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The Josephson equations predict remarkable effects concerning the phase state of a superconducting junction
with an oscillating current induced by a static voltage. Whether the paradigm can be twisted by yielding an
oscillating voltage without making use of harmonic drives is a fundamentally relevant problem yet not fully
settled. Here, we demonstrate that a dynamical regime with an oscillating phase evolution is a general hallmark
of driven Josephson systems exhibiting sign competition in the Josephson couplings. We show that in frustrated
Josephson systems an oscillating phase dynamics gets switched on by driving the changeover among different
ground states, which can be induced by varying the parameters that set the phase state. Remarkably, the character
of the transitions in the Josephson phase space allows different types of dynamics, with few or several harmonics.
This result sets out a characteristic mark of any superconducting system with frustrated Josephson couplings and
can be exploited to disentangle the complexity of the underlying phases.
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I. INTRODUCTION

A Josephson junction (JJ) allows one to couple the phase of
coherent paired states in two weakly linked superconductors
with experimentally accessible quantities, such as the flow-
ing supercurrent and the voltage drop, i.e., the well-known
Josephson relations [1,2]. The voltage drop across the device
sets out the rate at which the Josephson phase evolves in
time; in fact, a direct conversion of a static dc voltage into
high-frequency electromagnetic oscillation of the Josephson
current can be attained.

Starting from the consolidated Josephson effects, a fun-
damental and different perspective points to whether the
paradigm can be reversed by having, instead of a current,
an oscillating voltage, or both current and voltage oscillat-
ing in time, without making use of harmonic drives. Such a
scenario poses also key questions, not yet fully settled, about
the mechanisms or the Josephson setups that can be employed
to achieve this type of dynamical regime. Here, we tackle
this challenge and demonstrate that a dynamical regime with
an oscillating phase evolution is indeed a general hallmark
of Josephson driven systems that exhibit sign frustration in
the Josephson couplings without externally applied current or
voltage bias. In particular, we demonstrate the establishment
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of time-dependent coherent or incoherent phase dynamics in
response to a linear-in-time adiabatic perturbation.

Superconducting systems with unconventional phase re-
lations are quite ubiquitous in condensed matter. A special
role in this context is played by the so-called π -phase shifts
and π pairing, i.e., the antiphase relation between order pa-
rameters or, equivalently, the sign reversal of the effective
Josephson coupling between Cooper pairs. This is at the
heart of unconventional superconductivity, e.g., in cuprates
[3,4], iron-based [5,6] and oxide interface superconductors
[7,8], superconductor-ferromagnet-superconductor junctions
[9], phase qubits [10], electrically or orbitally driven super-
conducting phases [11–14], and multiorbital noncentrosym-
metric superconductors [7,11,15,16]. However, when there is
no simple phase ordering pattern that satisfies all Josephson
couplings, the unsatisfied one is said to be frustrated. Along
this line, disentangling the complexity arising from supercon-
ducting phase frustration in the presence of 0 and π pairings
is a demanding and nontrivial achievement [5,6,8,17]. The
frustrated Josephson coupled systems composed of 0 and π

JJs have already been investigated [18,19], even considering
frustrated multiband superconductors and the case of arrays
of JJs [19,20], where the presence of both degenerate and
nondegenerate ground states was also discussed [20].

To this aim, we show that in frustrated Josephson systems
an oscillating phase dynamics gets switched on by driving the
changeover among ground states in the phase space and can be
guided by varying the parameters that set the phase state, e.g.,
the Josephson couplings. A remarkable fingerprint of these
oscillating-phase regimes is that they can be toggled from
coherent to incoherent in the time dependence by selecting the
type of transition in the Josephson phase space. These marks
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FIG. 1. (a) Schematic representation of Josephson phases assum-
ing four phase degrees of freedom and sign-competing Josephson
couplings, i.e., Js, Ji j , and J . (b) Sketch of the JJ made of a three-band
superconductor with π pairing and an s-wave single-band supercon-
ductor. The interband, J and Ji j , and interjunction, Js, couplings are
highlighted. (c) Equivalent circuit of the multiband JJ. The fluxes �z

are used to establish the π pairings.

can be exploited to single out the presence and the character
of superconducting phase frustration in intrinsic or engineered
superconducting systems [21,22] as well as the nature of the
resulting ground state. The investigated dynamical behavior
is also predicted to occur for transitions involving degenerate
ground states, as in the so-called ϕ JJ [23,24]. Finally, we note
that the phenomenon described in this paper bears a certain
similarity to the synchronization phenomenon that occurs in
arrays of interacting JJs. [25,26].

The paper is organized as follows. In Sec. II, we describe
the Josephson system and the ground states. In Sec. III, we
introduce the phase dynamics triggered in the case of a few
specific transitions and the frequency response. In Sec. IV,
the conclusions are drawn.

II. MODEL

A variety of Josephson-based systems characterized by
phase competition have been reported in the literature [18,27–
33] mostly focusing on two competing Josephson channels.
Here, we consider an effective model with three coupled
Josephson channels having 0 or π character [Fig. 1(a)].
This scenario can be directly implemented by considering a
junction made of an s-wave superconductor interfaced to a
multiband superconductor [32,33] [Fig. 1(b)] or, equivalently,
a superconducting circuit [Fig. 1(c)] designed by connect-
ing, via normal channels, a central superconducting island
to three superconducting electrodes, which are reciprocally
coupled and whose phases can be modulated by magnetic
fluxes. We consider a multicomponent junction based on three
superconducting Josephson channels Jzs with z = i, j, k and
φzs = θz − θs indicating the relative phases across the junc-
tion. θz and θs stand for the phases of the three-band and
the s-wave superconductor, respectively [e.g., Fig. 1(b)]. The

FIG. 2. (a) GSs ψ(n) = (φi, φ j, φk )(n), with n = 1, . . . , 14 and a
total phase value φtot . (b) Phase diagram of the lowest-energy GS
as a function of J and Ji j . The arrows highlight the phase transitions
discussed in Fig. 3 and labeled with “(I),” “(II),” and “(III).” The total
phase values φtot = {0, π, or φ0} in the GSs are also indicated.

relative phases between θi, θ j , and θk are set out by the internal
degrees of freedom of the superconductor, which can be due
to nonconventional pairing glues, electronic reconstruction, or
externally driven sources of symmetry breaking. The inter-
band Josephson couplings, i.e., established between different
order parameters of the three-band superconductor, can be
positive or negative, the latter in the case of a π pairing.
The occurrence of these π couplings can lead to a frustrated
configuration. Frustration arises here from the impossibility of
having all interactions be favorable.

In the absence of magnetic field and bias current, the total
Josephson energy is

E = −
∑

z=i, j,k

Jzs cos φzs − Ji j cos (φis − φ js)

− Jik cos (φis − φks) − Jjk cos (φ js − φks). (1)

The vector ψ(n) = (φi, φ j, φk )(n) defines the ground-state
(GS) configurations and can be obtained by minimizing the to-
tal energy with respect to θs, θi, and θ j . In particular, assuming
equal interjunction contributions, i.e., Jis = Jjs = Jks = Js >

0, and that two of the three interband coupling coincide, i.e.,
Jik = Jjk = J , one can get analytical expressions for the ψ(n),
with n = 1, . . . , 14. These solutions can be in turn grouped
into three classes, as reported in the table in Fig. 2(a). First,
the system admits solutions that are uniquely given by combi-
nations of 0 and ±π [see the blue columns in Fig. 2(a) with
n from 1 to 8] that we refer to as trivial since they correspond
to standard time-reversal-symmetric Josephson phase values.
Then, two classes of nontrivial solutions emerge with the
Josephson phases being not pinned to 0 or π , thus yielding a
configuration that breaks time-reversal symmetry. One class
of configurations is given by φi = −φ j , while φk = 0 or π

[see the dark-red and light-red columns in Fig. 2(a) with n
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FIG. 3. Time-dependent phase evolution for three different physical cases: (a) a 0 → 0 transition driven by setting J = 2 and ranging
Ji j (t ) ∈ [−2.5, −1.5], (b) a 0 → π transition driven by setting J = −2 and ranging Ji j (t ) ∈ [−2.5, −1.75], and (c) a 0 → φ0 transition driven
by setting J = −0.8 and ranging Ji j (t ) ∈ [−1.2, −0.3]. The blue dashed, dark-red dashed, light-red dot-dashed, and green dashed lines indicate
the analytical solutions listed in Fig. 2(a) around which the phases evolve.

from 9 to 12], given by

(φi, φ j, φk )(n) = (Fσ,χ ,−Fσ,χ , 0 or π ), (2)

where σ = ±1, χ = ±1, and Fσ,χ = arctan[ fσ , f̃σ,χ ] [34],
with

fσ = −Js + σJ

Ji j
, f̃σ,χ = χ

Ji j

√
(2Ji j )2 − (J + σJs)2.

Another class has all three phases with values different from
0 or π [see green columns in Fig. 2(a) with n = 13 and 14],
which can be written as

(φi, φ j, φk )(n) = (Gσ,χ ,−Gσ,−χ ,−G−σ,χ ), (3)

where σ = +1, χ = ±1, and Gσ,χ = arctan[gσ , g̃χ ], with

gσ = −σ
3J2 − J2

s

JJs
, g̃χ = χ

JJs

√
(2JJs)2 − (

3J2 − J2
s

)2
.

The knowledge of the explicit expression of the solutions
allows us to have a high degree of control of the possible tran-
sitions in the phase diagram as well as of the corresponding
dynamics.

III. RESULTS

The phase space (PS) in Fig. 2(b) is constructed by eval-
uating the lowest-energy solution among all ψ(n) versus the
Josephson couplings (see Appendix A). The achieved PS
can be divided into different areas, bounded by sharp white-
marked edges, in which the total phase φtot = φi + φ j + φk

takes specific values: 0 in the dark-red and blue regions, π in
the light-red and blue regions, and φ0 in the range (0 − π ) in
the green region.

For the full dynamical description of the system, we em-
ploy the equations of motion for the gauge-invariant phase
differences, φis(t ), φ js(t ), and φks(t ) [35]. The corresponding

solutions can be derived from a Lagrangian approach along
the line of the two-channel model presented in Ref. [27] (see
Appendix B for more details). In particular, we consider a
short junction and the adiabatic change of coupling constants
J and Ji j , for driving a transition among different GSs across
a phase boundary of the PS in Fig. 2(b).

In Fig. 3 we collect the phase dynamics for three represen-
tative cases. In particular, as the initial condition we choose
the nontrivial GS ψ(9), with φtot = 0, which allows us to
drive a transition into all other configurations. This is done by
setting three different (J, Ji j ) trajectories. Then, by keeping
constant the J value, we adiabatically increase Ji j (t ), with a
linear-in-time dependence, up to reach a specific value, Jst

i j ,
which is thereafter maintained fixed. The selected trajectories
are highlighted by three arrows, labeled with “(I),” “(II),” and
“(III),” in Fig. 2(b). They schematically depict how the Ji j (t )
are driven in order to induce the phase transitions shown in
Figs. 3(a), 3(b), and 3(c), respectively [see Appendix B for a
clear illustration of the Ji j (t ) drives].

In Fig. 3, dark-red dashed lines mark the nontrivial GS
ψ(9), while the blue dashed lines identify the 0 or π trivial so-
lutions (i.e., with φtot = 0 or π ), the light-red dot-dashed lines
identify the nontrivial π solutions, and the green dashed lines
identify the φ0 solutions. We observe that, in all cases shown
in Fig. 3, initially the phases steadily follow the Josephson
phase value of the ground state, i.e., the curves are super-
imposed on the dark-red dashed lines representing the ψ(9)

GS. Then, approaching values of the Josephson couplings
that correspond to the domain boundary in the PS, the phase
evolution exhibits a dramatic change in the time dependence,
with a behavior that is related to the character of the transition.

Figure 3(a), obtained for J = 2 and the range Ji j (t ) ∈
[−2.5,−1.5], demonstrates that even for a transition that con-
serves the global φtot value and occurs smoothly, one observes
the appearance of a clear oscillating behavior in the φis(t ) and
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FIG. 4. Fourier transforms (FTs) as a function of the coupling values in the three cases highlighted in Fig. 2(b): (a) FT of φi(t ) as a function
of Jst

i j ∈ [−1.5, 1.5], with J = 2 and Ji j (t ) ∈ [−2.5, Jst
i j ] and (d) some selected profiles; (b) FT of φtot (t ) as a function of Jst

i j ∈ [−2, 0], with J =
−2 and Ji j (t ) ∈ [−2.5, Jst

i j ] and (e) some selected profiles; (c) FT of φtot (t ) as a function of J ∈ [−1, −0.33], with Ji j (t ) ∈ [J − 0.5, J + 0.5]
and (f) some selected profiles. The color scale in (b) refers also to (c).

φ js(t ) phases. These oscillations are triggered as the phases,
initially matching the GS ψ(9), reach the trivial 0 solution,
specifically, the ψ(1) state having φi = φ j = φk = 0. Interest-
ingly, we observe that the oscillatory behaviors of φis(t ) and
φ js(t ) are equal but opposite in sign, so that the total phase
φtot remains zero during the whole evolution.

In Fig. 3(b) we illustrate the phase dynamics associated
with a 0 → π transition in the PS, which can be obtained by
setting J = −2 and varying Ji j (t ) in the range [−2.5,−1.75].
In this case, at a given time we clearly observe that the
phase evolution exhibits a jump. After this steep variation, the
phases oscillate around a nontrivial solution with a π total
phase, indicated by the light-red dot-dashed lines. Interest-
ingly, also the total phase φtot undergoes a π jump (all the
2π replicas are equivalent), after which it starts to oscillate
around a π -average value.

Finally, Fig. 3(c) demonstrates that the time dynamics
changes again by inducing a 0 → φ0 transition in the PS,
which can be achieved by choosing, for instance, J = −0.8
and the range Ji j (t ) ∈ [−1.2,−0.3]. Also in this case, the
phases have a discontinuous time evolution. However, the
state of the system thereafter oscillates between two distinct
GSs, ψ(n) with n = 13 and 14. Interestingly, as the 0 → φ0

transition occurs, the total phase φtot follows a similar evolu-
tion, starting to oscillate around the two predicted values, φ±

0
(see Appendix B for the full expressions of these quantities),
which are indicated by gray dashed lines in the bottom panel
of Fig. 3(c).

Our understanding of the character of the dynamical
response can be deepened by investigating the dynamical
response in the frequency domain. In Fig. 4, we show the
Fourier transforms (FTs) of the phase signal after a transition
occurs as a function of the Josephson couplings focusing on
the three situations highlighted in Fig. 2(b), that is, for the
0 → 0 [Fig. 4(a)], 0 → π [Fig. 4(b)], and 0 → φ0 [Fig. 4(c)]
transitions. In Figs. 4(d), 4(e), and 4(f), we include a few se-
lected FT profiles traced in correspondence with the coupling
values marked with the horizontal dashed lines in the plots
shown in Figs. 4(a), 4(b), and 4(c), respectively. In particular,
in Fig. 4(a) we show the FT of φi(t ) as a function of the steady
value Jst

i j taken by the time-dependent drive, i.e., we vary
Jst

i j ∈ [−1.5, 1.5], keeping fixed J = 2 and linearly ranging
Ji j (t ) ∈ [−2.5, Jst

i j ]. For this trajectory, while the total phase
steadily takes a zero amplitude, φi(t ) exhibits an oscillating
behavior in response to the Ji j drive: In fact, Fig. 4(a) unveils a
highly coherent response (for clarity, in Appendix B we show
a few selected FT profiles).

The spectral profile is instead completely different as a
transition 0 → π is considered. In Fig. 4(b) we report the
Fourier spectra of φtot (t ) by ranging Jst

i j ∈ [−2, 0], while tak-
ing J = −2 and Ji j (t ) ∈ [−2.5, Jst

i j ]. According to the value
assumed by Jst

i j , two characteristic behaviors emerge. In fact,
we find that for Jst

i j ∈ [−2,−1.5] the frequency response of
the system is significantly incoherent with several harmonics
contributing to the dynamics. Conversely, for Jst

i j � −1.5 the
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FIG. 5. Dependence of φ±
0 on the J coupling value.

frequency spectrum is coherent, being composed by two sharp
peaks. These behaviors reflect the steady states realized in the
two cases. In fact, for Jst

i j ∈ [−2,−1.5] the phases after the
transition fluctuate around a nontrivial π -like configuration.
On the other hand, when Jst

i j � −1.5 after the transition the
phases first temporarily linger on the nontrivial π state, to
then settle in a trivial π state, whose “position” in the PS no
longer depends on the coupling parameters. In the latter case,
the total phase, φtot, shows the coherent behavior as reported
in Fig. 4(b).

Finally, we demonstrate in Fig. 4(c) how the frequency
response gets modified in the case of a 0 → φ0 transition.
Here, we choose to explore the FT of φtot (t ) by changing J ∈
[−1,−0.33] and assuming a drive of the form Ji j (t ) ∈ [J −
0.5, J + 0.5]. We observe that, also for this trajectory, the sys-
tem can evolve in two different ways. For J ∈ (−1,−0.6) the
FT appears highly incoherent, with broad spectra composed
by multipeaked structures; conversely, for J ∈ (−0.6,−1/3)
the FT is characterized by a few sharp peaks, whose positions
shift towards zero as J → −1/3, according to the fact that
φ±

0 → 0 in this case (see Fig. 5).
We point out that these φ0 configurations essentially realize

a ϕ-type Josephson state [23]. In this context, our study brings
two general observations. Firstly, ϕ-degenerate ground states
can be obtained without exploiting second-harmonic Joseph-
son couplings as in setups using ferromagnetic layers [24,36]
or ad hoc geometries [37,38]. Second, any ϕ junction that is
driven from nondegenerate to degenerate phase configurations
is expected to exhibit incoherent phase oscillations in time.
We stress that these configurations differ from the so-called
anomalous ϕ0 junctions [39–41], in which the ground state
undergoes a finite phase shift, φ0, and an anomalous super-
current can flow even at a zero phase bias. In conclusion,
apart from the relevance with respect to foundation aspects
of the Josephson effects, frustrated Josephson systems can
be used to achieve an arbitrary phase shift, rather than just
0 or π , towards on-chip phase batteries for biasing classical
and quantum circuits, or for the design of superconducting
memory and qubits.

IV. CONCLUSIONS

We have demonstrated that in Josephson systems marked
by multiple components with nontrivial phase frustration, a

changeover of the ground state via nonharmonic drives gen-
erally yields an oscillating phase dynamics. The occurrence
of this dynamical behavior is independent of the character
of the transition, being observable for either continuous or
abrupt variations of Josephson phases. The mechanism be-
hind this finding can be ascribed to the intrinsic presence of
discontinuous phase gradients in time across the transitions
that cannot be avoided and naturally leads to the activation
of dynamics. A key ingredient for generating the phase dy-
namics is the phase frustration of Josephson couplings and
the consequent nontrivial phase configurations with values
different from 0 or π . Hence, in a scenario with multiple
Josephson components, we find that the rearrangement of
Josephson phases across a transition among different ground
states will always be accompanied by the activation of phase
oscillations. This dynamics in turn has a time, and thus a
frequency, behavior which is peculiar to the type of transition
that the system undergoes. Thus we argue that the activation
of phase dynamics through nonharmonic external drives ap-
plied to a superconducting system is clear-cut evidence of the
presence of Josephson phase frustration or competing 0 and
π channels. Moreover, the spectral character of the dynamics
can be exploited to unveil the character of the transitions that
are induced along the phase-space trajectories.

Finally, although in a completely different context, we
argue that the results obtained can be also applied to other
physical cases where frustration plays an important role [42].
For instance, the expression of Josephson energy in Eq. (1) is
analogous to that of interacting spins with planar anisotropy
and Heisenberg exchange that can be ferromagnetic (0-type
Josephson coupling) or antiferromagnetic (π -type Josephson
coupling). The scheme in Fig. 1(a) can indeed represent a
system of interacting spins in a tetrahedral geometry. By
means of this analogy, we can thus predict that in a frustrated
spin system with zero or nonvanishing net magnetization, the
drive of a transition by varying the magnetic exchanges will
always turn into a spin dynamics with generation of coherent
or incoherent spin excitations associated with a change in the
orientation of the spin moments.

Finally, we observe that the coupling between a multiband
and an s-wave superconductor can be in principle realized
by sandwiching superconductors that are intrinsically multi-
band, as for the case of superconducting leads made by an
iron-based and a conventional superconductor [43–49]. On the
other hand, this system can be ad hoc “engineered,” as we
proposed in Fig. 1(c) by exploiting a magnetic flux control, or
alternatively through a setup designed by including additional
ferromagnetic layers, which can provide π pairing if inserted
between the insulator and the superconductor [10,22,50]. In
this case, the temperature and thickness of the insulating and
ferromagnetic layers serve as a control knob for tuning the
Josephson couplings [21,51]. Finally, we mention the intrigu-
ing possibility of testing our theoretical predictions through
multiterminal JJs, which represent a research front that is
currently yielding very interesting results [52–56].

In order to experimentally probe the time evolution of
phase differences, the best strategy, especially when passing
through a transition, is to look at the voltages, i.e., the phase
velocity. A fast time-dependent response can be studied using
Shapiro-like measurements through a microwave setup for
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Josephson emission [57]. Then, one could look at the emis-
sion spectrum and see whether it exhibits any characteristic
peculiar to a transition [58].
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APPENDIX A: THE GROUND STATES

In the absence of magnetic field and current bias, the to-
tal energy of the system includes three interband and three
interjunction contributions; see Eq. (1). By minimizing this
equation with respect to θs, θi, and θ j one can obtain the vector
ψ(n) = (φi, φ j, φk )(n) representing the ground-state configu-
rations of the system. In particular, by assuming Jis = Jjs =
Jks = Js > 0 and Jik = Jjk = J , the ground state results from
the solution of the following system of equations:

Js sin φi + Js sin φ j + Js sin φk = 0,

Js sin φi + Ji j sin (φi − φ j ) + J sin (φi − φk ) = 0,

Js sin φ j − Ji j sin (φi − φ j ) + J sin (φ j − φk ) = 0. (A1)

The Hessian matrix H, whose elements are obtained as
Hi j = ∂2E

∂φi∂φ j
, reads

H =

⎡⎢⎢⎣
Js cos φi + Ji j cos (φi − φ j ) + J cos (φi − φk ) −Ji j cos (φi − φ j ) −J cos (φi − φk )

−Ji j cos (φi − φ j ) Js cos φ j + Ji j cos (φi − φ j ) + J cos (φ j − φk ) −J cos (φ j − φk )
−J cos (φi − φk ) −J cos (φ j − φk ) Js cos φk + J cos (φi − φ j )

+J cos (φi − φk )

⎤⎥⎥⎦.

The matrix H is symmetric with off-diagonal terms. For a
given state to be stable, all the eigenvalues λH of the Hessian
matrix H must be positive; that is, the sum of the signs has to
be equal to �sgn(λH) = +3.

Having assumed Jis = Jjs = Jks = Js > 0 and Jik = Jjk =
J , the ground states of the system can be expressed in a quite
compact form. In particular, we obtain 14 different solutions
of the system of equations (A1) that can be further grouped
into three classes [see Fig. 2(a)], labeled as “trivial,” if given
only by combinations of 0 and/or π , and “nontrivial” [see
Eqs. (2) and (3)]. These solutions give quite different values
of the total phase φtot = φi + φ j + φk .

In Fig. 6, we display the (J, Ji j )-parameter space (here,
the simplified notation in which J ≡ J/Js and Ji j ≡ Ji j/Js is
used) of the solutions ψ(n) = (φi, φ j, φk )(n), the total energy
E , and the sum of the signs of the Hessian matrix eigenvalues,
�sgn(λH), in the nontrivial cases with φtot = 0 [Figs. 6(a)–
6(d)], π [Figs. 6(e)–6(h)], and φ0 [Figs. 6(i)–6(m)]. The
white areas of the graphs represent the combinations of
the (J, Ji j ) parameters for which the system does not ad-
mit as a possible solution the ψ(n) ground state under
consideration.

As previously noted, the total phase can even assume val-
ues different from 0 and π , in which case φtot = φ±

0 ∈ [0,±π ]

depends only on the J coupling according to

φ±
0 = − arctan

[
3J − 1

J
,±

√
J2 − (3J2 − 1)2

J

]

± arctan

[
−3J − 1

J
,

√
J2 − (3J2 − 1)2

J

]

∓ arctan

[
−3J − 1

J
,−

√
J2 − (3J2 − 1)2

J

]
. (A2)

We observe that the φ±
0 values tend to ±π for J → 1, while

both converge to 0 for J → −1/3; see Fig. 5.

APPENDIX B: THE TIME-DEPENDENT MODEL

The equation of motion for the gauge-invariant phase dif-
ferences can be derived from a Lagrangian approach taking a
cue from Ref. [27]. The total Lagrangian of the system can be
written as the sum of three contributions

L = L1 + L3 + LB, (B1)

where the Lagrangians of the single- and three-band super-
conductors are

L1 = d

8πμ2
s

[
AB

0 (r) + �0

2πc
∂tθs(r, t )

]2

− d

8πλ2
s

[
AB

x (r) + �0

2πc
∇θs(r, t )

]2

, (B2)

L3 =
∑

z=i, j,k

{
d

8πμ2
z

[
AT

0 (r) + �0

2πc
∂tθz(r, t )

]2

− d

8πλ2
z

[
AT

x (r) + �0

2πc
∇θz(r, t )

]2}

+ �0

2πc

[
Ji j cos (θi − θ j ) + Jjk cos (θ j − θk ) + Jik cos (θi − θk )

]
. (B3)
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FIG. 6. Solutions ψ(n) = (φi, φ j, φk )(n) of the system of equations (A1), total energy E , and sum of the signs of the Hessian matrix
eigenvalues, �sgn(λH), as a function of J and Ji j , in the nontrivial cases with φtot = 0 [(a)–(d)], π [(e)–(h)], and φ0 [(i)–(m)]. The white
areas of the graphs represent (J, Ji j ) combinations at which the system does not admit as a possible solution the fundamental state under
consideration.

Here, μs and μi are the Thomas-Fermi lengths associated
with charge screening, λs and λi are the penetration depths for
each band, AB

0 (AB
x ) and AT

0 (AT
x ) are electric (vector) poten-

tials at the bottom and top electrodes, respectively, d is the
thickness of superconducting electrodes, and �0 = hc/2e is
the magnetic flux quantum. The Lagrangian for the insulating
barrier is

LB = bεd

8π
E2

b,z − b

8π
B2

b,z − VJ , (B4)

where b is the thickness of the barrier and εb is the dielectric
constant. The electric and magnetic fields in the barrier are

Eb,z = −1

c
∂t Ab,z − ∂zA0 = −1

c
∂t Ab,z − AT

0 − AB
0

b
(B5)

and

Bb,y = ∂zAx − ∂xAb,z = AT
x − AB

x

b
− ∂xAb,z, (B6)

while the Josephson coupling VJ is

VJ = − �0

2πc

∑
z=i, j,k

Jzs cos (φzs) (B7)

with the gauge-invariant phase difference

φzs = θz − θs − 2πb

�0
Ab,z. (B8)

At a temperature well below the critical value, according to
the microscopic theory [59,60] the Josephson couplings can
be written as

Jsi = 2h̄

eRbi

|�i�s|
|�i| + |�s|K

( |�i| − |�s|
|�i| + |�s|

)
, (B9)

where �i and �s are the superconducting gap of different
condensates, K (x) is the complete elliptic integral of the first
kind, and Rbi = h̄3/(4πe2Ni(0)Ns(0)ti,s) is the resistance for
the ith channel, with Ni(0) and Ns(0) being the density of
states of quasiparticles in the ith band and the s-wave super-
conductor, respectively, and ti,s being the tunneling probability
for electrons between two superconductors.

For the sake of convenience, we normalized the space
to λc1 =

√
c�0/(8π2bJs1) and the time to the inverse of

ωc1 = c/(
√

εdλc1 ), while the magnetic and electric field
are written in units of �0/(2πλc1 b) and �0ωp1/(2πcb),
respectively.
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The three equations of motion that we need can be obtained
by applying the Euler-Lagrangian equation with respect to
Ab,z, so as to obtain the Ampère’s law

∂xBb,y =
∑

z=i, j,k

Jzs sin (φzs) + ∂t Eb,y. (B10)

In the spatially independent case and assum-
ing Jis = Jjs = Jks = Js > 0 and Jik = Jjk = J , we

obtain ∑
z=i, j,k

[
Js sin (φzs) + ∂2

t φzs

Ceαz

]
= 0, (B11)

where Ce = (1 + εd αs)
∑

z
1
αz

+ εd and αz(s) = μ2
z(s)/(db).

The remaining two necessary equations for the gauge-
invariant phase differences can be obtained by properly
combining the equations deriving by variation of L with re-
spect to θs, θz, with z = i, j, k. In this way, we obtain

∂2
t φis

εdαi
+

∑
z=i, j,k

[
Js sin (φzs) + ki

∂2
t φzs

αz

]
+ ξi

ξs
[Js sin (φis) + Ji j sin (φis − φ js) + J sin (φis − φks)] = 0, (B12)

∂2
t φ js

εdα j
+

∑
z=i, j,k

[
Js sin (φzs) + k j

∂2
t φzs

αz

]
+ ξ j

ξs
[Js sin (φ js) − Ji j sin (φis − φ js) + J sin (φ js − φks)] = 0, (B13)

where kz = 1
Ce

(1 − 1
εd αz

− αs
αz

) and ξz(s) = λ2
z(s)/(db).

The phase dynamics of the junction is described by
Eqs. (B11)–(B13).

To compute the time evolution of the phases, we take
for convenience of calculation αs = αi = α j = αk = 0.1 and
ξs = ξi = ξ j = ξk = ξ .

Equation (B11) reveals that the capacitive terms in the dif-
ferential equations are proportional to the coefficient 1/(αCe),
which tends to increase when α is reduced. Moreover, we
observe that the parameter α is inversely proportional to
the barrier thickness. Thus we expect the establishment of
a predominant overdamped regime as we reduce α, i.e., as
we increase the barrier thickness. We therefore trust that the
phenomenology described in this paper will remain qualita-
tively unchanged but that the specificities of the dynamics may
depend on the choice of α, whose value, in particular, may
result in an under- or overdamped dynamic regime.

APPENDIX C: OTHER TRANSITIONS

In this Appendix we shed light on the other transitions that
can take place in this system.

First, we underline that the choice of the GS ψ(9) as the
initial state, i.e., as in the cases discussed in the main text, was
dictated mainly by the fact that starting from this, by changing
only the value of one coupling and always using the same kind
of drive it was possible to explore all possible interesting tran-
sitions. Specifically, this means the feasibility to switch from a
nontrivial to a trivial state leaving the value of φtot unchanged
[e.g., Figs. 3(a) and 4(a)] and from a nontrivial to another
nontrivial state, with a φtot change of π [e.g., Figs. 3(b) and
4(b)] or φtot ∈ (0,±π ) [e.g., Figs. 3(c) and 4(c)].

In Figs. 7(a) and 7(b) we demonstrate two other possibili-
ties. In particular, referring to the parameter space in Fig. 2(b),
we present the π → π transition “from light red to blue” [see
Fig. 7(a) obtained starting from the nontrivial GSs ψ(11)] and
the φ0 → 0 transitions “from green to blue” [see Fig. 7(b)
obtained starting from the nontrivial GSs ψ(13)]. In both cases,
the FT of φi(t ) is highly coherent, as the selected FT profiles
shown in Figs. 7(a) and 7(b) well demonstrate.

Figure 7 also helps us to better understand the origin of the
coherent FT response evinced in Figs. 4(b) and 4(c).

Figure 4(b) shows the FT of φtot (t ) as a function of Jst
i j

and demonstrates that for Jst
i j � −1.5 the frequency response

is composed by two well-defined peaks, which intimately
depend on the underlying phase dynamics. To understand
their nature, we refer to Fig. 7(c), in which, for the sake of
clearness, we present both the FT of φi(t ) versus Jst

i j and the
phase evolutions at two different values of Jst

i j .
The upper part of the density plot in the FT of φi(t ) in

Fig. 7(c) shows two kinds of peaks, one dependent on Jst
i j ,

which is marked by a black dashed line, and one independent
of Jst

i j . The former is of the same nature as the FT peak
shown in Fig. 4(a) [please note that this peak is not present
in Fig. 4(b) since this density plot shows the FT of φtot (t )].
In contrast, the latter comes from the fact that the system
remembers being “passed” through nontrivial GSs ψ(11,12),
even if it definitively ends up in the trivial state ψ(1). Thus
these peaks are “frozen” to the last characteristic frequency of
the nontrivial GS through which the system passed, and this
is why they do not change any more by increasing Jst

i j further.
This phase dynamics is demonstrated in the middle panel of
Fig. 7(c), obtained by ending the drives at Jst

i j = −1.75; in this
case, the phase eventually resides in the two nontrivial GSs
ψ(11,12) after the linear drive is switched off. In contrast, in the
right panel of Fig. 7(c) the drive stops at Jst

i j = −1, so that the
system resides in the trivial GS ψ(1) after staying for a while
in the nontrivial GSs ψ(11) [see the yellow-shaded region in
the left panel of Fig. 7(c)]. In conclusion, for the π → π

transition the two FT peaks are not merely commensurate,
but also reflect the possibility that the phases evolve through
different GSs.

Finally, we note that in Fig. 3(c) the system “populates”
both the GSs ψ(13,14). This occurs since they are indeed
“very close,” i.e., the energy barrier between them is small.
This observation helps us to understand the incoherent or
coherent response observed in the 0 → φ0 transitions as J
is changed; see Fig. 4(c). In fact, the incoherent frequency
response shown for J → −1 in Fig. 4(c) is given by the fact
that the two ψ(13,14) potentials’ minima are quite close to
the trivial ψ(7) = (0, 0,−π ) GS, so that the phases evolve
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FIG. 7. (a) FT of φi(t ) as a function of Jst
i j ∈ [−1.5, 0], with J = −2 and Ji j (t ) ∈ [−2, Jst

i j ] and some selected profiles. (b) FT of φi(t ) as a
function of Jst ∈ [−2, −1], with Ji j = −1 and J (t ) ∈ [−0.675, Jst ] and some selected profiles. (c) FT of φi(t ) as a function of Jst

i j ∈ [−2, 0],
with J = −2 and Ji j (t ) ∈ [−2.5, Jst

i j ] and phase evolutions at two values of Jst
i j = −1.75 and −1, corresponding to incoherent and coherent

frequency responses, respectively. (d) FT of φi(t ) as a function of J ∈ [−1,−0.33], with Ji j (t ) ∈ [J − 0.5, J + 0.5] and phase evolutions at
two values of J = −0.8 and −0.5, corresponding to incoherent and coherent frequency responses, respectively. Each density plot contains also
an inset showing the (J, Ji j )-phase diagram of the lowest-energy GS and some arrows highlighting the phase transitions on which we focus.
The blue dashed, dark-red dashed, light-red dot-dashed, and green dashed lines in the phase dynamics plots indicate the analytical solutions
listed in Fig. 2(a) around which the phases evolve.

through all these three states; see the middle panel of Fig. 7(d)
for J = −0.8. Instead, when J is increased, i.e., J → −1/3,
the system “chooses” just one of the two nontrivial GSs
ψ(13,14); see the right panel of Fig. 7(d) for J = −0.5. This

gives the observed coherent frequency response shown in
Figs. 4(c) and 4(f), with the characteristic frequency in this
case becoming the plasma mode in this specific potential
well.
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