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NMR evidence against a spin-nematic nature of the presaturation phase in the
frustrated magnet SrZnVO(PO4)2
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Using 31P nuclear magnetic resonance (NMR) we investigate the recently discovered presaturation phase in
the highly frustrated two-dimensional spin system SrZnVO(PO4)2 [F. Landolt et al., Phys. Rev. B 104, 224435
(2021)]. Our data provide two pieces of evidence against the presumed spin-nematic character of this phase:
(i) NMR spectra reveal that it hosts a dipolar spin order and (ii) the T −1

1 relaxation rate data recorded above
the saturation field can be fitted by the sum of a single-magnon term, exponential in the gap, and a critical
second-order term, exponential in the triple gap, leaving no space for a nematic spin dynamics, characterized by
a double-gap exponential. We explain the unexpectedly broad validity of the simple fit and the related critical
spin dynamics.
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I. INTRODUCTION

The possibility of the existence of a purely spin-nematic
phase was recognized in 1969 [1] and discussed theoreti-
cally in 1984 [2], but its experimental realizations have been
debated only over the last decade, without providing a def-
inite positive conclusion. The point is that such a phase is
elusive: it is characterized by a quadrupolar spin order that
defies experimental detection [3,4], unlike the conventional
dipolar spin order that can be observed directly through neu-
tron diffraction or NMR spectroscopy. In particular for spin- 1

2
systems, a quadrupolar order parameter can be built only
from two-spin correlators, reflecting the condensation of the
two-magnon bound states. Such spin-nematic states have been
predicted [5–7] and are sought for in strongly frustrated ferro-
antiferromagnetic (ferro-AF) one- and two-dimensional (1D
and 2D) spin systems, at high magnetic field close to their sat-
urated phase. Examples include the quasi-1D LiCuVO4 [8,9]
and the quasi-2D volborthite compound [10–12], in which
the putative spin-nematic phase is a presaturation (PS) phase
appearing in a narrow field range at very high magnetic
fields, where difficulties of experimental access obstruct pre-
cise characterization needed for better identification. That is,
as a direct observation of its order parameter is not pos-
sible, the identification of a spin-nematic phase necessarily
implies accumulation of complementary information from
several experimental techniques, which is in practice feasible
only at moderately high magnetic fields. In this respect, one
convenient spin-nematic candidate is BaCdVO(PO4)2 [13];
however, this quasi-2D compound seems to have a very small
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magnitude of the order parameter [14–16]. The search for
other compounds whose putative spin-nematic phase appears
at easily accessible field values is therefore crucial.

Here we address the layered vanadyl phosphate
SrZnVO(PO4)2 [17,18], a quasi-2D spin system, in which a
PS phase was identified very recently above 13.75 T [19].
This compound (see Fig. 1 in Ref. [19] for the crystal
structure and the spin Hamiltonian) realizes the frustrated
ferro-AF S = 1

2 Heisenberg model in an approximate J1-J2

square-lattice geometry, prone to exhibit a spin-nematic
PS phase when the frustration is strong enough. As compared
to its brother compound Pb2VO(PO4)2, in which the
absence of spin-nematic character of a very similar PS
phase is explained by the weakness of frustration [20],
SrZnVO(PO4)2 presents somewhat stronger frustration and
much greater quantum fluctuations [19], making it a priori a
valid spin-nematic candidate.

In order to reveal the real nature of the PS phase
in SrZnVO(PO4)2, we carried out a 31P NMR investiga-
tion that is very similar to the one reported previously in
Pb2VO(PO4)2 [20], to arrive to the similar conclusion: NMR
spectra indicate that the PS phase presents some dipolar spin
order, which should be absent in a spin-nematic phase. Fur-
thermore, taking advantage of the lower, more accessible field
values, we performed a detailed study of the low-energy (crit-
ical) spin dynamics at and above the saturation field Hsat =
14.06 T, measured through the nuclear spin-lattice relaxation
rate T −1

1 . These data are fully explained by two contributions,
a critical one and a single-magnon one, which match per-
fectly to general theoretical predictions for a single-magnon
condensation, and thus present no signature of hypothetical
spin-nematic nature. Finally, we discuss the theoretical justi-
fication of the simple phenomenological fit to the T −1

1 data
above Hsat, as well as the experimentally observed critical
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spin dynamics in comparison to the theoretical prediction [21],
which are the most important general (sample-independent)
contributions of this work.

II. EXPERIMENT

NMR experiments were performed on a high-quality sin-
gle crystal (∼ 4 × 2 × 0.5 mm3) placed inside the mixing
chamber of a 3He - 4He dilution refrigerator, with the c axis
parallel to the applied magnetic field (H). The 31P NMR was
measured between 50 mK and 4 K in the magnetic field
between 13 and 15 T, using a custom-built spectrometer.
The spectra were taken by standard spin-echo sequence and
the frequency sweep method. The T −1

1 rate was measured
by the saturation-recovery method and the time (t) recovery
of the nuclear magnetization M(t ) after a saturation pulse
was fitted by the stretched exponential function, M(t )/M0 =
1 − Ae−(t/T1 )β , where M0 is the equilibrium nuclear magneti-
zation, A ∼= 1 accounts for the imperfection of the excitation
(saturation) pulse, and β is the stretch exponent to account for
possible inhomogeneous distribution of T −1

1 values [22,23].
We find β values close to 1 (0.92–0.96), indicating a homo-
geneous system, with the only exception being the near prox-
imity of the phase transition, where the values drop down to
β = 0.7, indicating some smearing (distribution) of the phase
boundary.

III. RESULTS AND DISCUSSION

A. NMR spectra

The observed 31P NMR spectra are very similar to
those observed previously in Pb2VO(PO4)2, presenting two
well-separated contributions from the two phosphorous sites
present in the system (see Figs. 1 and 5 in Ref. [20]). In this
article, we focus on the P1 site that is localized in the planes
of V4+ spins and is thus a more sensitive probe to the in-plane
spin order than the P2 site localized between the planes. Fig-
ure 1 shows the field dependence of the spectrum measured at
0.34 K and plotted as a function of the frequency shift with re-
spect to the Larmor frequency 31γ H (31γ = 17.236 MHz/T),
reflecting the local spin polarization value. Each spectrum is
normalized to its integral, offset vertically according to the
field value, and color-coded to indicate the three observed
phases: (i) The saturated phase above 14.05 T is homoge-
neously polarized and is therefore characterized by a single
line whose frequency shift tends to a constant saturation value
with increasing field. (ii) In the columnar AF (CAF) phase
below 13.6 T we observe a pair of clearly separated lines
whose separation measures the staggered moment—the order
parameter of this phase, which is also observed by neutron
diffraction as the (0,1,0) magnetic Bragg reflection [19]. Its
field dependence was probed in preliminary neutron diffrac-
tion experiments on the IN12 3-axis spectrometer at ILL. As
can be seen from inset in Fig. 1, it survives up to 13.6 T, then
disappears in an apparently discontinuous phase transition.
(iii) The intermediate PS phase is characterized by a more
complex NMR line shape, apparently consisting of two over-
lapping lines, which definitely indicates some dipolar spin
order/modulation that is clearly different from the one of the
CAF phase.
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FIG. 1. 31P NMR spectra of the P1 site in SrZnVO(PO4)2 mea-
sured at T = 340 mK for different magnetic fields applied along the
c axis. Different colors indicate the different phases. Inset: Field de-
pendence of the integrated neutron scattering intensity of the (0,1,0)
magnetic Bragg reflection.

Contrary to what is observed, a spin-nematic phase is ex-
pected to be homogeneously polarized, thus presenting the
NMR line shape identical to the one in the saturated phase [9].
At the high-field end of the PS phase, the spectrum shrinks
continuously into a single line of the saturated phase, indi-
cating a second-order phase transition. At the low-field end
of the PS phase, the spectra display a mixed phase in which
the two contributions of the PS and the CAF phase overlap,
whereas their respective order parameters (line separation)
remain essentially unchanged. This is a clear fingerprint of
the first-order phase transition, in agreement with neutron data
shown in the inset to Fig. 1.

B. Spin dynamics

The spin dynamics, as represented by the T −1
1 data shown

in Fig. 2, also closely follow the results observed previously
in Pb2VO(PO4)2 [20]. The second-order phase transition be-
tween the ordered PS phase at low temperature and the
paramagnetic phase at higher temperature is clearly repre-
sented by a peak of T −1

1 that reflects the corresponding
three-dimensional (3D) critical spin fluctuations. Following
the position of this T −1

1 (T ) peak as a function of magnetic
field or, equivalently, the T −1

1 (H ) peak as a function of tem-
perature defines the NMR data for the phase boundary Tc(H )
shown in the inset in Fig. 2, which is in excellent agrement
with previously published torque and specific-heat data [19].
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FIG. 2. Temperature dependence of the NMR T −1
1 rate measured

at the two field values that characterize the CAF (13.32 T) and the PS
(13.78 T) phase. Squares denote data taken at the low-frequency (LF)
peak, while other symbols refer to the high-frequency (or unique)
peak of the spectra shown in Fig. 1. Straight lines are power-law
fits to low-T data; other lines are guides to the eye. Inset: PS phase
diagram determined by NMR from the peak of T −1

1 (circles) together
with the torque (small dots) and specific-heat (crosses) data from
Ref. [19].

The low-temperature end of the NMR Tc(H ) data provides the
estimate of the saturation field value Hsat = 14.06 T.

In the ordered phases, the relaxation rate follows a
power-law behavior T −1

1 ∝ T α , whose exponent α provides
information on their spin dynamics [24]. Close to the transi-
tion between the two phases, we find α(13.23 T) = 3.8 in the
CAF phase and α(13.78 T) = 3.0 in the PS phase. Similar
values were found previously in Pb2VO(PO4)2 [20] in both
phases, α(18.7 T) = 3.4 in the CAF phase and α(20.0 T)
= 3.8 in the PS phase, pointing to similar low-energy spin
excitations/fluctuations in both phases (close to their inter-
face), despite the difference in their magnetic order.

The T −1
1 data in the saturated phase are expected to directly

reflect the nature of the relevant spin excitations, correspond-
ing to the nature of the respective PS phase below Hsat. This
means that the single-magnon excitations should be dominant
above Hsat of a usual one-magnon condensed phase, while
the two-magnon (bound-magnon-pair) excitations should be
dominant above Hsat of a spin-nematic phase. The hall-
mark of the single-magnon excitations is their gap opening
linearly with the field, observed through the T −1

1 ∝ e−�/T

dependence, where �(H ) = gμB(H − Hsat )/kB is the gap in
kelvins, g the Landé g factor, and μB/kB = 0.67171 K/T.
The bound magnon pairs are then expected to be recognized

FIG. 3. Field dependence of the T −1
1 rate measured at different

temperatures. Thick solid lines show fits using Eq. (1), while thin
lines are guides to the eye. Black dotted lines are the two contribu-
tions to the fit at 232 mK. Inset shows the temperature dependence
of the two fit parameters, namely the exponential prefactors a1 and
a3, the apparent parabolic fits to these data, and the two relevant
power-law reference lines.

by its double-gap, ∝ e−2�/T contribution, as is reported in
volborthite [11,12]. However, from the energy diagram rele-
vant to the spin-nematic phase, as shown in Fig. 1 of Ref. [6],
one can see that the two-magnon gap is smaller than the
one-magnon gap only in a narrow field range above the (two-
magnon) Hsat value, whose width is certainly smaller than the
width of the nematic phase. Therefore, a possible two-magnon
contribution may be observable in the saturated phase only
very close to Hsat, and might be furthermore screened by the
corresponding critical fluctuations.

Figure 3 presents the field dependence of the T −1
1 data

of SrZnVO(PO4)2 covering the field and temperature range
relevant for possible detection of two-magnon excitations in
the saturated phase. Remarkably, the observed T −1

1 (H ) depen-
dence above Hsat can be fitted by a very simple fit:

T −1
1 (H, T ) = a1(T )e−�(H )/T + a3(T )e−3�(H )/T , (1)

where the previously specified gap � is completely defined
by the known values of Hsat, H , T , and g = 1.926 [25], and
the only two fit parameters are the two amplitudes, a1 and a3,
of the single- and triple-gap contributions at the chosen tem-
perature. That is, the two exponentials in Eq. (1) respectively
define the known, fixed final and initial slope of the fit; see
the black dotted lines in Fig. 3. These two slopes are directly
comparable to the corresponding slopes of the experimental
data, and the two fitted amplitudes a1 and a3 cannot change
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the slopes of the fit but only adjust their “vertical” position to
make them overlap the experimental data.

The two terms of Eq. (1) are respectively associated with
the single-magnon excitations and the critical excitations as
described by the second-order term in Ref. [21], because both
of these excitations are exactly described by the employed
exponential terms in their low-T limit, T � �. In particu-
lar, the latter excitations are theoretically described by the
self-energy graphs involving three magnon propagators
(Fig. 2 in Ref. [21]). In order that this three-magnon process
can generate a zero-energy spectral density relevant for T −1

1
relaxation, the energy conservation imposes that the ingoing
magnon must have the energy at least three times bigger
than the gap. The corresponding Bose distribution function,
when reduced to the Boltzmann factor in the large-gap limit
(T � �), then provides the e−3�/T dependence.

Unexpectedly, we find that the fit to the experimental data
extends down to � → 0 (H → Hsat), which is in obvious
contradiction with the required low-T limit. In fact, one can
numerically show that the simple exponential dependence
does approximately hold down to � = 0, with enough pre-
cision to justify the employed fit. This is explained in detail
in Appendices A and B, where we first use the numerical so-
lution to establish the relation between the chemical potential
μ and the gap �, and then consider the known exact analytical
expressions for both contributions to T −1

1 as a function of μ.
Having thus established the validity of the employed fit

[Eq. (1)] within the description of critical and gapped spin
dynamics above the single-magnon condensation, we can
positively assure the absence of any detectable two-magnon
(spin-nematic) contribution. To provide a formal proof for this
statement, we add to the fit the third, double-magnon term
a2e−2�(H )/T , and find that the newly fitted curve is nearly
identical to the original one: the amplitudes a1 and a3 remain
stable within their error bars, while the a2 amplitude is con-
sistent with the zero value. Specifically, the fitted a2 values at
117 and 232 mK are more than one order of magnitude smaller
than a1 and, more importantly, they are as much as 11 and 1.7
times smaller than their own respective error bars σ (a2). Even
at the highest temperature of 340 mK, where the quality of
the fit given by Eq. (1) starts to slightly degrade (see Fig. 6 in
Appendix B), this latter σ (a2)/a2 ratio is consequently re-
duced to 0.84, still clearly compatible with the zero a2

amplitude.
The temperature dependence of the fitted exponential pref-

actors a1 and a3 is shown in the inset of Fig. 3, together
with an apparent (on the log-log scale) parabolic fit. Thus
obtained a1(T ) and a3(T ) completely define the T −1

1 (H, T )
dependence of Eq. (1), which is tested against the measured T
dependence of T −1

1 data in Fig. 4. The agreement of the sim-
ulation and the independent T −1

1 data set is remarkable, and
furthermore it defines the validity of the proposed fit [Eq. (1)].
Its high-T limit is reached for two reasons: temperature be-
comes too high as compared to � or/and it reaches value
where the (low-T ) 3D description is no longer applicable,
and the system crosses over to the 2D behavior. At � = 0,
where the formal condition T � � is most strongly violated,
the simulation remains very good, but is obviously not perfect.
Finally, relatively far away above Hsat, an additional relaxation
source is visible at very low temperature.
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FIG. 4. Temperature dependence of T −1
1 rate measured at several

field values at and above the critical field Hsat = 14.06 T. Dashed
lines are plots using Eq. (1) and the a1(T ) and a3(T ) dependence
shown in the inset to Fig. 3. Straight lines are power-law fits and thin
lines that connect the data points are guides to the eye. Inset shows
T −1

1 data recorded at the phase boundary, T −1
1 (Tc ); see also inset

to Fig. 2.

As regards the critical T −1
1 measured exactly at Hsat, we

observe that below 0.2 K its ∝ T 3.1 dependence is very far
from the theoretically expected ∝ T 3/4 dependence [21].
The reason is that here the Hsat value is very close to the
phase-transition boundary, and the related T −1

1 peak is
broad enough (see Fig. 3) so that the peak T −1

1 value is
practically the same as the T −1

1 (Hsat ). In contrast to this,
the T −1

1 is theoretically expected to diverge to infinity at the
transition, so that the finite experimental value necessarily
results from some kind of the peak broadening, which
is not described theoretically. Further insight is provided
by the inset of Fig. 4, presenting the peak T −1

1 data
taken exactly at the transition, T −1

1 (Tc): we see there that
the T 3.1

c behavior extends to much higher temperature
values, up to � 0.5 K. Regarding these data, we observe
that the boson density at the phase transition nc, in the
Hartree-Fock-Popov model, is expected to be linear in
Hsat − H , which was clearly confirmed in the
NiCl2-4SC(NH2)2 compound [26,27]. This means that
nc is proportional to T 3/2

c , and the observed peak T −1
1 data

in SrZnVO(PO4)2 in fact satisfy the T −1
1 (Tc) ∝ n2

c relation,
a sort of bosonic equivalent of the Korringa law for metallic
fermion systems, providing a reasonable explanation for the
observed temperature dependence.

Finally, above 0.3 K, as Hsat becomes separated enough
from the phase boundary line, the T −1

1 (Hsat, T ) data crossover
to the T 1.1 dependence, much closer to the theoretically ex-
pected T 3/4; see Appendix C. At higher temperatures, above
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1 K, we certainly leave the validity of the 3D approximation,
and observe further enhancement of the T −1

1 data.
The aforementioned discussion of the low-T dependence

T −1
1 (Hsat, T ) provides also a natural explanation for the re-

lated a3(T ) dependence, shown in the inset of Fig. 3, being
close to T 3. As regards the a1(T ) dependence, it is found to be
close to the T D−1 = T 2 dependence that is generally expected
for a D-dimensional magnon band in the approximation of
parabolic dispersion relation (near the edge of the band) [28].
In fact, a more realistic magnon dispersion results in the
effective exponent that is somewhat temperature dependent:
as shown in the Supplemental Material to Ref. [28], in the 3D
regime at low temperature and on decreasing T , this exponent
is expected to increase across the value of 2, just as is observed
in SrZnVO(PO4)2. Altogether, we find that Eq. (1) provides
a complete description of the low-energy spin dynamics in
SrZnVO(PO4)2 at and above Hsat, fully consistent with the-
oretical expectations.

IV. SUMMARY AND CONCLUSION

In summary, motivated by the possibility that the presatura-
tion phase in SrZnVO(PO4)2 could be a spin-nematic one, and
the fact that the corresponding magnetic field values are easily
accessible (Hsat = 14.06 T), we have performed a detailed
NMR study of the related static (NMR spectra) and dynamic
(T −1

1 relaxation) properties. Both of these provide evidence
against the spin-nematic nature of the phase. More impor-
tantly, we have provided an extensive set of T −1

1 data at and
above Hsat, and fully explained its low-T behavior as a sum of
the critical and the one-magnon excitation contribution. The
corresponding analysis can be taken as an archetypal descrip-
tion for the one-magnon condensation, which is a necessary
reference when searching for NMR signatures of two-magnon
condensation. Moreover, we have explained why the exper-
imentally observed low-T limit of the critical T −1

1 (Hsat, T )
data must strongly deviate from the formal theoretical predic-
tion ∝ T 3/4.
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APPENDIX A: CHEMICAL POTENTIAL μ

The key quantity in describing a BEC-type spin system
close to its critical field Hsat is the chemical potential μ, which
defines the number of excited bosons (magnons) nb, and its
relation to the gap �(H ) = gμB(H − Hsat )/kB (in kelvins),
defined by the applied field. For low density of bosons, their
correction to the bare gap is proportional to their number,
μ = � + 2Unb, thus defining the interaction parameter U .
Considering that the boson dispersion is parabolic close to
the band edge (at E0), which leads to a square-root density
of states g(E ) = g0

√
E − E0, the integral that defines nb can

be expressed in terms of the polylogarithm Li3/2( ) function,
leading to the equation [21]

μ/T = �/T +
√

T/T0 Li3/2(e−μ/T ), (A1)
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FIG. 5. The gap (magnetic field) dependence of μ for an experi-
mentally relevant set of temperatures, obtained by numerical solution
of Eq. (A1). Vertical dashed line indicates the critical field (zero
gap) position. The temperature dependence of μc = μ(� = 0) values
taken along this line is shown in the inset, together with its “relevant”
(0.05 � T/T0 � 0.5) power-law approximation μc ∝ T 1.3, as well as
the true zero temperature limit μc ∝ T 3/2.

in which the two parameters U and g0 that define the
system are contracted into a single one, the characteristic
temperature T0.

Equation (A1) is solved numerically to obtain the ex-
plicit temperature and field μ(T,�) dependence, as shown in
Fig. 5. The inset of this figure focuses on the critical behavior,
μc(T ) = μ(T,�=0), where one can see that the convergence
toward its mathematical low-T limit μc(T ) ∝ T 3/2 is ex-
tremely slow and occurs only below ∼T0/105, which is totaly
unattainable by experiments. Focusing on the experimentally
relevant temperature, say 0.05 � T/T0 � 0.5, we find a sig-
nificantly different effective exponent, μc(T ) ∝ T 1.3.

Finally, should the complete boson/magnon dispersion re-
lations be known, we can numerically calculate the exact
density of state that goes beyond its square-root approxi-
mation, replace Eq. (A1) by the corresponding numerical
equivalent, and thus improve the validity of the computed
μ(T,�) dependence at moderately high temperatures (where
nb is still low enough).

APPENDIX B: RELAXATION RATE T −1
1

Dominant contribution to the nuclear spin-lattice relaxation
rate T −1

1 in the vicinity of the critical field comes from the
transverse (S+S−) spin fluctuations. It has been calculated by
Orignac and collaborators [21] considering the second-order
self-energy graphs. In the relevant zero-frequency limit,

1/T 2nd
1 ∝ T 3/2F(μ/T ), where

F(x) = 1√
x

∫ ∞

0

e−(x+y)

[1 − e−(x+y)]2
ln

[
1 + 1 − e−(x+y)

e
x2
4y +x − 1

]
dy.

(B1)
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For the large gap � 	 T limit, μ ∼= � and F(x 	 1) ∝ e−3x,
leading to the

1/T 2nd
1 (� 	 T ) ∝ T 3/2e−3�/T (B2)

dependence, where the triple-gap in the exponent corresponds
to a three-magnon scattering process.

The first-order process creates the longitudinal (SzSz) spin
fluctuations, which contribute to T −1

1 through the off-diagonal
components of the hyperfine coupling tensor Azx and Azy,
naturally generated (at least) by the direct dipolar coupling.
For a parabolic magnon dispersion, it is easy to calculate the
explicit analytical expression,

1/T 1st
1 ∝ −T 2 ln(1 − e−μ/T ). (B3)

The large-gap limit is here obviously

1/T 1st
1 (� 	 T ) ∝ T 2e−�/T , (B4)

corresponding to the Boltzmann limit of the original
Bose-Einstein distribution.

While a priori both large-gap limits, Eqs. (B2) and (B4),
are not expected to be valid at small �/T , unexpectedly,
the μ/T dependence in Eqs. (B1) and (B3) coupled to the
�/T dependence of μ/T given by Eq. (A1) extends the ap-
proximate validity of the large-gap limits down to zero gap.
This is illustrated in Fig. 6 for three relevant temperature
values, where the relative size of the two contributions to T −1

1
(a factor of 5) is chosen so that the figure be qualitatively
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FIG. 7. Predicted temperature dependence of the critical (i.e.,
� = 0) relaxation rate (solid lines), its low-T limit T −1

1 ∝ T 3/4

(dotted line), and the effective power law relevant to the exper-
imentally accessible temperatures (dashed line). Inset shows the
temperature dependence of the corresponding effective power-law
exponents, ∂ ln[T −1

1 (T, �=0)]/∂ ln(T ) (solid lines), in the range
extended to ultralow temperatures to show the convergence toward
the 3/4 limit (dotted line).

representative of the measured data presented in Fig. 3. We see
that the theoretical predictions for both contributions are very
close to straight lines in the log-lin plots, meaning that they
are nearly purely exponential in the gap down to zero. Numer-
ically, we find that this approximation is remarkably precise at
T � T0/4, and holds quite well at other experimentally rele-
vant temperatures. Considering that typical error bars on the
measured T −1

1 data are 2%–5%, the simple single+triple-gap
fit given by Eq. (1) is thus perfectly suitable to describe the
magnetic field dependence of experimental relaxation data.

APPENDIX C: CRITICAL T −1
1

In Fig. 7 we address the theoretically predicted critical
behavior, that is, the temperature dependence at zero gap
(critical field), in comparison to its T −1

1 ∝ T 3/4 limit [21]. As
expected from very slow convergence of the critical μc(T )
at low temperature, the mathematical low-T limit of criti-
cal T −1

1 is likewise reached at extremely low temperatures,
and is experimentally totaly inaccessible. Nevertheless, by
numerical coincidence, the same 3/4 power exponent is also
effectively valid for the second-order contribution 1/T 2nd

1 at
an experimentally relevant temperature of T � T0/4. While
this cannot be called a universal critical behavior (in the
sense of zero-temperature limit), in practice, it does charac-
terize the system. However, it should be noted that in this
same temperature range the first-order contribution 1/T 1st

1
is also expected to come into play and thereby increase the
effective exponent of the total relaxation rate. Of course, this
effect will depend on the relative size of the first- and the
second-order contributions; for example, in Fig. 7 we have
considered the same relative size as in Fig. 6, leading to
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experimentally observable exponents of 0.79–0.90. Finally,
we remark that T0 is also the temperature where the increase

of thermally excited boson density is driving the system out
of validity of the low-density approximation.
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S. Krämer, M. Horvatić, C. Berthier, K. Matsui, T. Goto, S.
Kimura, T. Sasaki, J. Yamaura, H. Yoshida, Y. Okamoto, and
Z. Hiroi, Spin dynamics in the high-field phases of volborthite,
Phys. Rev. B 96, 180413(R) (2017).

[12] Y. Kohama, H. Ishikawa, A. Matsuo, K. Kindo, N. Shannon, and
Z. Hiroi, Possible observation of quantum spin-nematic phase
in a frustrated magnet, Proc. Natl. Acad. Sci. USA 116, 10686
(2019).

[13] R. Nath, A. A. Tsirlin, H. Rosner, and C. Geibel, Magnetic
properties of BaCdVO(PO4)2: A strongly frustrated spin- 1

2
square lattice close to the quantum critical regime, Phys. Rev. B
78, 064422 (2008).

[14] K. Yu. Povarov, V. K. Bhartiya, Z. Yan, and A. Zheludev,
Thermodynamics of a frustrated quantum magnet on a square
lattice, Phys. Rev. B 99, 024413 (2019).

[15] V. K. Bhartiya, K. Yu. Povarov, D. Blosser, S. Bettler, Z. Yan,
S. Gvasaliya, S. Raymond, E. Ressouche, K. Beauvois, J. Xu,
F. Yokaichiya, and A. Zheludev, Presaturation phase with no
dipolar order in a quantum ferro-antiferromagnet, Phys. Rev.
Research 1, 033078 (2019).

[16] V. K. Bhartiya, S. Hayashida, K. Yu. Povarov, Z. Yan, Y. Qiu,
S. Raymond, and A. Zheludev, Inelastic neutron scattering de-
termination of the spin Hamiltonian for BaCdVO(PO4)2, Phys.
Rev. B 103, 144402 (2021).

[17] A. A. Tsirlin, B. Schmidt, Y. Skourski, R. Nath, C. Geibel, and
H. Rosner, Exploring the spin- 1

2 frustrated square lattice model
with high-field magnetization studies, Phys. Rev. B 80, 132407
(2009).

[18] L. Bossoni, P. Carretta, R. Nath, M. Moscardini, M. Baenitz,
and C. Geibel, NMR and μSR study of spin correlations in
SrZnVO(PO4)2: An S = 1

2 frustrated magnet on a square lattice,
Phys. Rev. B 83, 014412 (2011).

[19] F. Landolt, Z. Yan, S. Gvasaliya, K. Beauvois, E. Ressouche,
J. Xu, and A. Zheludev, Phase diagram and spin waves in the
frustrated ferro-antiferromagnet SrZnVO(PO4)2, Phys. Rev. B
104, 224435 (2021).

[20] F. Landolt, S. Bettler, Z. Yan, S. Gvasaliya, A. Zheludev, S.
Mishra, I. Sheikin, S. Krämer, M. Horvatić, A. Gazizulina,
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