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Impact of chemical disorder on magnetic exchange interactions in L10-FeNi
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We investigate the effect of chemical disorder on the magnetic exchange couplings and the Curie temperature
(Tc) in L10-ordered FeNi using first-principles-based calculations. We use supercells to model chemical disorder,
to account for the specific symmetry-broken local chemical environments around the individual atoms. We find
a very strong variation of the most dominant first-nearest neighbor Fe-Fe interaction for different inequivalent
Fe-Fe pairs, ranging from around 5 to 37 meV, compared to a coupling strength of 27 meV in the ordered state. To
estimate the influence of such strong variations of the magnetic coupling constants on the Curie temperature of
the disordered or partially ordered state, we study a simple Heisenberg model with random Gaussian-distributed
nearest-neighbor couplings on an fcc lattice. Our Monte Carlo simulations for this model indicate that strongly
varying exchange couplings, such as those obtained for FeNi, can lead to a reduction of Tc of around 10 %
relative to the one obtained using only the average coupling.

DOI: 10.1103/PhysRevB.105.134428

I. INTRODUCTION

The chemically ordered ferromagnet L10-FeNi (tetrataen-
ite) has recently generated considerable interest as a rare-
earth-free, low-cost permanent magnet, due to its high
magnetocrystalline anisotropy energy and large saturation
magnetization [1–11]. Since its discovery by Néel and
coworkers in the early 1960s [12,13], several attempts have
been made to synthesize L10-FeNi with a high degree of
chemical order [14–17]. However, the synthesis of a fully
ordered structure remains challenging, due to the rather
low order-disorder transition temperature, which is around
590 K [12,13,18]. At this temperature, the diffusivity of atoms
is too low for the ordered structure to form on reasonable time
scales. Therefore, “naturally occurring” tetrataenite has only
been found in iron meteorites [19–23]. Due to the difficulties
in obtaining fully ordered samples, it becomes essential to
investigate and understand how deviations from the perfect
order affect the magnetic properties, in particular the Curie
temperature, Tc, and magnetic anisotropy, of L10-FeNi.

Experimentally, only the Curie temperature of the disor-
dered system (Tc ≈ 785 K [24,25]) is accessible, since the
ordered system disorders on heating at temperatures above
∼ 700 K. Thereby, the effective “disordering temperature” de-
pends strongly on the heating rate [26]. On time scales typical
for magnetization measurements, disordering occurs around
820 K, i.e., above the Curie temperature of the disordered
system, and results in an abrupt vanishing of the magnetiza-
tion [3]. This indicates that the nominal Curie temperature of
the ordered system would be noticeably higher than that of the
disordered system.

Several previous studies have used first-principles calcu-
lations to obtain the Curie temperature in L10-FeNi. For
example, Edström et al. [5] and Tian et al. [9] obtained values
for the Curie temperature of the ordered phase of 916 and

780 K, respectively, using slightly different electronic struc-
ture methods. They also found that chemical disorder leads to
a reduction of the Curie temperature.

Both of these studies have used the coherent-potential
approximation (CPA) [27,28] to incorporate chemical dis-
order in the material. The CPA is based on an effective
medium description of the atomic environments, and thus
provides a very efficient method for the treatment of disor-
der effects in random alloys using only a single unit cell.
However, CPA does not include effects related, e.g,. to the
local symmetry-breaking of a specific chemical environment
around an individual atom. Such effects beyond CPA can be
particularly relevant, e.g., for the magnetic anisotropy, as we
showed in our previous work, where we have used supercells
with different distributions of Fe and Ni atoms to investigate
the effect of chemical disorder [10,29]. These calculations
indicate that, for example, a moderate increase in Fe content,
while reducing the degree of chemical order in the system,
leads to an increase of the magnetocrystalline anisotropy en-
ergy, an effect not captured within the CPA.

In the present work, we use first-principles calculations
based on density functional theory (DFT) to provide further
insights into the effect of variations in the local chemical
environment on the magnetic exchange interactions, and con-
sequently the Curie temperature, in partially ordered FeNi. To
model the chemical disorder, we follow a similar approach as
in our previous work [10,29], i.e., we incorporate the effect
of a disordered local atomic environment on the magnetic
coupling by employing supercells. We find that treating the
disorder on a local level gives rise to remarkably strong
variations of the first nearest neighbor Fe-Fe coupling. Our
subsequent analysis of the correlation between the specific
local chemical environment and the corresponding magnetic
exchange couplings indicates that the magnetic coupling is
governed by long-range effects that clearly go beyond the
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closest neighbor environment. This makes it extremely chal-
lenging to consider such configuration-dependent couplings
for the calculation of Tc and other thermodynamic proper-
ties. In order to obtain a rough estimate of how such strong
variations of the magnetic coupling constants will affect the
Curie temperature, compared to using only an average cou-
pling, obtained, e.g., from an effective medium treatment of
chemical disorder, we perform Monte Carlo simulations for
a simple Heisenberg model with random Gaussian-distributed
coupling constants. We find that variations of the same order
as obtained in our DFT calculations for FeNi can lead to a
reduction of Tc of around 10 %.

In the following, we first describe the computational
method we use to obtain magnetic exchange couplings, and
then present our results for both ordered and partially disor-
dered FeNi.

II. COMPUTATIONAL METHOD

A. Magnetic exchange interactions

Within the (classical) Heisenberg model, the energy of a
magnetic system is expressed as a sum over pairwise (bilinear)
interactions between localized magnetic moments:

E = −1

2

∑
i �= j

Ji jSi · S j . (1)

We use the convention that Si is a normalized vector describ-
ing only the direction of the magnetic moment at site i.

It is well known that, for an itinerant magnetic material
such as FeNi, the Heisenberg model is not necessarily a good
approximation [30], and Eq. (1) is typically only valid for not
too large fluctuations around the ferromagnetic ground state.
Thus, to calculate magnetic exchange couplings, Ji j , we use
the following well-known equation based on the magnetic
force theorem, which is obtained by considering the energy
variation with respect to infinitesimal rotations of the mag-
netic moments [31]:

Ji j = 1

2π
Im

∫ εF

−∞
dε

∑
mm′m′′m′′′

�mm′
i Gm′m′′

i j,↓ (ε)�m′′m′′′
j Gm′′′m

ji,↑ (ε) .

(2)
Here, �mm′

i (�m′′m′′′
j ) is the local exchange splitting on site

i ( j), and Gm′′′m
ji,↑ (Gm′m′′

i j,↓ ) is the spin-up (spin-down) intersite
Green’s function. Both quantities are expressed within a tight-
binding-like basis, where each basis orbital (with index m) is
localized on a specific site.

To evaluate the quantities in Eq. (2), we first obtain the
electronic structure from plane-wave-based DFT calculations,
and then transform the corresponding Kohn-Sham Hamilto-
nian into a basis of localized Wannier functions [32–35].
As described in more detail in Sec. III A, we use Wannier
functions defined by orbital projection and subsequent or-
thonormalization (corresponding to the “initial projections”
in the wannier90 code [36]). This leads to a set of atom-
centered basis orbitals. As shown in Sec. III A, an excellent
representation of all occupied bands in FeNi can be achieved
by using a full set of s, p, and d projections for each atom.

In contrast, constructing maximally localized Wannier
functions (MLWFs) [37] for FeNi, results in a set of Wannier

functions where the Wannier orbitals corresponding to the s
and p projections become localized in between the atoms, and
thus cannot be used to evaluate Eq. (2). This is similar to what
has been described for the nearly free-electron-like bands in
fcc Cu (and other 3d transition metals), see e.g., Ref. [38].
Further details are presented in Sec. III A.

After a suitable set of Wannier functions has been con-
structed, we follow the approach outlined in Ref. [35] to
obtain exchange couplings for different pairs of atoms.

B. Computational details

In order to accommodate both the fully ordered L10 struc-
ture of FeNi as well as some configurations with (partial)
chemical disorder, we use an eight-atom cell, with lattice
vectors corresponding to a

√
2 × √

2 × 1 supercell of a con-
ventional cubic four-atom fcc unit cell. Equivalently, this can
also be viewed as a 2 × 2 × 1 supercell of the two-atom
tetragonal unit cell of the L10 structure. We then distribute
Fe and Ni atoms over the available sites within this cell in
three different ways, according to the ordered L10 and two
different partially disordered structures (see Sec. III C and
Fig. 4). Depending on the specific distribution of atoms, the
symmetry is reduced. Nevertheless, in all cases, except where
otherwise noted, we fix the lattice parameters and coordinates
of all atoms to that of an underlying perfectly cubic fcc lat-
tice with lattice constant a = 3.56 Å. For test purposes, we
also perform some calculations for the perfectly ordered L10

structure using the two-atom primitive unit cell.
We perform DFT calculations using the Vienna ab initio

simulation package (VASP - version 5.4.4) [39], the projector-
augmented wave method (PAW) [40,41], and the general-
ized gradient approximation according to Perdew, Burke,
and Ernzerhof [42]. Brillouin zone integrations are performed
using the tetrahedron method with Blöchl corrections and
a �-centered 12 × 12 × 16 k-point mesh for the eight-atom
cell. The plane wave energy cutoff is set to 550 eV, and the
total energy is converged to an accuracy of 10−8 eV. Our
PAW potentials include 3p, 4s, and 3d states in the valence
for both Fe and Ni. All calculations are performed for the
ferromagnetically ordered state without considering spin-orbit
coupling.

A Wannier representation of the Kohn-Sham Hamiltonian
is then obtained using the wannier90 code [36], using the
same k-point mesh as for the DFT calculations. To check the
convergence of the calculated magnetic exchange couplings
with respect to the k-point sampling, we perform calculations
using up to 14 × 14 × 18 k points and find our results to be
sufficiently converged using a 12 × 12 × 16 k-point mesh.

To obtain the Curie temperature for the ordered case, using
the Heisenberg model, Eq. (1), with the coupling constants
obtained from our DFT calculations, we perform Metropolis
Monte Carlo simulations, as implemented in the UppASD
package [43]. We consider magnetic exchange couplings for
all pairs of atoms up to a distance of 10a (∼25.17 Å). To
accurately determine Tc, accounting for potential finite size
effects due to the limited size of our simulation cells, we
use the Binder cumulant method [44]. Thus, Tc is obtained
as the temperature where the fourth-order Binder cumulants,
obtained for three different cell sizes, cross. We consider
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FIG. 1. Majority spin band structure of chemically ordered L10-
FeNi. Blue and green dots represent the Kohn-Sham and Wannier-
interpolated bands, respectively. Outer and inner energy windows,
Eo and Ei, are indicated on the right side of the plot. The Fermi level
defines zero energy.

cell sizes of 20 × 20 × 20, 30 × 30 × 30, and 36 × 36 × 36,
relative to the primitive tetragonal two-atom cell of the L10

structure. For the test calculations presented in Fig. 3(b), we
use a cell size of 20 × 20 × 20.

For the model study presented in Sec. III D, we use a
15 × 15 × 15 supercell of the conventional fcc cubic cell. We
then initialize the magnetic couplings for all nearest neighbor
pairs within this cell individually by drawing random numbers
from a Gaussian distribution with varying standard deviation,
σ > 0, and a mean value of μ = 1. For σ = 0.0, the coupling
constants of all nearest-neighbor pairs are identical and equal
to the mean of the Gaussian distribution (μ = 1.0). The Curie
temperature for each σ > 0.0 is obtained by taking an average
over 100 instances of the Gaussian-distributed magnetic ex-
change couplings with different random seeds. Convergence
with respect to the number of instances of the randomized sys-
tem has been verified by monitoring the cumulative average of
Tc with increasing number of instances over all 100 samples.

III. RESULTS AND DISCUSSION

A. Construction of Wannier functions

As outlined in Sec. II A, we start by constructing a set
of Wannier functions from orthonormalized projections on s,
p, and d orbitals for each Fe and Ni atom in the unit cell.
We use an outer energy window ranging from −10 eV up to
about 31 eV, which contains all occupied valence bands plus
a certain number of empty bands. Furthermore, in order to
accurately reproduce all occupied bands, we employ a frozen
(inner) energy window from −10 eV up to about 1 eV above
the Fermi energy. The band dispersion (only for the majority
spin component) obtained from the resulting Wannier func-
tions for the minimal two-atom cell of the fully ordered L10

structure is shown in Fig. 1, together with the underlying
Kohn-Sham band structure.

One can see that all bands below ∼10 eV are well described
by the Wannier-interpolated bands. Some weak oscillations
can be seen in the lowest lying, free-electron-like band around
the � point. These are due to the fact that the k mesh

FIG. 2. Magnetic exchange couplings for (a) Fe-Fe, (b) Fe-Ni,
and (c) Ni-Ni pairs as a function of atomic distance in the ordered
L10 phase of FeNi as calculated in this work (black dots) and by
Edström et al. [5] (green triangles).

along the high-symmetry lines used to obtain the interpo-
lated band structure is much finer than the homogeneous k
mesh used to construct the Wannier functions, and that, in
order to obtain atom-centered Wannier functions, we do not
apply the usual “disentanglement procedure” to obtain an
optimally k-connected subspace. We note that the calculation
of the magnetic exchange couplings is based on the original
homogeneous k-point mesh, where the Wannier bands are
identical to the DFT Kohn-Sham bands by construction. For
the minority-spin bands (not shown), we obtain a similar good
agreement between the Wannier-interpolated and the occupied
Kohn-Sham bands.

B. Magnetic interactions in L10-ordered FeNi

Next, we calculate the magnetic exchange couplings for
the ordered L10-phase of FeNi, using the method described
in Sec. II A. In Fig. 2, we compare the magnetic exchange
couplings obtained in the present study (shown by the black
dots) with those calculated by Edström et al. [5] (shown by the
green triangles). The different sub-panels show the couplings
corresponding to Fe-Fe, Fe-Ni, and Ni-Ni pairs as a function
of distance. Overall, there is very good agreement between the
two data sets, except for a few cases discussed further below.
One can see that the Fe-Fe couplings are strongest and rather
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long-ranged while the Fe-Ni and Ni-Ni interaction is weaker
and decays rather quickly with distance.

Note that for certain distances (e.g., for the one correspond-
ing to second nearest-neighbor distance, di j = a0 = 3.56 Å),
two distinct values for Ji j are obtained, depending on the ori-
entation (in-plane versus out-of-plane) of the corresponding
pair relative to the tetragonal axis, i.e., the axis defined by the
long-range order. In particular for the second nearest neighbor
Fe-Fe interaction, this difference is rather large. This already
indicates a strong configuration dependence of the magnetic
coupling, which will be further analyzed in Sec. III C using
supercells with partial chemical disorder.

For the second-nearest-neighbor Ni-Ni pairs, the coupling
is rather weak and thus the (absolute) difference between
in-plane and out-of-plane coupling is small. Furthermore, one
can see that Fe-Ni couplings for certain distances are “miss-
ing” (e.g., corresponding to second nearest neighbors on the
fcc lattice, di j = a0 = 3.56 Å). This is due to the arrangement
of Fe and Ni atoms in the underlying L10 structure.

The good agreement between our results and the cal-
culations of Edström et al. (Ref. [5]) is remarkable, since
rather different electronic structure methods, involving differ-
ent approximations and basis sets, have been employed. The
only noticeable difference is observed for the second-nearest-
neighbor (in-plane) Fe-Fe coupling and the first-nearest-
neighbor Fe-Ni coupling, for which Edström et al. obtain
a stronger coupling (by around 7 and 5 meV, respectively).
Note that our calculations are based on a metrically cubic fcc
lattice, whereas Edström et al. have used tetragonal lattice
vectors with the same in-plane lattice constant a = 3.56 Å,
but a slightly different c/a ratio of 1.0056. However, since the
biggest difference occurs for the second-nearest neighbor in-
plane Fe-Fe coupling, whereas the corresponding couplings
along c agree rather well, it appears unlikely that this dif-
ference is caused by the minimal tetragonal distortion of the
lattice vectors. Our calculated coupling constants also appear
to be in good agreement with more recent calculations by Tian
et al. [9,45]

From Fig. 2(a) one can see that there are noticeable Fe-Fe
couplings even for rather large atomic distances. To fur-
ther analyze this distance dependence, Fig. 3(a) shows the
same coupling constants as in Fig. 2, but multiplied with the
cube of the corresponding interatomic distances, i.e., Ji j · d3

i j .
For the Fe-Ni and Ni-Ni couplings, the corresponding data
points still converge quickly towards zero for large distances,
which means that these couplings decay with distance faster
than d−3

i j . On the other hand, for the Fe-Fe pairs, one can
see that the data points oscillate and do not seem to de-
cay even for very long atomic distances. As pointed out in
previous works [5,46], this indicates an approximate d−3

i j de-
pendence of the Fe-Fe interaction which, together with the
oscillatory behavior, is typical for metals with Rudermann-
Kittel-Kasuya-Yosida-like exchange interactions.

Figure 3(b) shows the ferromagnetic Curie temperature,
Tc, obtained from Monte Carlo simulations of the Heisenberg
model, where the Fe-Fe interactions are considered only up
to a certain maximum interatomic distance. For the Fe-Ni
and Ni-Ni pairs, all calculated coupling constants have been
included, i.e., up to a very large distance of 10a0. Note that
due to the fast decay of these couplings, the following results

FIG. 3. (a) Magnetic coupling constants as a function of atomic
distance multiplied with the cube of the corresponding atomic dis-
tance, Ji j · d3

i j , calculated for the ordered phase of FeNi. Coupling
constants corresponding to Fe-Fe, Fe-Ni, and Ni-Ni pairs are shown
by black, blue, and green markers, respectively. (b) Ferromag-
netic Curie temperature Tc, obtained from Monte Carlo simulations,
as a function of the cutoff distance used for the Fe-Fe interactions
(see text).

should be unaffected by the specific cutoff distance used for
the Fe-Ni and Ni-Ni interactions. It can be seen that, due to the
long range of the Fe-Fe interaction, the calculated Tc exhibits
strong variations as function of the Fe-Fe cutoff distance, but
seems to converge to a value around 700 K once all Fe-Fe
interactions up to a distance of around 8 Å are taken into
account. This shows that, in order to obtain a reliable estimate
of Tc in this system, it is essential to include Fe-Fe interactions
up to rather large distances.

Based on these test calculations, we now obtain an ac-
curate estimate for Tc from Monte Carlo simulations of the
Heisenberg model including all calculated coupling constants
up to a maximum distance of 10a0 and then perform a Binder
cumulant analysis, as described in Sec. II A. We obtain a value
of Tc = 736 K. Note that for the test calculations shown in
Fig. 3(b), Tc is obtained simply from the peak position of the
calculated temperature dependence of the specific heat, and
thus differs somewhat from the more accurate value obtained
via the Binder cumulants. Our calculated Tc agrees well with
the value of about 780 K obtained by Tian et al. [9], whereas
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FIG. 4. Different ordered and (partially) disordered configurations considered in this work, depicted in the
√

2 × √
2 × 1 supercell relative

to the conventional cell of the underlying face centered lattice [indicated by the dotted lines in (a)]: (a) ordered, (b) one-pair-exchanged, and
(c) two-pairs-exchanged. Fe and Ni atoms are represented by red and green spheres, respectively.

the Tc of 916 K obtained by Edström et al. [5] is noticeably
higher. This is due to the stronger second- nearest-neighbor
Fe-Fe and first-nearest-neighbor Fe-Ni coupling constants ob-
tained in Ref. [5] (see Fig. 2). Note that both our and the
value of Tian et al. are lower than the experimental Tc of the
disordered system and thus seem to underestimate the “true”
Curie temperature of the ordered state.

C. Magnetic interactions for (partially) disordered FeNi

We now investigate the effect of chemical disorder on
the magnetic exchange couplings by starting from the fully
ordered case, and then successively exchanging the positions
of one or two pairs of Fe and Ni atoms within an eight-
atom supercell, resulting in the two configurations shown in
Figs. 4(b) and 4(c). Note that all other configurations that can
be created by exchanging one Fe-Ni pair in this eight-atom
supercell are equivalent to the one shown in Fig. 4(b), whereas
several distinct configurations can be created by exchanging
two Fe-Ni pairs. For simplicity we limit our study to the
configuration depicted in Fig. 4(c). In the following, we refer
to these two configurations as ‘one-pair-exchanged” and ‘two-
pairs-exchanged”, respectively.

In Fig. 5(b), we list the magnetic exchange couplings ob-
tained for all inequivalent first-nearest-neighbor Fe-Fe pairs
in the three different configurations. The corresponding local
atomic environments are also indicated and will be discussed
further below. One can see that the calculated values vary
drastically, from 4.7 to 36.5 meV, while the corresponding
value in the fully ordered structure is 26.5 meV. We note that,
if the nearest-neighbor Fe-Fe coupling would be completely
configuration independent, then all values listed in Fig. 5(b)

would be identical. The large variation of the Fe-Fe nearest
neighbor coupling in the different cases thus shows that the
local chemical environment has a significant influence on the
magnitude of the magnetic exchange interactions in FeNi. As
already discussed in Sec. I, such variations are not captured by
effective medium methods such as the CPA, which are often
used to model chemical disorder in alloys.

The magnetic exchange couplings shown in Fig. 5(b) are
obtained by decorating the sites within a perfect fcc lattice
in different ways with Fe and Ni atoms, without allowing
the atomic positions to relax within the resulting lower sym-
metry. In order to assess the effect of such relaxations, we
now recalculate the magnetic coupling constants for the one-
pair-exchanged and two-pairs-exchanged configurations after
allowing all atomic positions to relax, while still keeping the
lattice vectors of the supercell fixed. The results for the first-
nearest-neighbor Fe-Fe couplings are shown in Table I and
are compared to the corresponding values for the unrelaxed
case. It can be seen that the relaxation leads to changes in
the magnetic coupling constants of up to about 2 meV, but the
effect is clearly significantly weaker than the effect due to the
different chemical environments.

The strong configuration dependence of the first-nearest
Fe-Fe coupling raises the question of whether it is possible
to identify simple rules on how the strength of this coupling
depends on the local atomic environment. For this purpose,
we analyze the distribution of atoms on the sites that are
closest neighbors to both Fe atoms forming the pair under
consideration. As shown in Fig. 5(a) there are four such sites,
which form a square in the midplane perpendicular to the
line connecting the two coupled sites. These four sites repre-
sent the minimal environment to be considered in any model

FIG. 5. (a) Depiction of the shared first-nearest and first- and second-nearest-neighbor environment for a pair of nearest neighbor sites
(indicated as red colored spheres) in an fcc lattice. The conventional cubic cell is also shown for clarity. (b) Schematic showing the occupation
of the shared first- and first/second-nearest- neighbor environments for all nearest- neighbor Fe-Fe pairs that are present in the ordered
[(i)], one-pair-exchanged [(ii)-(v)], and two-pairs-exchanged configurations [(vi)–(vii)] along with the corresponding values of the magnetic
coupling constant J .
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TABLE I. First-nearest-neighbor Fe-Fe magnetic exchange inter-
action (in meV) for relaxed and unrelaxed one-pair-exchanged and
two-pairs-exchanged configurations.

Unrelaxed Relaxed

One-pair-exchanged 7.4 10.1
36.5 38.8
19.1 19.9
4.7 6.8

Two-pairs-exchanged 23.1 21.9
14.7 15.5

describing the configuration dependence of the first-nearest-
neighbor coupling. The next “shell” around the coupled Fe-Fe
pair is formed by those sites that are first-nearest neighbors
to one of the coupled sites and second-nearest neighbors to
the other site. There are again four such sites, which form a
rectangle in the plane parallel to the Fe-Fe distance vector and
perpendicular to the plane formed by the common first-nearest
neighbors [see Fig. 5(a)].

In Fig. 5, we schematically depict the occupation of both
the shared first nearest and the shared first/second nearest-
neighbor sites for all the inequivalent nearest- neighbor Fe-Fe
pairs included in the ordered, one-pair-exchanged, and two-
pairs-exchanged configurations, along with the value of the
corresponding magnetic exchange couplings. It is obvious that
the shared first-nearest-neighbor environment is not sufficient
to classify the different coupling constants, since, e.g., cases
(iii), (v), and (vi) all have an equivalent shared first- nearest-
neighbor environment but exhibit vastly different magnetic
coupling constants (including both the highest and lowest
calculated values of 36.5 and 4.7 meV). The same holds for
cases (i) and (ii).

Considering both the shared first and first/second nearest-
neighbor environment, all inequivalent Fe-Fe pairs contained
in our three configurations exhibit different local environ-
ments, which is, in principle, compatible with a local model
for the exchange coupling based on this environment. How-
ever, to really establish or disprove such a model, one has
to consider much larger supercells, that allow one to sample
more configurations, and also include cases with identical
first- and second- nearest-neighbor environment but different
further-neighbor environment. This would require an exces-
sive computational effort. Considering that, in general, the
applicability of a short-range local model for an itinerant
magnetic system such as FeNi is rather questionable, we
therefore refrain from sampling further couplings using larger
and larger supercells. Instead, we try to estimate the effect of
a strong configuration dependence of the magnetic coupling
constants on the Curie temperature of a disordered mag-
netic system using a simple Heisenberg model with random
couplings.

D. Model study with random couplings

The very high sensitivity of the magnetic coupling con-
stants on the specific chemical environment, and the high
computational effort to fully resolve this configuration de-
pendence (if at all possible), represents a big obstacle for

FIG. 6. (a) Susceptibility, and (b) specific heat as a function of
temperature (in relative units) obtained from Monte Carlo simu-
lations for a simple Heisenberg model with only nearest-neighbor
couplings on an fcc lattice for the case when all coupling constants
are identical (σ = 0). T0 is the critical temperature for σ = 0.

the reliable estimation of magnetic ordering temperatures for
disordered itinerant magnets such as FeNi from first principles
calculations. In the following, we therefore employ a strongly
simplified model to obtain a rough estimate of how the strong
configuration-dependent variations of the exchange couplings
can affect the Curie temperature of a disordered magnetic sys-
tem, in comparison to the Curie temperature obtained using
only configuration-independent “average” magnetic coupling
constants.

Specifically, we consider a Heisenberg model with only
nearest-neighbor interactions on an fcc lattice, and we approx-
imate the configuration-dependent variations of the magnetic
coupling constants by a Gaussian-distributed random variable,
where the mean value of the Gaussian distribution represents
the average coupling constant, and its standard deviation,
σ , quantifies the configuration-dependent variations. We then
perform temperature-dependent Monte Carlo simulations as
outlined in Sec. II A, and analyze how the obtained Curie
temperature depends on σ , i.e., on the strength of the variation
in the magnetic coupling constants.

Figure 6 shows the calculated susceptibility (χ ) and spe-
cific heat (Cv) as a function of temperature for this model
for the case when all coupling constants are identical to the
average one (σ = 0). One can see that both χ and Cv exhibit
clear peaks at the same critical temperature T0. However, since
the peak in the susceptibility appears much sharper than the
one in the specific heat, in the following we use the peak value
of χ to accurately determine the Curie temperature as function
of σ .

Figure 7 shows the variation of the average Curie tempera-
ture, Tc, relative to T0, as a function of the standard deviation
σ of the Gaussian distributed random magnetic coupling con-
stants. Note that σ corresponds to a Gaussian distribution
with a mean equal to the average magnetic coupling, and is
therefore defined relative to this average coupling. One can
see that Tc decreases with increasing standard deviation σ ,
i.e., with increasing “randomness” of the magnetic exchange
couplings, and that this decrease can be fitted well with a
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FIG. 7. Curie temperature Tc of the Heisenberg model with
Gaussian-distributed coupling constants as a function of the standard
deviation, σ (defined relative to the mean value of the Gaussian
distribution). T0 = Tc(σ = 0) is the Curie temperature obtained for
the average coupling, and the error bars indicate the standard de-
viation of the mean obtained by averaging over 100 instances with
different random seeds for each σ (see text). The black dashed line
is a quadratic fit to the data.

quadratic dependence. This indicates that using configuration-
independent “average” magnetic exchange couplings obtained
by effective medium approaches such as CPA are expected to
overestimate the critical temperature of a disordered system.

If we take the seven different values for the configuration-
dependent nearest-neighbor interaction obtained from the
ordered, the one-pair-exchanged, and the two-pairs exchanged
configuration and evaluate the empirical standard deviation,
we obtain σ ≈ 0.6 (relative to an average value of 18.9 meV).
Comparing this with the data shown in Fig. 7, this would
correspond to a reduction of Tc of about 10 % compared to the
value obtained using only an average coupling strength. We
note that this is clearly a very naive estimation based on a very
small number of samples, but it shows that a strong configu-
ration dependence of the magnetic coupling, as observed for
FeNi in Sec. III C, can indeed lead to a noticeable reduction of
Tc compared to that obtained from average effective medium
couplings.

Note that the effect of random magnetic exchange cou-
plings on the magnetic transition temperature of a Heisenberg
model with nearest- and next-nearest antiferromagnetic cou-
pling on a two-dimensional square lattice was studied
previously by Li et al. [47]. Thereby, the nearest-neighbor
coupling was obtained from a homogeneous random distri-
bution within a given range, and it was also found that the
transition temperature decreases with increasing variation of
the random magnetic exchange couplings.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the effect of chemical
disorder on the magnetic exchange couplings in L10-FeNi us-
ing first-principles DFT calculations. Thereby, we have used
supercells with different atomic distributions, to specifically
include effects due to the symmetry-broken local environ-
ments around the individual atoms that are not included in

effective medium approaches such as CPA. We find that
such effects can lead to rather large variations of the mag-
netic exchange couplings, exemplified by our analysis of the
nearest-neighbor Fe-Fe coupling, which exhibits values rang-
ing from 4.7 up to 36.5 meV, with a value of 26.5 meV
obtained for the fully ordered structure.

Our analysis of the shared first and shared first/second-
nearest- neighbor chemical environments of the different
inequivalent Fe-Fe nearest-neighbor pairs included in our su-
percells indicates that the strength of the couplings is affected
by long-range effects that go beyond the closest neighbor
shell, as can be expected for an itinerant metallic material
such as FeNi. The lack of a simple relation that relates the
variation of an individual Ji j (relative to the corresponding
average value) to its local chemical environment makes it
very challenging to incorporate effects beyond CPA in the
calculation of Tc. However, our simple model study using ran-
dom Gaussian-distributed nearest-neighbor couplings on an
fcc lattice suggests that such local variations of the coupling
constants can lead to a reduction of Tc of up to 10 %, compared
to that obtained using only an average coupling.

Thus, there is a hierarchy of effects that, in general, tend
to reduce the magnetic ordering temperature in random alloys
such as partially ordered FeNi. First, the “average” coupling
strength is affected by the chemical disorder. For example,
Tian et al. obtain a reduction of around 30–35 % of the
nearest-neighbor Fe-Fe coupling obtained within CPA for the
disordered system compared to the fully ordered case [9].
This is, in principle, consistent with our supercell calculations,
where the simple average of this coupling over all inequivalent
Fe-Fe pairs in our two disordered configurations gives about
17.6 meV, i.e., a reduction by about 35 % compared to the
ordered case. However, one should note that this average is
based on only very few samples. Second, the random con-
nectivity between different magnetic atoms (Fe and Ni in our
case) will also affect the Curie temperature relative to the
ordered case, which corresponds to a very regular network
of Fe-Fe, Fe-Ni and Ni-Ni bonds. Finally, the variation of
the coupling strength according to the specific chemical en-
vironment around the atoms in the random alloy can lead to
a further decrease of Tc, as indicated by our simple model. It
is mainly this last effect that we have quantified within this
work.

Furthermore, it appears that our first-principles-based re-
sults are underestimating the (hypothetical) Curie temperature
of the fully ordered system. It is unclear whether this un-
derestimation is related to the general applicability of the
(classical) Heisenberg model to FeNi or whether it is caused
by deficiencies of the generalized gradient approximation in
the underlying DFT calculations (or other approximations in
the method). However, we note that the comparison with the
results obtained by Edström et al. [5] also demonstrates that
moderate changes in specific calculated coupling constants
can lead to rather strong differences in the predicted Curie
temperatures.
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TABLE II. Magnetic exchange couplings, Ji j , for the nearest-
neighbor Fe-Fe interaction in L10-FeNi obtained using different sets
and subsets of Wannier functions. The first column indicates the dif-
ferent sets of Wannier functions that have been constructed, while the
second column indicates which terms are considered in Eq. (2) when
evaluating the corresponding Ji j . All calculations are performed for
the primitive two-atom unit cell.

Wannier set Terms in Eq. (2) Ji j (meV)

d + s + p (projections) all 27.2
d + s + p (projections) d-only 29.6
d (projections) all 35.7
d (MLWFs) all 43.4

Fig. 2. We also thank M. Merkel and A. Carta for help with
using the wannier90 code. This work was supported by
ETH Zürich. Calculations were performed on the cluster “Piz
Daint”, hosted by the Swiss National Supercomputing Centre,
and the “Euler” cluster of ETH Zürich.

APPENDIX: ORBITAL DECOMPOSITION OF NEAREST
NEIGHBOR FE-FE COUPLING

Equation (2), in principle, allows for a decomposition of
the coupling constants Ji j into different orbital contributions.
However, for the case of L10-FeNi, the quantities appearing in
Eq. (2), in particular the exchange splitting �mm′

i , contain off-
diagonal elements mixing the d and s type Wannier orbitals.
Nevertheless, by restricting the summation in Eq. (2) to only
the diagonal elements �mm

i and considering only contributions
from the d-type orbitals, one can obtain a “d-only” contribu-
tion to the magnetic coupling.

In this way, we obtain a d-only contribution to the Fe-Fe
coupling of 29.6 meV (second row in Table II). This value
is larger than the full value of 27.2 meV (first row in Ta-
ble II), obtained by considering all contributions in Eq. (2),
showing that here the combination of sp and orbitally mixed
terms leads to a small negative contribution to Ji j [48].
Furthermore, it demonstrates that, as probably expected,
the main contribution to the magnetic coupling stems from
the d orbitals.

This raises the question of whether it would be sufficient
to consider only the d bands in the first place, i.e., construct a

smaller set of Wannier functions describing only the d bands,
and still obtain a good estimate for Ji j . To test this hypothesis,
we construct two additional sets of Wannier functions, where
we include only five d-orbitals per atom. For the first set, we
obtain the Wannier functions from orthonormalized atomic
projections as before, while for the second set we perform a
subsequent minimization of the quadratic spread functional
to obtain MLWFs. In both cases we use an (outer) energy
window ranging from −10 to about 5 eV above the Fermi
level and obtain a set of atom-centered d-like orbitals suitable
to evaluate Eq. (2). In both cases also the Wannier-interpolated
bands resemble the DFT band-structure in the energy range
of the d bands, i.e., between approximately −5 meV and the
Fermi level for the majority spin channel.

The magnetic coupling constants for the nearest-neighbor
Fe-Fe coupling obtained from these two additional sets of
Wannier functions are listed in the third and fourth row of
Table II. It can be seen that the corresponding values (in
particular for the set of MLWFs) are significantly larger than
the d-only contribution obtained from the full description
using also s and p bands. This shows that, even though the
d-orbitals make up the main contribution to the magnetic
coupling constants, it is nevertheless important to include s
and p states to accurately account for their effect on the d
-band dispersion. We note that, due to the entanglement of
d and sp contributions in the band structure of FeNi, the
d subset of the full d + s + p Wannier basis and the two
different d-only Wannier sets (projected and MLWFs) are all
describing slightly different subspaces of the occupied
Kohn-Sham states.

Only the d + s + p Wannier set results is a complete and
accurate description of all occupied bands in FeNi, and there-
fore only the corresponding value of Ji j should be considered
as “correct” (or most accurate). Nevertheless, our analysis
raises the question of a potential basis set dependence of the
magnetic coupling constants, for example in cases where a
complete description of all occupied bands can be achieved
using different sets of Wannier functions, e.g., corresponding
to different degrees of localization. In the present case, a more
systematic analysis is hindered by the strong entanglement
of bands and the fact that spread minimization on the full
set of Wannier functions leads to orbitals that are not atom
centered. We therefore leave this question open for future
research.
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