [kF +
k2, kBZ(θ, φ)], where k1 and k2 are proportional to � at kF and
kBZ(θ, φ) describes the surface of the Brillouin zone in the
direction θ , φ. The constants of proportionality in k1 and k2 are
chosen so as to minimize numerical noise. The integrals are
performed using globally adaptive sampling as implemented
in Mathematica (version 12) with the accuracy goal typically
set to 18 digits and the maximum number of recursions set
to 12 for the two outer intervals and to 8 for the two inner
intervals.

The resulting integrand for the wrapping integrals over
angles θ and φ is a well-behaved function. For these integrals,
we also use globally adaptive sampling, with the accuracy
goal set to 18 digits and the maximum number of recursions
set to 4.

The main diagnostics for the quality of the numerical in-
tegration are (a) the observation that it gives smooth Fn − Fs

and also � (not shown) vs V0 down to very small Fn − Fs and
� and (b) that the results in this range agree with the expected
scaling for weak-coupling BCS theory. The numerical noise
is small compared to the thickness of the lines in Fig. 2. Also
note that the crossings of lines in Figs. 2(a) and 2(b) take
place in a range where � and Fn − Fs are so large that the
numerical integration is unproblematic in any case. The BCS
scaling results from the leading terms in the energy difference
being

Fs − Fn = a �2 ln
�

�
+ b�2 + c

�2

V0
, (D2)

where a, b, c are constants. The first two terms are due to
the quasiparticle contribution, whereas the third stems from
the mean-field decoupling. Minimization with respect to �

gives the BCS results � ∼ e−c/aV0 and Fs − Fn ∼ −e−2c/aV0 .
This leads to

ln
Fn − Fs

tπ
∼= const − 2c

aV0
, (D3)

which is seen in Fig. 2(a).
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