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The coexistence of multiple quasidegenerate orders is the hallmark of the strongly correlated materials.
Experiments often reveal several spatially modulated orders in the underdoped cuprates. This has come to the
forefront with the possible detection of the pair density wave states. However, microscopic calculations often
struggle to stabilize such spatially modulating orders as the ground state in the strong correlation limit. This work
uses the t − t ′ − J model with an additional nearest-neighbor repulsion to stabilize spatially oscillating charge,
bond, and pairing orders in the underdoped regime. We employ the standard Gutzwiller approach while treating
the inhomogeneity for the spatial orders using the self-consistent Hartree-Fock-Bogoliubov methodology. Our
calculations reveal that unidirectional bond density states coexisting with charge and pairing modulations can
have lower energy than the uniform superconducting state over an extensive doping range. These modulating
states vanish monotonically as the modulation wave vector becomes shorter with increased dopings. The
finite momentum orders give way to a vestigial nematic phase on increasing doping which only breaks the
rotational symmetry of the system. The nematic order vanishes on further increasing doping, and only uniform
superconductivity survives. The spatial features of the ground state at each doping reveal multiple wave vectors,
which potentially drive the incommensuration of charge orders. Interestingly, the spatially modulating states are
absent when the strong correlations criteria are relaxed, suggesting that the removal of double occupancy aids
the stabilization of density wave orders.
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I. INTRODUCTION

The presence of multiple broken symmetry phases and
competing orders has become the new paradigm for de-
scribing correlated quantum matter featuring complex phase
diagram [1–4]. Given the abundance of rich phase diagrams in
different materials suggests the intertwining of several orders
[5,6]. In this scenario, a precursor state of all potentially
degenerate states forms at a high-energy scale which cannot
be linked with one particular order. At low energies, slight
energy differences stabilize one order over the other.

A unique realization for intertwined orders is the vestigial
or composite phase, where a higher-order component of the
likely symmetry broken phase condenses although the indi-
vidual components vanish [5,6]. Therefore a vestigial state
has a smaller subset of broken symmetries than the parent
state. For instance, a nematic phase that breaks the rotational
symmetry is a vestige of the primary checkerboard and stripe
phase where both translation and rotational symmetries are
broken [7]. Recently, the sublattice phase-resolved study of
the electronic structure in Bi-based cuprates compound finds
a vestigial nematic phase around 14 − 17% hole doping [8].
Moreover, the nematic order coexists with the charge density
wave (CDW) orders at lower dopings [8].

The signatures of charge modulation are routinely ob-
served at moderate hole-doped materials in all cuprate
families [9–11]. Usually, the modulation wave vector, Q, re-
duces as the doping increases [12,13] except for the La2CuO4

where the wave vector increases with doping [14–16].
Moreover, detailed investigations have also revealed a bond-
centered charge order with a primarily d-wave form factor
[17–19]. Furthermore, disorder severely affects the charge
modulations such that the unidirectional stripe and the bidirec-
tional checkerboard patterns become indistinguishable [20].
The local spectroscopic probes indicate short-ranged domains
with unidirectional charge modulation [21,22], albeit quantum
oscillation measurements favor the bidirectional picture [23].

Recently the study of the modulated orders in cuprates has
gained impetus with the observations of a pair density wave
(PDW) state coexisting with usual d-wave superconductivity
(SC) using Josephson scanning tunneling microscopy (STM)
[24,25]. In the same regime, d-wave CDW oscillations are
also detected [25]. The importance of detecting the PDW state
is underlined by the several exotic proposals of the celebrated
pseudogap state that hinges on the quantum disordering [26]
or fractionalization of the PDW state [27,28]. However, it is
extremely difficult to stabilize such PDW sates as the ground
state of a microscopic Hamiltonian [29–33].

The tJ model and its parent Hubbard model at large
repulsion U are generally studied to extract the physics of spa-
tially modulated states [34–36]. The variational approaches
on the two-dimensional (2D) tJ model find a striking near-
degeneracy among the unidirectional charge order with stripe
SC, a PDW state with spin-density wave component, and the
uniform d-wave SC state [37]. A few recent calculations on
the same model observe a PDW state with vanishing mean
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SC pairing energetically very close to the uniform d-wave
SC [38,39]. Such quasidegeneracy among different states sug-
gests that a small perturbation to the tJ model will favor
one state over the other, thus giving rise to a wide variety of
phenomenology.

Using commonly accepted minimal models to describe
strongly correlated quantum matters, i.e., the t − t ′ − J model
with an additional nearest-neighbor repulsion, we study the
interplay of unconventional SC with spatially modulated
charge-ordered states in the ground state. Early investigations
on such a model manifest promising signatures of density
wave orders [40–44]. A careful analysis of the variation of the
ordering wave vector with doping, however, is still missing. In
addition, the real-space pattern of the charge, bond order, and
the possibility of finding spatially modulated pairing ampli-
tude (similar to the Fulde-Ferrell-Larkin-Ovchinnikov phase
but in the absence of magnetic field) need to be studied. Fur-
thermore, the mechanism of the demise of modulated orders
with increasing doping remains unexplored. In this work, we
focus on the unidirectional charge orders that are routinely
observed in the underdoped cuprates [21,22,45]. Furthermore,
we neglect the magnetically ordered states to keep the numer-
ical calculation tractable. In the next section, we describe the
model and the method in detail.

II. MODEL AND METHODS

We work with the standard tJ model on a 2D square lattice
with all the double occupancy removed, with an additional
nearest-neighbor repulsion. The model is given by

H =
∑
i, j,σ

(
ti j c̃

†
iσ c̃ jσ + H.c.

) + J
∑
〈i, j〉

(
S̃i · S̃ j − 1

4
ñiñ j

)

+ W
∑

〈i, j〉,σ,σ ′
n̂iσ n̂ jσ ′ − μ

∑
i,σ

n̂i,σ . (1)

Here ti j = −t if i, j are nearest neighbors and ti j = t ′ if i, j are
next-nearest-neighbor sites. We fix the t = 1 and t ′ = 0.25t ,
and all the energy scales are in the units of t . To compare
with the experimental energy scales in cuprates, one can use
t ≈ 300 meV.

The tJ Hamiltonian is an effective low-energy model
obtained from a Schrieffer-Wolf transformation of the Hub-
bard model for large on-site repulsion U [46]. The Si are
the electron-spin operator and the exchange interaction J ≈
(4t2)/U is set to J = 0.3t in this work. Furthermore, W is the
nearest-neighbor repulsion term, which we fix to W = 0.6t for
the rest of the analysis.

The local number operators for a particular spin are given
by n̂i,σ = c†

i,σ ci,σ and the local density is the expectation value
of the number operator. The “tilde” appearing on the creation
(annihilation) operators at site i with spin σ =↑,↓, c†

i,σ (ci,σ )
in Eq. (1) is explained below. The local density is thus given
by ρi = ∑

σ 〈c†
iσ ciσ 〉; μ is the chemical potential that fixes the

average density of carriers ρ in the system. The spatial average
of the local density gives the average density of electrons ρ.
The (under) doping level from the half filling is defined via
δ = (1 − ρ).

Strong on-site repulsions reduce the Hilbert space of the tJ
model by eliminating all double occupancies. The tilde on op-

erators appearing in the Eq. (1) signifies that they operate on a
truncated Hilbert space which projects out double occupation
on any site due to strong repulsive interactions. The operators
without the tilde live in the usual unrestricted Hilbert space.

c̃iσ = ciσ (1 − n̂iσ ), (2)

where c is the normal annihilation operator. A straightfor-
ward implementation of such a restriction is given by the
Gutzwiller approximation, which transforms the strongly in-
teracting problem to an unrestricted Hilbert space at the
expense of introducing “Gutzwiller factors” which renormal-
ize all operators [47–49].

〈c̃†
iσ c̃ jσ 〉 ≈ gt

i j〈c†
iσ c jσ 〉0, (3)

〈S̃i.S̃ j〉 ≈ gxy
i j 〈Si.S j〉0, (4)

〈niσ n jσ 〉 ≈ 〈niσ n jσ 〉0, (5)

where 〈. . . 〉 is the expectation in the restricted Hilbert space
whereas 〈. . . 〉0 is the expectation of operators in the unre-
stricted Hilbert space. The Gutzwiller factors in the absence
of any magnetic orders are given by

gt
i j =

√
4xix j

(1 + xi )(1 + x j )
, (6)

gxy
i j = 4

(1 + xi )(1 + x j )
, (7)

where xi = 1 − ρi. After removing the double occupancy, we
perform the mean-field decomposition of the interaction terms
in Hartree, Fock, and Cooper channels as given below,∑

σ

〈c†
iσ ciσ 〉0 = ρi, (8)

〈c†
iσ c jσ 〉0 = χi j, (9)

〈c j↓ci↑ + ci↓c j↑〉0 = �i j . (10)

Note that we are not allowing for any magnetic orderings in
this system by focusing on superconducting with charge and
bond density wave (BDW) orders only. Therefore we elimi-
nate the spin-flip Fock terms from the mean-field Hamiltonian
to preserve the spin rotational symmetry. To perform the
mean-field analysis we closely follow Refs. [38,50,51]. The
explicit expression for the mean-field Hamiltonian is given by

HMF =
∑
i,a,σ

(
tgt

i,i+a − W FS
i,i+a

)
c†

i,σ ci+a,σ

+
∑
i,b,σ

t ′gt
i,i+bc†

i,σ ci+b,σ +
∑
i,σ

(−μ + μHS
i )n̂iσ

+
∑
i,a

[
Gi,a

1 �i,i+a
(
c†

i,↑c†
i+a,↓ + c†

i+a,↑c†
i,↓

) + H.c.
]
.

(11)

Here the sums over a = ±x̂,±ŷ are the nearest-neighbor vec-
tors and b = ±(x̂ ± ŷ) are the next-neighbor vector. The other
variables are given by

W FS
i,a = J

2

(
3gxy

i,i+a

2
− 1

2

)
χi,i+a + W χi,i+a, (12)
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Gi,a
1 = −J

4

(
3gxy

i,i+a + 1

4

)
, (13)

μHS
i = −4t

∑
a,σ

∂gt
i,i+a

∂ni
χi,i+a + 4t ′ ∑

b,σ

∂gt
i,i+b

∂ni
χi,i+b

− 3J

2

∑
a,σ

∂gxy
i,i+a

∂ni

(
�2

i,i+a

4
+ χ2

i,i+a

)

− J − 2W

4

∑
i,a,σ

ρi+a. (14)

Next, we diagonalize the Hamiltonian using Bogoliubov-
deGennes (BdG) transformation [52–54],

ciσ =
∑

n

(
γnσ ui,n − σγ

†
n,−σ v∗

i,n

)
, (15)

where γ †(γ ) is Bogoliubov creation (annihilation) operator.
The resulting eigensystem is then solved self-consistently for
all the local Hartree, Fock, and Bogoliubov order parameters
and μ. If there are N lattice sites, then there are (5N + 1)
variables to be solved self-consistently. We initialize the SC
pairing �i j and and the bond density χi j , and local density to
be the modulating around a mean value with a desired wave-
vector Q = (1/λ)2π/a0x̂. Here λ is the period of oscillations
and a0 is the lattice spacing. We focus on the unidirectional
density wave orders in this paper. The initial guess is given by

�i,i+a = �0 + �Q cos(Q.ri ). (16)

�0 is the guess mean SC pairing amplitude, and �Q is the ini-
tial guess for SC pairing modulation amplitude. We initialize
the bond and local density similarly and use such a trail solu-
tion to achieve self-consistency. We perform further analysis
on those solutions for the cases we achieve self-consistency
with the desired wave vector.

One can evaluate the self-consistent d-wave and extended
s-wave components from the SC pairing �i j by using the
following definition

�d (i) = 1
4 (�i,i+x̂ + �i,i−x̂ − �i,i+ŷ − �i,i−ŷ ), (17)

�s(i) = 1
4 (�i,i+x̂ + �i,i−x̂ + �i,i+ŷ + �i,i−ŷ ). (18)

A similar definition can be made for the d-wave and extended
s-wave components for the bond density order χi j .

χd (i) = 1
4 (χi,i+x̂ + χi,i−x̂ − χi,i+ŷ − χi,i−ŷ ), (19)

χs(i) = 1
4 (χi,i+x̂ + χi,i−x̂ + χi,i+ŷ + χi,i−ŷ ). (20)

To extract the finite-momentum component of the charge,
bond, and pairing, we first calculate the Fourier components
of the variation of an ordering. For example, the Fourier com-
ponent for the local density is given by

ρ̃(q) = 1

N

∑
i

exp(iq.ri )(ρi − ρ). (21)

Note that we remove the average density from the local den-
sity to consider only the oscillating part instead of the uniform
part. The principal peak from the Fourier component gives us
the modulation wave-vector Q for the desired quantity. The

modulation amplitude from the local density is evaluated by
the strength of ρ̃(q) at this wave vector such that χQ

ρ ≡ ρ̃(Q).
Similarly, we can define the other modulation amplitude by
using the Fourier transform of the respective order parameters
as

χ̃d (q) = 1

N

∑
i

exp(iq.ri )(χd (i) − χd ), (22)

χ̃s(q) = 1

N

∑
i

exp(iq.ri )(χs(i) − χs), (23)

�̃d (q) = 1

N

∑
i

exp(iq.ri )(�d (i) − �d ), (24)

�̃s(q) = 1

N

∑
i

exp(iq.ri )(�s(i) − �s). (25)

Here χd are the spatially averaged component d-wave bond
density. The finite-momentum component at the dominant
wave vector is again defined as χ

Q
d ≡ χ̃d (Q). Similar defini-

tions are also used for the other variables.
We can also track the broken rotational symmetry of the

bond density and cooper pair density operators by using [7]

Nχ = 1

2

√
〈χ2

x 〉 − 〈χ2
y 〉 (26)

N� = 1

2

√
〈�2

x〉 − 〈�2
y〉, (27)

where the average 〈...〉 is over the lattice sites. Notice that this
quantity only contributes when there is a nematicity and will
vanish for purely extended s-wave and d-wave components of
bond or cooper pair density.

In order to describe our results in the subsequent sections,
our strategy is the following. First, we extract the optimal
wave vector by comparing the variational ground-state energy
of the self-consistent BdG solutions at each doping. Subse-
quently, we utilize the optimal self-consistent solution to study
the variation of different order parameters with doping. Fi-
nally, we also show the local features of the optimal solutions
for a few dopings.

III. RESULTS

Our calculations are done on a 2D square lattice unit cell
of linear dimension 40a0 to 60a0. The lattice size was tuned
within this range to keep the lattice commensurate with the
period of modulations. We found that the self-consistency be-
comes easier if we accommodate even number of full periodic
density wave oscillations within the unit cell. For instance,
for a system with period of 8a0, we use a system size of
48a0 × 48a0. We have also checked that our qualitative results
are independent of the system size.

A. Optimal modulation wave vector with doping

We begin our analysis by studying the ground-state energy
for different self-consistent solutions of the BdG equations.
Initially, we start with a trail state with a single modulation
wave vector at Q = (1/λ)2π/a0 for the pairing amplitude,
bond, and charge density and try to achieve self-consistency.
For each case, we achieve self-consistent solutions for the
desired wave vector; we calculate the ground-state energy
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FIG. 1. The figure compares the ground-state energy of the self-
consistent solutions with different wave vectors for a few dopings.
The thick lines are the guide to the eyes. The dotted lines display the
EGS for the uniform and the nematic states. (a) For δ = 0.075 there
is clearly a minima for λ = 4. As the doping rises to δ = 0.1, the
optimal modulation wavelength increases to λ = 5. The wavelength
keeps increasing further with reduced doping, becoming λ = 8 for
δ = 0.125. At δ = 0.14, the nematic state becomes the optimal
ground state. The inset of (f) demonstrates the decrease of optimal
wave vector with doping.

EGS = 〈H〉MF, which is presented in Fig. 1 for different wave
vectors and for several dopings. The minimum of EGS(Q)
gives us the optimal solution at each doping level.

We also present the estimate of the EGS for the uniform and
the nematic orders (Q = 0) with the dashed lines. The nematic
order breaks the C4-rotational symmetry of the square lattice,
although it is spatially uniform. Therefore this is the charge
(and pairing) nematic state where the x and the y components
of the bond (and pairing) density are different (see Sec III C 3
for details).

At low doping, the evolution of EGS has a minima at λ = 4,
as seen in Figs. 1(a) and 1(b). The purely nematic and the
uniform states also have much higher energy than the optimal
solution. As the doping is increased to δ = 0.1, the energy for
a system with density waves of primarily Q = (1/5)2π/a0

minimizes the system. The optimal modulation wave vector
shortens further to Q0 = 1/6 − 1/8 in reciprocal lattice unit
(r.l.u.) with increasing doping as seen in Figs. 1(d) and 1(e).
The decreasing optimal wave vector with doping is also pre-
sented in the inset of Fig. 1(f). Increasing the doping further

makes the nematic state energetically favorable than the spa-
tially modulating ones, as shown in Fig. 1(f). For δ > 0.16,
only the uniform SC states are sustained.

Interestingly, EGS for the doping range δ = 0.1 − 0.14
reveal that states with different wave vectors are quasidegen-
erate as marked by the shallowing minima. Such energetically
close-lying orders open up the possibility of a state with
an admixture of different wave vectors. This can lead to an
incommensuration of the density wave [55,56]. We will show
in the subsequent sections that although we start with a single
wave vector, higher harmonics of the same wave vector appear
in the self-consistent solutions.

Finally, we note that the demise of the modulated orders
with doping takes an intriguing pathway. The sharp minima
at a particular wave vector at low dopings indicate that the
modulated state with the optimal Q is stable. However, around
δ = 0.14 as shown in Fig. 1(f), the modulated states with
different wave vectors as well as the nematic and the uniform
SC states strikingly become quasidegenerate. In this regime,
minute energy differences can tilt the balance of these orders
locally. Beyond δ > 0.16, only the uniform d-wave supercon-
ducting self-consistent solutions are obtained, indicating the
demise of modulated and nematic phases.

B. Variation of order parameters with doping

Above variational analysis identifies the modulated charge
patterns in the ground state, but now we proceed to explore the
strength of the corresponding spatially modulated orders. In
Fig. 2(a), we show the strength of different modulation ampli-
tude at the dominant wave vector defined using Eqs. (21–25).

Interestingly, over the range of doping, the finite
momentum components of BDW, CDW, and PDW or-
ders are significant for δ < 0.14 as shown in Fig. 2(a).
However, the d-wave BDW order is the dominant almost over
the whole doping range studied. Focusing on the modulation
amplitude for dSC pairing, �

Q
d , we observe a nonmonotonic

behavior with doping. For low doping, the d-wave SC pairing
modulations are weaker than other energy scales. However,
�

Q
d increase rapidly δ = 0.1. Similarly, there remains a sig-

nificant extended s-wave pairing modulation at all dopings
below δ = 0.14. We emphasize that the wave vector of the
modulated orders reduces around this doping as established
in Sec. III A. Recently, STM experiments observed signatures
of unidirectional PDW state with Q = (1/8)2π/a0 coexisting
with uniform superconducting order in underdoped BSSCO at
zero magnetic fields [24,25].

We have also presented the mean d-wave SC pairing am-
plitude in Fig. 2(b) and compared it with the situation when
all the modulated orders are suppressed in �0

d . In the regime
where the spatially varying states exist, the average �d re-
duces significantly from the uniform case. The renormalized
d-wave pairing amplitude �̃d also diminishes due to the inter-
play with the density wave orders.

We also find the signatures of nematicity throughout the
doping range δ < 0.16, which is indicated by the nonzero
N� and Nχ in Fig. 2(c). The mean bond density and the
Cooper pair density are different along the x and y directions,
thus breaking the C4 rotational symmetry of the square lattice.
For the present calculation, the nematic order coexists only
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(a)

(b) (c)

FIG. 2. The evolution of different order parameters with doping.
(a) The evolution of the amplitude of oscillations for the different
quantities at the optimal ground state. The blue lines exhibit the
oscillation amplitude for the local density at the optimal wave vector.
Similarly, the orange and green curves show the evolution of finite-
momentum amplitude for extended s-wave and d-wave bond density.
Moreover, the same for the superconducting pairing in extended
s-wave and d-wave channels is presented in red and violet traces. The
lines are the guide to the eyes. All these spatially modulated orders
vanish near the δ ≈ 0.14. (b) The mean d-wave superconducting
pairing in the blue trace compared with the case where no charge
or bond density orders are allowed �0

d in cyan. The average �d

significantly reduces in the regions where the charge and bond orders
are stable. Moreover, we show the renormalized d-wave pairing �̃d ,
which also reduces in the regime where charge and pairing oscilla-
tions are dominant, i.e., δ < 0.16. (c) The nematicity in the χ and
� with red and black traces, respectively. The nematicity vanishes
around the doping δ = 0.16.

with uniform dSC order in the doping range δ = 0.14 − 0.16.
However, it also coexists with all spatially modulating orders
in the doping range δ = 0.06 − 0.14 as shown in Fig. 2.

C. Spatial profile for the optimal solution

In this subsection, we explore the spatial structure of the
optimal solution at a few doping levels. STM experiments
routinely map the spatial variation of diverse orders. Therefore
we start by concentrating on the low-doping regime where
we find a unidirectional BDW, PDW, and CDW state with a
periodic modulation of four lattice spacing.

1. CDW, BDW, and PDW state with Q = (1/4, 0)

Figure 3(a) presents the bond density χi j in the color plot.
As mentioned before, we consider unidirectional modulated
states, and therefore the bond order only modulates along
the x direction while it is uniform along the y direction.
Interestingly, the χi j at each site displays different x and y

components as shown in Fig. 3(a), leading to a charge ne-
maticity coexisting with the density wave orders.

Next, we extract the d-wave and the extended s-wave com-
ponents of the self-consistent Fock shift using Eqs. (19) and
(20). Both the χd and the χs modulate in space with a period
of four lattice spacings. We also present the variation of the
local density ρi in the inset of Fig. 3(c). We observe spatial
modulation of the local density, although it has a much rapid
variation instead of regular behavior over a single period.

Figure 3(c) exhibits the Fourier transform of bond and
charge density as calculated from Eqs. (21–23). Our goal is
to capture the dominant oscillations for each component of
bond and charge modulations. Hence we removed the mean
to eliminate the peak coming from the uniform values of
these quantities. The principal peak for the d-wave BDW
and s-wave BDW is observed at the expected value of Q =
(1/4)2π/a0, and both χ̃s(q) and χ̃d (q) have the same strength
at this doping. Moreover, there is no other additional peak for
both χ̃d (q) and χ̃s(q). The amplitude of the CDW oscillation
is much weaker than that of the BDW. Also, there is a sub-
dominant peak at Q = (1/2)2π/a0 arising from higher-order
harmonics of the local density oscillation.

We present the SC pairing �i j on bonds in Fig. 3(d) and
the extracted d wave and extended s wave in Fig. 3(e). Notice
that for a uniform tJ model, the expectation value for the SC
pairing with a d-wave form factor is finite, but the same for the
extended s-wave vanishes [50,51]. Therefore the �s pairing
modulation transpires around zero, whereas pairing modula-
tion of the �d occurs around a nonzero mean value [57]. A
PDW state is Cooper pairing modulations such that the aver-
age pairing vanishes. For the usual pairing modulation due to
the interplay of charge or bond density wave order, the mean
pairing is significantly larger than the modulation amplitude.
Therefore we observe a PDW oscillation for the extended
s-wave pairing, in addition to a normal pairing modulation in
the d-wave channel. While the component of extended s-wave
pairing is essentially absent in the uniform superconductor,
the presence of the modulated charge orders brings extended
s-wave pairing modulation into life. The Fourier transform
for the pairing gives an equally strong pairing modulation
amplitude for both the form factor with no subdominant peak,
as presented in Fig. 3(d).

2. CDW, BDW, and PDW state with Q = (1/8, 0)

For δ = 0.125, the primary wave vector of the modulated
orders in our microscopic model reduces to Q = (1/8)2π/a0.
Figure 4(a) shows the bond density and Fig. 4(b) shows the
d-wave and s′-wave components of the same. The modulation
of the bond density is not smooth over the period and therefore
accommodates higher harmonics. This is also true for the
density modulations presented as an inset of Fig. 4(c). The
presence of higher harmonics of oscillations is verified by
the strong subdominant peaks of the Fourier transform of the
BDW and CDW orders as exhibited in Fig. 4(c). Interest-
ingly, the d-wave BDW becomes the dominant form factor
at q = 0.125 in the r.l.u. However, the χ̃s has an intriguing
evolution. For the extended s-wave BDW modulations, the
dominant peak shifts at q = (1/4)2π/a0, which is at q = 2Q.
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(a) (d)

(b)

(c)
(f)

(e)

FIG. 3. Spatial profile for the optimal self-consistent solution at δ = 0.075. Here the periodicity of unidirectional oscillation is 4a0. (a) The
bond density χi j = ∑

σ 〈c†
iσ c jσ 〉, where i, j are nearest neighboring sites. (b) The d-wave and extended s-wave components of the χ are

extracted in (b). Both clearly show pure oscillations with the periodicity of four lattice spacings. The inset of (c) shows the spatial profile for
the local density, which also oscillates. (c) The Fourier transform of these quantities. The dominant wave vector for all the oscillations is at
Q = (1/4)2π/a0 as expected. (d) The similar bond plots for local SC pairing �i j . (e) The corresponding d-wave and the extended s-wave
components of SC pairing. (f) The Fourier transform for the oscillating part of �d and �s. The pairing modulations also manifest a dominant
peak at Q = (1/4)2π/a0 at this doping.

(a) (d)

(b)

(c)
(f)

(e)

FIG. 4. Spatial profile for the optimal self-consistent solution at δ = 0.125. Here the periodicity of unidirectional oscillation is 8a0. (a) The
bond density χi j , where i, j are nearest-neighboring sites. (b) The d-wave and extended s-wave components of the χ are extracted in (b). Both
show some jerky oscillations with the periodicity of eight lattice spacings. The inset of (c) shows the spatial profile for the local density, which
oscillates. (c) The Fourier transform of the quantities mentioned above the dominant wave vector for χd and χρ are at Q = (1/8)2π/a0, whereas
the same for χs is at Q = (1/4)2π/a0. However, several peaks at the multiples of the ordering wave vector imply that density modulation is not
regular over a period at this doping. (d) The similar bond plots for local SC pairing �i j . (e) The corresponding d-wave and the extended s-wave
components of SC pairing. (f) The Fourier transform for the oscillating part of �d and �s. The pairing modulations also exhibit a dominant
peak at Q = (1/8)2π/a0 at these dopings.
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(a)

(b)

(c)

FIG. 5. The spatial dependence for the optimal self-consistent
solution at δ = 0.14. Although the optimal self-consistent solution
has no modulation in this parameter regime, it breaks the C4-
rotational symmetry of the square lattice leading to a charge nematic
state. (a) The bond density χi j , which is different for the x bonds and
y bonds. Similarly, the local SC pairing is not purely d wave as shown
in (b) as expected in the uniform tJ model. Interestingly, there is no
spatial variation of these quantities or the local density as presented
in (c).

Similarly, the SC pairing amplitude is presented in
Fig. 4(d), and the extended s-wave and d-wave components
are presented in Fig. 4(e). The pairing modulation is smoother
contrasted with the BDW or CDW oscillations. In Fig. 4(f)
the Fourier transform of �d and �s confirms the dominant
ordering at q = (1/8)2π/a0. The secondary peaks are also
much weaker than the principal ones.

3. Nematic state

Finally, for δ = 0.14, the optimal self-consistent solution
supports a Q = 0 nematic state. Figure 5(a) shows the bond
density amplitude. The color difference indicates the breaking
of the rotational symmetry of the square lattice. However,
there are no modulations of the bond density either along the
x or y directions. Moreover, the lack of spatially modulated
order is confirmed by the SC pairing in Fig. 5(b) and the local
density in Fig. 5(c).

IV. DISCUSSIONS

We study the t − t ′ − J model with additional nearest-
neighbor repulsion and find modulating BDW states co-
existing with charge and pairing modulated states in the

underdoped regime. The modulated states have lower en-
ergy than the uniform d-wave superconducting state in the
doping range δ = 0.06 − 0.14. The optimal wave vector for
all the modulated quantities is commensurate with the lat-
tice with higher harmonics of oscillations. Over the doping
range δ = 0.06 − 0.16, there remains a significant nematicity
such that the C4-rotational symmetry is broken. Moreover, for
δ = 0.14 − 0.16, the system supports a purely nematic state
without any translation symmetry breaking. Finally, beyond
this doping, only a uniform d-wave superconducting order
is stabilized. In the following subsections, we discuss how
this work compares with other results in the literature in the
context of the cuprates.

A. Role of strong correlation in stabilizing modulated orders

We attempted to study the modulated states by relaxing
the strong correlation constraint by setting the Gutzwiller
factors to unity. In the past, studies have been performed for
d-wave SC in the tJ model, and this procedure is known as
inhomogeneous mean-field theory (IMT) [50,51]. In sharp
contrast to the strongly correlated results presented in this pa-
per, we failed to stabilize any modulated solutions across the
parameter regime studied. Of course, an absence of modulated
self-consistent solutions might be due to a lack of an exhaus-
tive search or a bad initial guess of the order parameters.
However, any initial trail state of form similar to Eq. (16) with
modulated charge, pairing, and bond densities flowed strictly
toward a uniform d-wave SC solution. Furthermore, the ease
of achieving modulated self-consistent solutions for multiple
wave vectors over a wide doping range in the highly correlated
regime indicates a lack of modulated states in the absence
of a strong correlation. The propensity to form modulated
orders near the half filling where the interactions are stronger
also hints at the same possibility. Recent explorations of the
pair density of states in the tJ model also observed a lack of
modulated orders when the Gutzwiller factors are set to unity
[58].

B. Evolution of optimal wave vector with doping

In the t − t ′ − J model with additional nearest-neighbor
repulsion, the optimal modulation wave vector reduces with
increasing doping. For doping around δ = 0.06 − 0.09 the op-
timal wave vector is around Q = (1/4)2π/a0. As the doping
is increased further, the periodicity increases to 8a0 around
δ = 0.125 as shown in the inset of Fig. 1(f). Generally, in the
cuprates, the wave vectors also diminish with increased hole
doping [12,13] except in La-based material [14–16]. However,
in La2CuO4 the additional spin-density wave plays a vital
role in dictating the modulation wave vector [59,60]. It would
be interesting to discern the role of magnetic orders on the
modulation wave vector in the future.

Additionally, in cuprates the wave vector varies from
Q = 0.33 − 0.2 (2π/a0) leading to a periodicity of 3 − 5
lattice spacing up to δ = 0.2. However, this contrasts with
theoretical calculations that often predict longer modulation
wavelength in the tJ model and the associated Hubbard model
at large U [35]. The evolution of the ground-state energy in
Fig. 1 hints toward an explanation of this apparent anomaly.
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Notice that below δ < 0.1, the difference between the EGS at
the optimal wave vector with other wave vector is significant.
Note that we only studied the commensurate wavelengths with
the lattice spacings. However, the energy difference between
the states with different wavelengths becomes minute, δE ∼
0.001t as doping increases beyond δ > 0.1. Since these states
are near degenerate, various fluctuations absent in our study
can modify the delicate balance of energy. Consequently, the
state with a smaller wavelength can become the ground state.

Additionally, there can be another important consequence
for near-degeneracy of modulated states with different wave
vectors as shown in Figs. 1(c)–1(f). This can possibly support
a state with an adimixture of different wave vectors. Further-
more, the irregular evolution of the χd and χs over a period
in Fig. 4(b) also hints toward the incipient incommensura-
tion. Such patterns generate strong higher harmonics in the
Fourier transform of the BDW order in Fig. 4(c). A splitting
or broadening of the primary peak of the χ̃ (q) indicates an
incommensuration of any density wave pattern. Here strong
higher harmonics with the presence of nearby quasidegen-
erate states can drive a multipeak incommensuration around
δ ≈ 0.125.

C. Nearest-neighbor repulsion term in the tJ model

The t − J model and its “parent” – Hubbard model with
large on-site repulsion U are generally considered the minimal
model for cuprate superconductors. However, the interactions
are not entirely screened in realistic materials to be completely
local. A residual nearest-neighbor repulsion is estimated to be
one order of magnitude smaller than the on-site repulsion in
cuprates [61–63]. Such interactions are often neglected due to
their reduced magnitude. However, they become crucial when
the ground state without them shows near-degeneracy among
several broken symmetry states, as in the underdoped regime
of the t − J model.

The modulated orders in the t − t ′ − J model have been
studied extensively in the past [38,44,58,64]. These studies
found different modulating bond, charge, and PDW states
energetically very close yet higher than the uniform supercon-
ducting ground state. Therefore additional ingredients absent
in the t − t ′ − J must be responsible for stabilizing the spa-
tially modulating density wave orders as the ground state in
cuprates. Reference [44] suggests studying a tJ model with
additional on-site repulsion stabilizing nematic phases with
SC. There are other studies suggesting that adding a nearest-
neighbor repulsion term to prefer the density wave orders as
the ground state [40,42]. In particular, the nearest-neighbor
repulsion is expected to be detrimental to the d-wave SC
and can thus stabilize the nearby density waves orders as the
ground state. Similar to these studies, we also observed that
a critical value of nearest-neighbor repulsion is essential to
stabilize the density wave orders [40,42].

Furthermore, increasing the nearest-neighbor repulsion
term keeping the other terms constant allows for the mod-
ulated orders to survive up to higher dopings. We have
confirmed that for W = 0.75t , the spatially modulated orders
remain the ground state up to δ = 0.16 whereas the ground
state becomes purely nematic in δ = 0.16 − 0.19. The energy
difference between nematic and the uniform state remains

significantly more prominent for larger W leading to unam-
biguous identification of the nematic regime.

D. Pairing modulation

We observe modulations of the Cooper pair density both
in the extended s-wave and in the d-wave channel over the
doping range δ = 0.06 − 0.14. A modulation of Cooper pair-
ing can be a direct consequence of the coexistence with the
BDW order. On one hand, the modulation of the bond density
leads to an oscillation of the local density of states which
dictates the propensity for developing local SC pair and drives
the modulation of the pairing. On the other hand, a more
exotic PDW is a state of spatially oscillating Cooper pairs
such that the average pairing vanishes or is very small. In
our analysis, the �s shows a vanishingly small mean with
a robust modulation amplitude over the whole doping range
as presented in Fig. 3(e) and Fig. 4(e). On the other hand,
the d-wave SC pairing modulates around a finite nonzero
value. Consequently, this indicates a PDW with s′ form factor
coexisting with other modulated states over a wide doping
range.

Recent experiments on BSSCO [24,25] claim to observe
PDW modulations at QP = (1/8)2π/a0 of ∼6 meV coex-
isting with a uniform SC at ∼36 meV. The observed PDW
state has either extended s-wave or s-wave form factors. These
studies also observe CDW oscillations at QC = Qp and at
QC = 2QP. The model calculations around δ = 0.125 reveal a
similar behavior—an extended s-wave PDW undulation with
a nonzero mean d-wave superconductor. Furthermore, the
optimal self-consistent solution displays a PDW order q = Q
with the CDW orders at both q = Q and q = 2Q, very similar
to what we observe in Fig. 4(c). It is encouraging that our
simplified model for modulated orders in strongly correlated
systems can capture some features of the experimental signa-
tures.

E. Vestigial nematic order

Our model calculation reveals that a translationally invari-
ant nematic state stabilizes in the doping range δ = 0.14 −
0.16. Note that the nematic state is a higher-order component
of the superconducting and bond order parameter. If the bond
order χ is written as a vector then the nematic order is given by
Nχ = 1/2(〈χ†σzχ〉, where σz is the z component of the Pauli
matrix. In the nematic state the combined order parameter is
finite although the 〈χQ

x 〉 = 0 and 〈χQ
y 〉 = 0. Consequently, the

nematic state breaks only a subset of all possible symmetries
that can be broken in this regime, leading to a vestigial ne-
matic state.

Recently sublattice resolved electronic structure experi-
ments in cuprates [8] reveal a Q = 0 nematic state over the
doping range δ = 0.06 − 0.17. The vestigial nematic state co-
exists with finite-Q d-wave charge order and a uniform d wave
in the intermediate dopings. A pure nematic state without any
translational symmetry breaking is also found in the doping
range δ = 0.15 − 0.17. We note that our optimal solution
also sustains a pure C4 rotational symmetry breaking order
around doping. Beyond this doping, only uniform d-wave SC
stabilizes in our model calculation.
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FIG. 6. Schematic symmetry broken phases with doping from
our model calculations at zero temperature. The doping regime pre-
sented below the broken line is beyond the scope of this study. Below
this doping we expect magnetic and other symmetries to be broken.
From the low to intermediate dopings, both the translation symmetry,
T and the C4 rotational symmetry are broken, leading to the obser-
vation of the bond, charge, and PDW orders. Beyond a doping level,
only C4 rotational symmetry is broken, leading to a nematic state.
Note that fewer symmetries are broken as the doping is increased.
Beyond critical doping, only translational and rotational invariant
d-wave SC remains robust. Uniform superconductors only break the
particle number conservation symmetry. The uniform d-wave SC
remains robust over the whole doping regime studied, only decaying
at much higher doping.

F. Phase diagram

In Fig. 6, we provide a schematic map of different
symmetry-breaking orders based on our model calculations
at zero temperature. The doping regime presented below
the broken line is beyond the scope of this study. Uniform
superconductors only break the particle number conserva-
tion symmetry. At zero temperature, our model calculation
suggests that uniform d-wave SC remains robust over the
whole doping regime studied, only decaying at much higher
doping. In contrast, the finite-Q density wave states become
relevant only in the lightly doped regime. The density wave
order breaks both the translation, T and the C4 rotational

symmetry of the square lattice. Note that Fig. 2(b) shows that
the mean d-wave pairing amplitude reduces drastically in the
regime where other symmetries are broken. Consequently, the
suppression of SC pairing is expected from our calculations
at T = 0. A similar drop in superconducting correlations is
observed in cuprates around the hole doping of 12%, where
the amplitude of the modulated orders is strong [65,66].

Between the finite-Q orders and the uniform SC, there
is a regime where the rotational symmetry remains broken
although the translational invariance is restored. Such a state
is a vestigial nematic state which breaks a smaller subset of
symmetries than the primary state of density wave orders. The
series of cascading broken symmetries as the doping reduces
hints at the possible entanglement between multiple orders
near the highly correlated regime.

The CDWs [67] and the associated vestigial nematicity
[6–8] are considered an essential ingredient of the pseudogap
state. Our study suggests that the ground state of cuprates
in the underdoped regime indeed breaks certain symme-
tries generating various density wave states, which manifests
in experiments as the pseudogap state in cuprates at finite
temperature. Therefore to capture the pseudogap state, it is
essential to analyze the effects of different fluctuations on all
different broken symmetry states. Furthermore, thermal and
quantum fluctuations can lead to spatial reorganization into
domains of finite-Q and Q = 0 orders [68–70]. Additionally,
the Mott insulator and magnetically ordered states can signif-
icantly alter the states at low doping. A rigorous treatment of
the magnetic orders with these broken symmetry states, along
with the effects of thermal fluctuations, remains to be explored
in the future.
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