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Spin stiffness, spectral weight, and Landau damping of magnons in metallic spiral magnets
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We analyze the properties of magnons in metallic electron systems with spiral magnetic order. Our analysis is
based on the random phase approximation for the susceptibilities of tight-binding electrons with a local Hubbard
interaction in two or three dimensions. We identify three magnon branches from poles in the susceptibilities, one
associated with in-plane, the other two associated with out-of-plane fluctuations of the spiral order parameter.
We derive general expressions for the spin stiffnesses and the spectral weights of the magnon modes, from which
the magnon velocities can also be obtained. Moreover, we determine the size of the decay rates of the magnons
due to Landau damping. While the decay rate of the in-plane mode is of the order of its excitation energy, the
decay rate of the out-of-plane mode is smaller so that these modes are asymptotically stable excitations even in

the presence of Landau damping.
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I. INTRODUCTION

The Goldstone theorem predicts the emergence of gap-
less collective modes whenever a continuous symmetry of a
physical system is spontaneously broken [1]. These Goldstone
modes are ubiquitous in nature and play a prominent role
in particle physics and condensed matter physics alike. In
solids, the most important examples for Goldstone modes are
phonons associated with the broken translation invariance in
a crystal, and magnons in a magnetic state with broken SU(2)
spin rotation invariance [2].

Usually, Goldstone modes are asymptotically stable quasi-
particles, that is, their decay rate (or damping) is much smaller
than their excitation energy, at least in the low-energy limit.
For example, a hydrodynamic theory of Goldstone modes in
ferromagnets and antiferromagnets suggests that the decay
rate of magnons is proportional to the square of the excitation
energy [3]. The same behavior was found for a noncollinear
helical spin arrangement [4]. The hydrodynamic theory for the
decay rate has been confirmed by microscopic calculations
for magnetic insulators such as the Heisenberg model [5].
In metallic systems, an additional low-energy decay channel
exists via the excitation of particle-hole pairs near the Fermi
surface, the so-called Landau damping [6]. In a Néel antifer-
romagnet, this mechanism can lead to an enhanced decay rate
of magnons proportional to their excitation energy [7].

In this paper, we analyze the Goldstone modes, that is,
magnons in a metallic system with planar spiral magnetic
order. Spiral magnetic states have been obtained in ex-
tended parameter regimes of the two-dimensional Hubbard
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and r —J models at low and moderate hole doping away
from half filling, and they have been discussed as candidates
for the incommensurate magnetic states observed in cuprate
high temperature superconductors [8—19]. They compete with
charge-spin stripe order [20] and may coexist with d-wave su-
perconductivity [16,21]. Spiral magnetic order has also been
observed in three-dimensional correlated electron systems, for
example, in La;_,X,MnO3 with X = Ba, Ca, Sr, etc. [22], in
V,_,03 [23], and in SrFeO3 [24,25].

A spiral state breaks the SU(2) spin rotation invariance
completely so that no residual continuous symmetry sur-
vives. As a consequence, three distinct magnon branches
emerge—one more than for ferromagnetic or Néel-type anti-
ferromagnetic states which remain symmetric under rotations
around an axis parallel to the spin orientation. One mode cor-
responds to spin fluctuations within the plane defined by the
spiral order, while the other two correspond to out-of-plane
fluctuations. The energy-momentum dispersion of all three
magnon branches is linear [26-29].

We compute the spin susceptibilities in the spiral state
in a random phase approximation (RPA) applied to itinerant
electrons with a Hubbard interaction. In combination with
a mean-field calculation of the order parameter, the RPA
is a conserving approximation in the sense of Baym and
Kadanoff [30], which is expected to capture the structure of
collective modes without artifacts. Expanding the inverse in-
plane and out-of-plane susceptibilities for small frequencies
and momenta near the Goldstone points, we derive expres-
sions for the spin stiffness, the spectral weight, and the
damping of the magnons. The Landau damping of the in-plane
mode has the same momentum and frequency dependence as
in a Néel state. However, the Landau damping of the out-of-
plane modes is much smaller than in a Néel state, so that these
modes are well-defined, asymptotically stable quasiparticles.

The paper is structured as follows. In Sec. II, we sum-
marize basic properties of the spiral state and introduce a
convenient rotated spin reference frame. Section III contains
a comprehensive analysis of the Goldstone mode poles in the
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RPA susceptibilities. The general analysis is complemented
by a numerical evaluation for the two-dimensional Hubbard
model. A conclusion in Sec. IV closes the presentation.

II. SPIRAL STATE

A planar spiral antiferromagnetic state oriented in the xy
plane is characterized by an average magnetization of the form

(S;) = m[cos (Q-R;)e; +sin (Q - Rj)ez], 60

where m is the magnetization amplitude, R; is the real space
position of the lattice site j, and e, is a unit vector in the « di-
rection, with @ = 1, 2, 3 corresponding to x, y, z, respectively.
For SU(2) symmetric systems, the xy orientation of the mag-
netization is degenerate with an orientation along any other
plane. Q is a fixed wave vector. Our general analytic results
on the Goldstone modes are valid both in two and three spatial
dimensions. Some numerical results are presented specifically
for two-dimensional systems with ordering wave vectors of
the form Q = (& — 27y, ).

In an itinerant electron system, the three components of the
spin operator are given by

Z st ss/ CJ,S" (@)

HfTi

where 0% with @ = 1, 2, 3 are the Pauli matrices and C;X (cjs)
are electron creation (annihilation) operators at site j with spin
projection s. In momentum space, spiral order as in Eq. (1)
corresponds to anomalous expectation values (al, 10K+Q. 1)

where afm (ax s) creates (annihilates) electrons with momen-
tum k and spin orientation s. The momentum integral

fk (] airgy) = m @)

determines the magnetization amplitude in Eq. (1). Here and
in the following, we use the short-hand notation [, = f (Zn)f‘
for d-dimensional momentum integrals.

It is convenient to use a locally rotated spin reference
frame [29], corresponding to rotated fermion operators

~ ,,QAR. *Q~Rj0'3

~1 + _IQR;63 LQR;
cj=e " Ve? cj, & =cle 1 QRTAAR (g

J J
where ¢; = (cj+,cj) and ¢; = (&4, ¢}, ) are spinors with
spin-up and spin-down components. In this basis, the spiral
state assumes the form of ferromagnetic order, with all spins
pointing along the e; axis:

(S"‘) = 2(c 0%Cj) = mby 1. 5)

In momentum representation, the spin-dependent phase fac-
tors in Egs. (4) correspond to momentum shifts, such that
the Fourier transform of &; has the form ay = (G 4, k) =
(ak,+, ak4Q,))-

In the rotated spinor basis, the mean-field Matsubara
Green’s function has the simple matrix form

- iv—& A N\
G(k’”)=< e iv—sk+o> ’ ©

where & = ex — p with the single-particle dispersion ek and
the chemical potential w, while A is the magnetic gap associ-
ated with the spiral order. Diagonalizing the matrix in Eq. (6),

one obtains the quasiparticle energies

Ef =g ./ + A2, (7

where g = 1(& + &k+q) and A = (& — &k4q). The
Green’s function can be written as a linear combination of the
quasiparticle poles,

14

~ 1 u
Ghkv)y=-> —F ®)
2 Pl E,
with the coefficients
h A
ut =0+ 020340 20", 9)
ek ex

where 0¥ is the 2 x 2 unit matrix and e = ,/h} + A2,

Within mean-field theory applied to the Hubbard model
with a repulsive Hubbard interaction U, the magnetic gap is
determined self-consistently by the gap equation

A= —U/TZGN(k, V)
k v
A — +
= U/ 3o LB = FED], (10)
k <€k
where f(x) = (¢*/T +1)7! is the Fermi function and it is

related to the magnetization amplitude by the simple relation
A =Um.

In a spiral state with a generic wave vector Q, spin
and charge susceptibilities are already coupled on the RPA
level [29]. It is convenient to combine spin and charge vari-
ables by defining the charge-spin operator

1 +
4 = 3 Z €y Oy Cis's (11)
s,8'=11

with a € {0, 1, 2, 3}, where ¢ is the unit matrix and o*
with « € {1, 2, 3} are the Pauli matrices. To treat spin and
charge with the same conventions, the operator S0 is defined
as one-half of the usual charge operator. We deﬁne a com-
bined imaginary-time charge-spin susceptibility x;‘]”(t) =
(TS;?(r)Sj?,(O)), where T is the time variable and 7 the time-
ordering operator. Fourier transforming from imaginary time
to imaginary (Matsubara) frequency representation, and con-
tinuing analytically to the real frequency axis, i2 — o + i0t,
one obtains the retarded susceptibility, which we denote as
X0 (w).

The spin and charge susceptibilities can be computed
within the rotated reference frame and then rotated back to
the physical basis as [29]

Z (R )acxcd(a)) ( )dh’ (12)

c,d

Xi(w) =

where 5(]‘;1/ (w) is the susceptibility in the rotated basis. The
rotation matrix R? is given by

1 0 0 0
o [0 cos(Q-R;) —sin(Q-R;) 0

B'=10 sin@Q-R) cos@-R) of ¥
0 0 0 1
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TABLE I. Symmetries of the bare susceptibilities. The first sign
in each field represents the sign change of ¥¢’(¢) under q — —q.
The second one represents the sign change of §¢*(¢) under  — —o.
The sign changes of %3’(q) under @ — —q or @ — —o are just the
opposite. The third sign in each field is the sign change of ¥5°(q)
under the exchange a < b.

a,b 0 1 2 3
0 + 4+ + 4+ -+ - — -+
1 ++,+ + 4.+ -+, - — =+
2 -+ - -+ - + 4+ +, - -
3 — =+ -+ + - - + 4+

While )ZCd (w) is translation invariant, components of x Jb (w)
with a, b € {1, 2} are generally not. Their momentum repre-
sentation x“” (q, q', w) therefore involves not only momentum
diagonal terms with ' = q, but also off-diagonal terms with
q' = q = Q (only for a # b) and ' = q £ 2Q. We denote the
momentum-diagonal part of the susceptibilities x“’(q, q’, »)
by x*(q, ). Fourier transforming Eq. (12), we obtain the
following linear relations between x “*(q, w) and Fab (q, w):

x"(q, ) = ¥™(q, w), (14)

(g, 0) = x*(q, 0)
=i[x"@+Q o)+ %" (q-Q
+32@+Q o)+ 1@ - Q. o)
+2i7'%(q+Q, ) +2i 7*'(q — Q, )]
=3 @+ Q o)+ (@-Q. o). (15

xP(q, 0) = ¥ (q, w), (16)

where we have used 32! = —%'? (see Table I and Ap-

pendix B) and we have defined
Qo) = (8% _,S.) (17)

with §* = (8! 4+ i8?)/2. While these relations hold both for
real and imaginary frequencies, we denote real frequency
arguments by w in the following sections. For a = b, the only
off-diagonal (in momentum) susceptibilities are

x"'(@.q+£2Q,0) = 1[1"@FQ 0w — ¥*@FQ v,
x2(@,9+2Q,0) = 1[¥”@F Q. w) — "' (qF Q. 0]
(18)

In the special case of a Néel state, there are no momen-
tum off-diagonal susceptibilities and the above relations for
x''(q, q', w) and x*2(q, q', w) are not valid. We will discuss
the Néel case separately in Sec. III D.

III. SUSCEPTIBILITIES AND GOLDSTONE MODES

Within the RPA, the charge-spin susceptibility of the Hub-
bard model in the rotated basis is given by

7(@) = Fo(@)[1 = Toxo(@] (19)

where 1 1is the four-dimensional unit matrix, [y =
2diag(—U, U, U, U), and the bare susceptibility components
on the real frequency axis can be expressed as [31]

1 N
%50(q, ) = —kaTzv:tf[GaG(kJrq,erQ)

x o’ Gk, v)]| (20)

iQ—>w+i0t”

Using Eq. (8), one can easily perform the Matsubara sum to
obtain

%60(q, 0) = —2 / > ALK QFp(k.q).  (21)

e
with
F(EQ) — f(Eiio)
Fok, q,0) = —— -8 (22)
w+i0t +E —E
and the coherence factors A%, (k, q) defined as
A (k. q) = jtr[oug oy ], (23)

with uﬁ from Eq. (9). Explicit expressions for the coherence
factors are listed in Appendix A.

The coherence factors are either purely real or purely
imaginary, depending on a and b. The functions Fy (K, q, ®)
have a real part and an imaginary part proportional to a §
function. To distinguish the corresponding contributions to

(‘)’b (q, ), we refer to the contribution coming from the real
part of Fye (K, q, w) as Xob(q, w), and the contribution from
the imaginary part of Fye (K, q, w) as fg; b(q, w). Note that

(‘)’f (q, @) is imaginary and X(‘)’f’(q, w)1is real if the correspond-
ing coherence factor is imaginary.

Before proceeding, we first note some symmetries of the
bare susceptibilities.

A. Symmetries of the bare susceptibilities

The contributions ¥¢” and %4’ to %¢” have a well-defined
parity under ¢ — —q. In Appendix B, we show that the diago-
nal components of ¥J” and the off-diagonal ones which do not
involve either the 2- or 3-components of the spin are symmet-
ric, while the other off-diagonal elements are antisymmetric.
The sign change of Xob (q) under q — —q is the opposite, that
is, Xo,b(q) is antisymmetric if %, b(q) is symmetric and vice
versa. For a spiral wave vector Q of the form (&x — 2w n, ),
all the susceptibilities are symmetric under g, — —¢,. This
implies that those susceptibilities which are antisymmetric
for ¢ — —q are identically zero for g, = 0, and vanish in
the limit of Néel order (n — 0). Similarly, for a diagonal
spiral Q = (w — 27y, w — 27n), all the susceptibilities are
symmetric for g, <> g, and those which are antisymmetric in
q vanish for g, = g,.

The contributions %5’ and ¥{ to 3® are also either sym-
metric or antisymmetric under the transformation w — —o.
In Appendix B, we show that among the functions % ~”b all
the diagonal parts and the off-diagonal ones which do not
involve the 3-component of the spin are symmetric in w.
The off-diagonal terms involving the 3-component of the spin
are antisymmetric. X&b (¢) is antisymmetric under v — —w if
f((‘)’f(q) is symmetric and vice versa.
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In Table I, we show a summary of the generic (for arbitrary
Q) symmetries of the bare susceptibilities. Susceptibilities
with real (imaginary) coherence factors are symmetric (anti-
symmetric) under the exchange a <> b.

B. Location of Goldstone modes

We now locate the Goldstone modes in the spiral state
by identifying divergencies of the rotated susceptibilities

%(q, w).

1. In-plane mode

At (q, w) = (0,0), all the off-diagonal bare susceptibil-
ities involving a 2-component of the spin vanish: f(go and
)”(021 vanish because they are odd in q for w = 0, while )ng
vanishes because it is odd in w. Moreover, ¥ vanishes
at (q,w) = (0,0) because the intraband coherence factor
Aﬁ (k, q) vanishes for q = 0, and there are generally no in-
terband contributions to ¥’ at low frequencies. The RPA
expression for the 22-component of the rotated susceptibility
therefore takes the simple form

S22
~22 _ X0 0,0)
00 =100, 0) @9
Equations (21) and (A7) yield
- _ +
RUUEN e es)
k ek

Note that the limit q — 0, @ — 0 is unique here, since
only interband terms (¢’ # £) contribute. The denominator of
Eq. (24) vanishes when the gap Eq. (10) is fulfilled. Hence,
%22(0, 0) diverges. From Eq. (15), we see that this divergence
entails divergencies in the translation invariant part of the
physical susceptibilities x'!'(q, @) and x?*(q, ) at (q, w) =
(£Q, 0). These divergencies are associated with a massless
(that is, gapless) Goldstone mode in the xy plane [13], in
which the average magnetization is aligned. By contrast,
%'(0,0) is finite, corresponding to a massive amplitude
mode.

2. Out-of-plane modes

At zero frequency and finite q, all the off-diagonal el-
ements involving the 3-component of the spin vanish. The
contributions f(gf with b # 3 vanish as they are antisymmetric
in w, while the contributions ¥’ generally vanish for w = 0
at finite q. Hence, in this limit, the 33-component of the

susceptibility also takes a simple form:

233

g X5 (q,0)

77(q,0) = — 22— ——.
[—2073(q, 0)

In Appendix C, we show that

(26)

-\ _ (Rt
7P(£Q.0) = / T ZTED _ 24 o), @)
K 4ey

such that the denominator of Eq. (26) vanishes for q = +Q if
the gap equation is fulfilled. Therefore, the 33-component of
the susceptibility x3* = %33 contains two Goldstone modes
located at q = £Q, in this case associated with spin fluctua-
tions out of the magnetization plane [13].

C. Properties of Goldstone modes

The susceptibilities containing a Goldstone mode pole can
be expanded around the zero in the denominator as

m2

I (qa — 08")(gp — Q) = Z@ @? +iD’
(28)

where Q@ = (0¥, Q;“)) are the wave vectors of the Gold-
stone modes (Q® =0, Q® = £Q) and m is the magne-
tization amplitude defined in Eq. (1). The coefficients J;‘g
determine the diagonal and (if nonzero) off-diagonal com-
ponents of the spin stiffness. The ratios m?/Z@ define the
spectral weights of the Goldstone modes and the ratios
Jé%) /Z@ their velocities. We refer to Z( as spectral weight
factors or simply Z factors. The momentum and frequency de-
pendence of the imaginary damping term iD will be specified
below.

Z@ can be extracted from the susceptibilities as

; (29)

w=0

2
AR —’% 92 (Re

1
x(Q, w))

where 32 denotes the second derivative with respect to the
frequency w. Similarly, the spin stiffness J( can be evaluated
as

2
7 52

o= (L
ap 2 qaqp )‘Zua(q’ 0)

with 92 = -2
Gaqp 3949qp "

; (30)
q4=Q®

1. In-plane mode

The off-diagonal susceptibilities connecting sectors 0 and
1 to sectors 2 and 3 vanish for q = 0. The contributions )?Srb
vanish due to their antisymmetry in ¢, while X(‘)’i” generally
vanishes at q = 0 and low finite frequency. To compute Z®,
it is thus sufficient to invert the 2 x 2 matrix involving only
%&® with a, b € {2, 3} to obtain ¥??(0, ) from the RPA ex-
pression Eq. (19). Expanding for small w, using %5“(0, w) =
%5400, 0) + O(w?) and X§3(0, W) = —XSZ(O, w) = O(w), one
obtains

z? = 2A2[a; %20, o), _,

4U

+ aw
1-20730, 0 — 0)|

Xg?,(o’ w)|w=0|2]'

3D

For 5(33(q, w) and several other quantities appearing in the
following formulas, the limit (q, @) — (0, 0) is not unique, so
we have to specify whether frequency or momentum vanishes
first.

To compute the in-plane spin stiffness, one has to take
into account only the components of the susceptibilities with
a, b € {0, 1, 2}, since the three-component gets decoupled for
w = 0. The function ¥?*(q,0) can be extracted most effi-
ciently from the RPA expression Eq. (19) by using a suitable
Schur complement for inverting the matrix (see Appendix D).
Expanding the matrix elements to second order in q, one

134426-4
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obtains

1
—5—— =2U|1-2U%;*(q,0)
%%(q.0) [ °

—2U Y %“q.0)(q — 0,0) %(q. 0)}
a,b=0,1

+0(q*). (32)

The matrix T'(q) represents the RPA effective interaction in
the subspace spanned by the charge channel and the spin
channel in the x direction:

- - -1
Fg) = [12 B (—ZU 0 )(x(?‘)(q) x(?‘(q)ﬂ
0 2U\x"@ %'@
—-2U O
X ( 0 ZU)' (33)
The matrix elements ['*(g) with a, b € {0, 1} are all finite for
w=0andq — 0.

Inserting Eq. (32) into Eq. (30), the stiffness of the in-plane
Goldstone mode can then be expressed as

) 21 a2 =22
Jog = 24 [aq P GRCT 0)|q=o

+2 ) (3, %@ 0)] )T (@ — 0,0)

a,b=0,1
< 7@ 0, )]- a4

For a two-dimensional spiral state with a wave vector of
the form Q = (& — 271, ), the spin stiffness is diagonal in
the spatial indices, that is, J, (yz) =JP =0, while J& # J
for n > 0. The second term 1n Eq. (34) is nonzero only for
o = B =y. By contrast, for a diagonal spiral with Q = (7 —
2wy, w — 2mn), we have J(z) = J(Z) #0, and J?® = J)(,yz). In
this case, the second term 1n Eq. (34) does not depend on «o
and 8.

We now determine the momentum and frequency depen-
dence of the leading imaginary term describing the damping
of the in-plane Goldstone mode for small q. Imaginary
contributions to the diagonal susceptibilities arise from the §-
function contributions Xol to Xo For small frequencies (and
small q), only intraband terms (¢ = £’) contribute since El:’ —
E, > 2A. We expand the imaginary part of 1/ 7%(q, o) for
small q, keeping the ratio ® = w/|q| fixed. The coupling to
the 3-component can be neglected, since the intraband co-
herence factor A%?(k —q/2,q) is of order |q|?> for small q.
Hence, for the imaginary part, the expansion Eq. (32) can be
generalized to

1 2| 522 5 2a
i = —4U [ b (q,a))—I—ImahX:;lxo (q, ®)

x (0, 0) 75%(q, w)} +0(ql*)  (35)

for small q and fixed finite &. Note that ['“?(0, 0) depends
on & and also on the direction of q in the limit ¢ — 0. We
will now show that both terms in Eq. (35) are of order |q|? at
fixed @.

Shifting the integration variable k in Eq. (21) by —q/2, the
imaginary part of )Zgz(q, w) can be written as

/ > ALk —q/2.q)

e
* [f(Ex_qp2) = F(Eiq)]
x 8(&+ Ex_q — Expqp)- (36)

For small frequencies, only intraband terms contribute. The
intraband coherence factor

X()l (qa C())

hi—qp2hiiqp2 + A2

AZk—q/2,q)=1— 37)

€k—q/2€k+q/2

is of order |q|* for small q. Expanding Ey, » — Ey o, =4
VkElf + O(|q/*) and using 8(|q|x) = |q|~'8(x), we find that
%37(q, w) is of order |q/|%.

Since the effective interaction I'*’(0,0) is real, the
second term in Eq. (35) receives contributions only
from the cross terms ”(q, )% (0, 0) on(q, w) and

%34(q, )T (0, 0) 7t (q, a)) For small w, only intraband
terms contribute to xg“(q, o) and %?(q, ®). Both are of order
q for small q at fixed &, because the intraband coherence
factors Aog(k q) = —A%?(k q) and A (k q) —Azl}(k q)
are of order q. Moreover, Xof(q, ) and X0r 2(q, w) are anti-
symmetric in q and thus of order ¢, too. Hence, the second
term in Eq. (35) is of order Iq/%.

In summary, we have shown that the damping term of the
in-plane Goldstone mode has the scaling form

2

m
m-—————-
1*(q, w)

where y(q, &) is a function of § = q/|q| and ® = w/|q|. The
scaling function y (§, ®) has the same sign as & and vanishes
for & = 0. The damping of the in-plane mode thus has the
same form as the Landau damping of the two Goldstone
modes in a Néel antiferromagnet [7]. It is of the same order
as the leading real terms near the Goldstone pole. Hence, the
damping of the in-plane Goldstone mode is of the same order
as its excitation energy, that is, of order |q|. Asymptotically
stable low-energy quasiparticles require damping rates that
vanish faster than their excitation energy in the low-energy
limit. The in-plane Goldstone mode in a metallic spiral state
and the Goldstone mode in a metallic Néel state violate this
criterion, albeit only marginally.

= —lq/*¥(q, ® + 0(q]*), (38)

2. Out-of-plane mode

We derive the expression for the out-of-plane spectral
weight factor Z) in a rotated spin basis spanned by §7" =
%(S} + iSf) instead of S} and S% The coherence factors in
this basis,A% witha, b € {0, +, —, 3}, are all real. The matrix
elements of the bare interaction matrix I'g with indices + are
[~ =T,"=4U and I'{* =T;~ =0. The components
xT~ and x~T of the physical susceptibility are diagonal in
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momentum space, while x ™+ and x ~~ are off-diagonal, with
a momentum shift Q.

For q = Q and finite w, the 3-component of the spin cou-
ples to all the other spin components and the charge channel.

J

13(Q, w)

The function ¥ (Q, w) can again be extracted from the RPA
expression Eq. (19) by using a suitable Schur complement.
Expanding the matrix elements to second order in w, one
obtains

1 =2U[1—2U>~<33<Q,w>—2u > 23“(0,w)F"’b(Q,omé;%Q,w)}+0<w3>, (39)

a,b=0,+,—

where the bar over the indices a and b leaves the index 0 unchanged, while it exchanges the indices + and —. Here, the matrix
I"(q) represents the RPA effective interaction in the subspace spanned by the charge channel and the in-plane spin channel in the

basis spanned by ST and §™:

) 20 0 0\ (%@ XK@ X (@ 22U 0 0
Tg=|1- 0 4 0 %°@ % @ '@ 04U 0| (40)
0 0 W\HK@ % @ %@ 0 0 4
Inserting Eq. (39) into Eq. (29), the out-of-plane spectral weight factor can be expressed in the form
Z® = 2A2 [a;xg%Q, 0,02 Y. (3.1Q. o), ) T™(Q.0)(3.%° Q. w)|w:0)}. (41)
a,b=0,+,—

This expression is real, because f(&?(q, ) is antisymmetric in
o, while %3%(q, w) with a # 3 is symmetric.

The expression for the out-of-plane spin stiffness is
comparatively simple, since all off-diagonal susceptibilities
involving the 3-component of the spin vanish at w = 0. Ex-
panding around q = £Q, one obtains

g = =207 00 757 (@, 0)] o (42)

For the most common spiral states in two dimensions with
wave vectors of the form Q = (w, 7 —27n) and Q = (7 —
27, w — 2mn), the spatial structure of J;, Vi is the same as for

the in-plane stiffness Jo(lz) discussed above.

We finally determine the asymptotic momentum and fre-
quency dependence of the imaginary part of 1/%*(q, w) for
q near £Q, which determines the damping of the out-of-plane
Goldstone modes. We discuss the case q ~ Q. The behavior
for q ~ —Q is equivalent.

We first analyze the lo- frequency asymptotics for q =
Q and show that all contributions to the imaginary part of
1/%%*(Q, w) in Eq. (39) are of order w>. The first contribution
is determined by the imaginary part of the bare out-of-plane
spin susceptibility:

Qo) =7 [T ARk QU (E) - 5o
0,0

x8(w+ Ey — Ef o) (43)

For small frequencies w, only momenta corresponding to
small energies E and E{, of order o contribute to the k in-
tegral. These momenta are restricted to a small neighborhood
of hot spots Ky defined by the equations

Ey, =Ey,.q=0. (44)

Geometrically, the hot spots are the intersection points of the
Fermi surface of E}! and the Q-shifted Fermi surface of E{ . In

(

our two-dimensional case studies (see below), we have only
found intraband (£ = ¢’) hot spots. While we cannot exclude
the existence of interband hot spots in general, we restrict the
subsequent analysis to intraband contributions.

For ¢ = ¢/, Eq. (44) is equivalent to

E,, =0 and &, = &k,+20- (45)

We note that for a Néel state, where 2Q is a reciprocal lattice
vector, the second equation is always satisfied, so all momenta
on the Fermi surface of E{’ are hot spots. The condition &, =
&k, +20 implies that Ay, o = —hx,. As a direct consequence,
we find that A;’Z’g’(ky, Q) = 0 and also VkAgf(k, Q)lk=x, = 0.
Hence, the coherence factor leads to a strong suppression of
%32(Q, w) at low frequencies. For small , the momenta k
contributing to the integral in Eq. (43) are situated at a distance
of order w away from the hot spots. For such momenta, the
coherence factor A?E (k, Q) is of order w?, since AZ? (k, Q) and
also its gradient vanish at k = ky. Multiplying this with the
usual factor @ coming from the difference of Fermi functions,
we obtain

%5 (Q, w) x (46)

for small w.

We now turn to the second contribution to the imaginary
part of 1/)233 (Q, w) in Eq. (39), which involves the oft-
diagonal bare susceptibilities %3 and ¥$° with a € {0, +, —}.
Since the static RPA effective interaction in Eq. (39) is real,
contributions to the imaginary part of 1/%3*(Q, ) are due to
products of real and imaginary parts of the off-diagonal bare
susceptibilities. The real parts %3(Q, w) are antisymmetric in
the frequency argument and thus of order w for small w. The
coherence factors A%‘g(k, Q) vanish at the hot spots, but their
gradients VkAE’Z (k, Q) are finite at k = ky . Hence, following
the above arguments used to determine the low frequency
dependence of %3?(Q, w), we obtain

%4(Q, ) x 47)
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for a € {0, +, —} and small w. The product of imaginary and
real parts of off-diagonal bare susceptibilities is thus of order
3. Combining all terms, we have thus shown that the out-of-
plane damping term at q = Q obeys

2
Im—— & &’ (48)
P Q. w)
at low frequencies.
For q # Q, the coherence factors remain finite at the hot

spots (now determined by the equations E; = E/ 1q=0)s0

-p(Qo (49)

for small w and a € {0, +, —, 3}. However, the prefactor of
this linear frequency dependence vanishes as q approaches the
ordering wave vector Q. For the diagonal intraband coherence
factor Azz’ (k, q), also the gradient with respect to q vanishes
at k = ky and q = Q. Hence p*3(q) is of order (q — Q)>
for ¢ — Q. For a # 3, the gradient V4A}4(k, q) is finite at
k = ky and q = Q, so p**(q) is of order |q — Q| for q — Q.
Eq. (39) can be generalized in the same form for q # Q. For

o — 0 the contribution from ¥3(q, ®) is leading and yields

%54(q, ©) =

m2
m-———-—
1¥(q, 0)

where y(q) « (q — Q)? for q — Q. The off-diagonal con-
tributions to the damping term are of order w’® for q # Q,
with a prefactor that is linear in |q — Q|. Taking the limit
o — 0,q — Q at a fixed ratio ® = w/|q — Q|, diagonal and
off-diagonal contributions are both of order |q — Q|>. The
Landau damping of out-of-plane Goldstone modes thus scales
to zero more rapidly than their excitation energy, so these
modes remain asymptotically stable quasiparticles.

The above results for the Landau damping hinge on the
existence of hot spots. If Eq. (44) has no solution, the imagi-
nary parts of the RPA susceptibilities are strictly zero below a
certain threshold frequency. Higher order terms beyond RPA,
such as fermionic self-energy contributions, will, however,
yield a small low-frequency damping in any case.

Although electron and hole pockets coexist in the Brillouin
zone for certain model parameters, we have not found any
interband hot spots in spiral states for the two-dimensional
Hubbard model. If interband hot spots existed in a suitable
system, an exceptionally large Landau damping would fol-
low. Since the interband coherence factor A}*_, (k, Q) remains
finite at the interband hot spots, the Landau damping term
would be linear in w even at q = Q, leading to a strong
overdamping of the out-of-plane Goldstone mode.

= —y(Q) o+ 0(?), (50)

D. Special case: Néel state

The Néel state can be viewed as a special case of the spiral
state where the ordering wave vector Q assumes the special
value Q = (;r, ) in two dimensions and Q = (7, 7, ) in
three dimensions. In this section we analyze how the proper-
ties of the Goldstone modes derived above change in this case.
In particular, we will see that the number of Goldstone modes
is reduced to two, and their properties are equivalent.

The special properties of the Néel state are due to the fact
that Q and —Q are identical wave vectors in the Brillouin

zone if all components of Q are equal to 7. In other words,
2Q is identical to 0. As a first consequence, in the relation
between the physical susceptibilities x'! and x?? and the
susceptibilities ¥ in the rotated spin basis, see Eq. (15),
terms which in the spiral state contribute only to off-diagonal
(in momentum) susceptibilities x “*(q £ 2Q, q, w) contribute
to the momentum diagonal susceptibilities x““(q, q, w) in the
Néel state. Hence, instead of Eq. (15), one obtains

x'(q,0)=7"(q+Q w), (51)

x2(q, 0) = (@£ Q, w). (52)

In the spiral state, we found three distinct Goldstone
modes, an in-plane mode associated with a divergence of
%%22(q, w) for ¢ — 0 and w — 0, and two out-of-plane modes
leading to divergencies of ¥*(q, w) forq — +£Q and w — 0.
In the Néel state, the two singularities of ¥33(q, w) collapse
to one, since Q and —Q are now identical. Hence, only two
Goldstone modes survive. This is in agreement with the fact
that in the Néel state the continuous SU(2) spin rotation invari-
ance is not completely broken: a U(1) symmetry associated
with rotations around the spin-orientation axis remains. More-
over, in the Néel state the notion of in-plane and out-of-plane
modes is meaningless since the Néel order singles out a partic-
ular axis, not a plane. The two Goldstone modes correspond
to fluctuations of that axis in two orthogonal directions. By
symmetry, they must have the same stiffness, spectral weight,
and damping. We will now show that the properties of the
in-plane and out-of-plane modes derived in the preceding
section are indeed degenerate in the Néel limit.

In Appendix E, We show that the off-diagonal bare sus-
ceptibilities 3%, %5°, %42, and ¥’ vanish identically in the
Néel state. Hence, sectors 0 and 1 are completely decoupled
from sectors 2 and 3 for all momenta and frequencies. The
expression Eq. (34) for the in-plane stiffness thus simplifies to

Jg) = =280, %57, 0)| - (53)
Comparing with Eq. (42) for the out-of-plane stiffness, and
using the relation ¥32(q, ) = %3°(q + Q) derived in Ap-
pendix E, one finds J, 0%) =J 0(33) as expected.

Due to the decoupling of sectors 0 and 1 from sectors 2 and
3, one can write Z® in a form analogous to the expression
Eq. (31), that is,

7(3) _ 9 A2 [83))?33@7 o), g

4U

+ 1 -2U35%(Q,0)

DR RCROTIN

Using once again Xo (q, w) = Xog(q +Q), and ¥; 3(q, w) =
53 (q + Q) derived in Appendix E, one obtains Z(z) =79,
We finally turn to the damping terms. In the Néel state, the
intraband coherence factor Aﬁ(k —q/2, q) is not only sup-
pressed (of order |q|?) for small q but also for ¢ — Q, where
it is of order |q — Q|?. Combining this with the decoupling of
sectors 0 and 1 from sectors 2 and 3, one obtains

1

m——— = —4U%}
1% (q, w)

2(q,w)+0(q) (55
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for small q, and

1
m ——-=
13 (q, )

for small q — Q. The relation )N(gz(q, w) = )~(33(q + Q) then
implies that the damping of the 2-mode and 3-mode is
identical. Returning to the susceptibilities in the physical (un-
rotated) spin basis, one obtains

I —4U%33(q, ) + O(lq — QP)  (56)

m2 2

m—— =Im ——
x*(q, w) x3(q, w)

=—qd'Py@. &)+ 0(q'")
(57)
for small ' = q — Q and fixed ® = w/|q/|. This form of the

Landau damping in a Néel state has already been derived by
Sachdev et al. [7].

E. Numerical results in two dimensions

To complement our general results and to get an idea about
the typical size of the spin stiffnesses and the damping terms,
we now present some numerical results as obtained by eval-
uating the analytic expressions derived above for a specific
model in two dimensions: the repulsive Hubbard model on
the square lattice with nearest- and next-to-nearest neigh-
bor hopping amplitudes (¢ and ', respectively). We choose
¢t as our unit of energy, that is, all results with an energy
dimension are presented for t = 1. We compute only ground-
state properties. We choose t’ = —0.16¢ and a relatively weak
Hubbard interaction U = 2.5¢. For this choice of parameters,
mean-field theory yields a homogeneous spiral magnetic state
over an extended density range between n &~ 0.61 and n = 1
(half filling). At half filling and for electron doping up to
n =~ 1.15, the simple Néel state minimizes the mean-field
energy. In the spiral state for n < 1, the ordering wave vector
has the form Q = (7 — 27 n, ). The incommensurability n
increases monotonically upon reducing the density, and van-
ishes continuously for n — 1. The onset of the spiral order at
n ~ 0.61 is continuous, while the transition between the Néel
state and the paramagnetic state at n & 1.15 is of first order,
albeit with a relatively small jump of the order parameter. The
magnetization m and the incommensurability 7 are plotted as
functions of the electron density » in Fig. 1.

The instability of the Néel state toward spiral order at
arbitrarily small hole doping inevitably occurs for sufficiently
strong coupling, as has been noted already long ago [8,13].
For pure nearest-neighbor hopping, the Néel state is unstable
for any coupling strength. This instability can be attributed to
a negative contribution to the spin stiffness from hole pockets,
which increases with the coupling strength and overcompen-
sates the positive interband contributions beyond a certain
critical coupling strength [13]. For weaker interactions, the
Néel state remains stable in a finite doping range near half
filling. Within the RPA, our coupling U = 2.5¢ is slightly
above the critical coupling. In Fig. 2, we show the quasipar-
ticle Fermi surfaces in the magnetic ground state at various
electron densities from n = 0.63ton = 1.1. For n < 1, these
are given by momenta satisfying the equation E_ = 0, for
n > 1 by solutions of E," = 0. In the spiral state for n < 1, hot
spots corresponding to solutions of Egs. (44) or (45) exist only
for sufficiently large hole doping at n = 0.84 and n = 0.63.

0.25
0.200
0.175

0.20
0.150
0.15 0.125
m 0.100

E n

0.10
0.075
0.050

0.05
0.025
0.00 === 10.000

0.6 0.7 0.8 0.9 1.0 11 12
n

FIG. 1. Magnetization m (left axis, solid line) and incommensu-
rability n (right axis, dashed line) as a function of the electron density
n in the mean-field ground state of the two-dimensional Hubbard
model with parameters '/t = —0.16 and U/t = 2.5.

Hence, for low hole doping, such as n = 0.95, there is no
Landau damping of the out-of-plane magnons. In Fig. 3, we
show the in-plane and out-of-plane spin stiffnesses J;‘;}) as a
function of the electron density. Both in the spiral state for
n < 1 and in the Néel state for n > 1, only diagonal compo-
nents J\% with & = x, y are nonzero. In the Néel state, the
stiffnesses are isotropic (independent of «) and degenerate

1.00 ﬂ
0.75

5
0.50 x
0.25

n=20.9

ky/m
L
7/

n =084 n = 0.63

s

ky/m
s B nES
N

—0.75 Z «

10 —05 0.0 0.5 0 -10  —05 0.0 05 1.0
ky/m k)T

FIG. 2. Quasiparticle Fermi surfaces in the magnetic ground
state at various electron densities. Blue lines correspond to momenta
satisfying E,f = 0, red lines to momenta satisfying E,_ = 0. The
dashed vertical lines at k, = 27n and k, = 2w n — 7w are solutions
of the equation &y ,q = &. Forn = 0.84 and n = 0.63, there are hot
spots on the Fermi surfaces (black dots) which are connected to other
points on the Fermi surfaces (grey dots) by a momentum shift Q.
The numbers indicate the pairwise connection. In the Néel state at
n = 1.1, all points on the Fermi surface are connected to each other
by Q = (7, 7).
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FIG. 3. In-plane and out-of-plane spin stiffnesses as a function of
the electron density. In the Néel state for n > 1, all stiffnesses assume
the same value.

(2 =J9), as dictated by symmetry. The spin stiffnesses
are positive for all densities where a magnetic solution exists,
showing that the spiral state for n < 1 and the Néel state
for n > 1 are stable with respect to small variations of the
order parameter, including variations of the wave vector Q.
In the spiral state, the in-plane and out-of-plane stiffnesses
differ significantly among each other, except for the lowest
densities (where m — 0) and near half filling. Both exhibit
a slight nematicity (dependence on «) which comes from
the difference between Q, and Q,. All spin stiffnesses J@
exhibit a pronounced jump at half filling. More precisely,
upon approaching half filling from below (n < 1), the stiff-
nesses converge to a value that differs from J{%) at half filling.
This discontinuity is caused by the sudden appearance of
hole pockets upon hole doping, which allow for intraband
processes with small excitation energies. A discontinuity due
to electron pockets upon approaching half filling from above
(n > 1) is prevented by vanishing prefactors at the momenta

FIG. 4. In-plane and out-of-plane spectral weights as a function
of the electron density. In the Néel state for n > 1, both weights
assume the same value.
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FIG. 5. In-plane and out-of-plane magnon velocities ¢ =

1/2 . .
[J9/Z@]"" as a function of the electron density.

(m,0) and (0, ), where the electron pockets pop up. The
density dependence of the spectral weights of the magnon
modes m?/Z@ is shown in Fig. 4. In the spiral state forn < 1,
there is a pronounced difference between the in-plane and
the out-of-plane modes. The discontinuity of m?/Z® at half
filling is again due to intraband contributions within the hole
pockets emerging for n < 1. By contrast, m?>/Z® is continu-
ous, since only interband terms contribute to the in-plane Z
factor. Both spectral weights are positive in the entire ordered
phase. The spectral weights decrease near the edges of the
magnetic regime, since m? vanishes more rapidly than Z@
upon approaching the edges. The weight of the out-of-plane
mode m?/Z® exhibits a dip at the density n ~ 0.84 where
two hole pockets merge. In Fig. 5, we show the magnon

- 1/2 - o
velocities ¢@ = [J@) /Z(@] /. The velocities exhibit only a

x10~4

\ — @ =0.40, # = 0.007, v = 0.0036 /
— w =0.40, § = 0.257, v = 0.0030
— @ =040, § =0.50m, v = 0.0019

0.81

o == & =0.75, 6 = 0.00m, 7 = 0.0038
3 067 = & =075, § = 0.25, ¥ = 0.0026
Z , 6 =0.50r,
&
1=
=047
g
s
I 0.2
0.01
015  —010  —005 0.0 0.05 0.10 0.15

q

FIG. 6. Damping term of the in-plane Goldstone mode as a func-
tion of |q| for two fixed values of & and a density n = 0.84. Various
directions of q are parametrized by the angle 6 between q and the ¢,
axis. The prefactor y of the leading quadratic dependence on |q]| is
shown in the inset.
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20><10“
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15 dq = (0.1,0.0), 7, = 0.0007
. —— dq=(0.2,0.0), 7 = 0.0035
3 104 = 9a=(00,0.1), 1 =0.0006
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w

FIG. 7. Damping term of the out-of-plane Goldstone mode as a
function of w for various fixed wave vectors q near Q = (0.82x, )
and fixed density n = 0.84. The prefactors y; of the linear frequency
dependence for q # Q and the prefactor y; of the cubic frequency
dependence for q = Q are shown in the inset.

moderate density dependence. Their size is of order one (in
units of ¢) in the entire magnetic regime. In Fig. 6, we plot
the in-plane damping term Im[m?/%?*(q, )] as a function of
|q| at two fixed values of ® = w/|q| and three fixed directions
q = q/|q|. The density is fixed at n = 0.84. One can see the
quadratic dependence on |q| in agreement with Eq. (38). The
prefactors y(®, ) are shown in the inset. The frequency
dependence of the out-of-plane damping Im[m?/%3(q, w)] is
shown in Fig. 7 for various fixed momenta q at and near Q.
For q = Q, the damping is proportional to * for low frequen-
cies, in agreement with Eq. (48). For q # Q, one can see the
linear frequency dependence in agreement with Eq. (50). The
prefactors of the leading cubic and linear terms are listed in
the inset.

IV. CONCLUSION

In summary, we have investigated the properties of the
Goldstone modes (that is, magnons) in metallic electron sys-
tems with spiral magnetic order. Our analysis is based on the
RPA susceptibilities of tight-binding electrons with an arbi-
trary dispersion and a local Hubbard interaction. In agreement
with general arguments and previous studies [26-29], we have
identified three Goldstone poles in the susceptibilities, one
associated with in-plane, and two associated with out-of-plane
fluctuations of the order parameter. The energy-momentum
relations of all the modes are linear.

We have derived expressions for the spin stiffnesses and
the spectral weights of the magnons, from which the magnon
velocities can be obtained, too. The expressions for the spin
stiffnesses are also useful for checking the stability of the
spiral state against small variations of the magnetic order
parameter. Moreover, we have determined the size of the
decay rates of the magnons due to Landau damping. The
Landau damping of the in-plane mode has the same form as
for the Goldstone modes in a Néel antiferromagnet [7] and is
of the same order as the energy w of the mode. By contrast, the

Landau damping of the out-of-plane modes is parametrically
smaller, of the order w*/2. Hence, the out-of-plane modes are
asymptotically stable excitations in the low energy limit.

We have complemented our general analysis with a nu-
merical evaluation of the spin stiffnesses, spectral weights,
and decay rates for a specific two-dimensional model system.
Some of the quantities exhibit peaks and discontinuities as a
function of the electron density which are related to changes
of the Fermi surface topology and special contributions in the
Néel state.

We have computed the spin stiffnesses and spectral weight
factors by expanding the inverse magnetic susceptibilities at
the Goldstone points to second order in momentum and fre-
quency, respectively. Alternatively, one can also derive these
quantities from the response to a SU(2) gauge field. Ward
identities guarantee the equivalence of both approaches [32].

Magnons and their decay rates can in principle be detected
by inelastic neutron scattering. Our analysis indicates that out-
of-plane magnon branches in a metallic spiral magnet should
be sharper than the in-plane branch at low excitation energies.
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APPENDIX A: COHERENCE FACTORS

The coherence factors entering the bare susceptibilities )”(gb

in Eq. (21) are defined as

A?Z (k7 q)

where ¢, ¢’ are the quasiparticle band indices, a € {0, 1, 2, 3}
labels the charge and spin components, and the functions
uﬁ are the linear combinations of Pauli matrices defined in
Eq. (9). Performing the trace we obtain explicit expressions.

For the charge-charge coherence factor, we get

srfo®ug o u, . (AD)

, hxhiq + A2
ARk, q) =1+ ¢ =X T 2 (A2)
€k€k+q
while for the charge-spin ones we find
01 ;A
A%k, q) = Py (A3)
€k ek+q
02 o A — Mg
Ak, q) = itl! A———, (A4)
€k€k+q
h h
AB(k,q) = €= + ¢ =9 (A5)
€k €k+q

The diagonal coherence factors in the spin sector are given by

hhiq — A?
ALk, q)=1—g¢ X292 (A6)
€kCfk+q
,h hyyq + A2
AZ(k,q)=1—¢0 22T (A7)
€k€k+q
hichiciq — A
AB Kk, q) =14 X972 (A8)
€k€k+q
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and the off-diagonal ones by

I h
Ak, q) =it = — ¢ =9, (A9)
€k ek+q
I+ h
Ak, q) = €€ AM, (A10)
€klkiq
Bk, q) = il i B (Al1)
€k ek+q

The coherence factors for a > b are obtained from the general
relation A%’, k,q) = [AM,(k, q)]*. The coherence factors are
purely imaginary if (and only if) exactly one of the indices
a, b is equal to two and they are real otherwise. Hence, the
exchange of the indices a and b yields

A%k, q) = p*p" AL (K, q), (A12)
where p* = +1 fora =0, 1, 3, and p* = —1 fora = 2.
From & = &_g one obtains the relations h_x_q = —hx,
g-k-Q = &k» €-k-Q = €k, and uka_aluf( o!. From
Eq. (23), we then see that
A (—k —Q —q.q) = jtr[6°uy 6 ug |, (A13)

Wlth 6% = olo%! = 5909, where s¢ = +1 fora = 0, 1, and

= —1 for a = 2, 3. Using Eq. (A12), we then obtain

A%(—k —~Q—q,q) = s"s"A% (k, q) = s AL (k, q),
(Al14)
where

s = 598 pipb = (1 — 28,3)(1 — 2843). (A15)

The relation Eq. (A14) will be useful in the following section.

APPENDIX B: SYMMETRIES OF THE BARE
SUSCEPTIBILITIES

In this Appendix ,we derive the behavior of the bare sus-
ceptibilities under sign changes of the frequency and the
momentum arguments.

1. Parity under frequency sign change

We decompose the expression Eq. (21) for the susceptibil-
ity components in intraband and interband contributions

(Ex) — f(Eiq)
~ab - Aah k +q
0 (q, w) = E / 2e( —k+q+z

——Z [ (5) /L)
ot L - Bl +2
(BI)

where z = w + i0". Substitutingk — —k — Q — q, the intra-
band term can be rewritten as

[ng(q’ mtra =73 Z/AZZb(k q) ( )

k+q +z
—§Z/kA%’(—k—Q—q,q)
14
F(ELy o)
- . (B2)
Ely g Exqq—%

Using Eq. (A14) and E¢,_, = E{', we obtain

[X b(qv a))]lnll‘d - 5 Z/Azf(k q)f(Ek)

( 1 . sb
o Y 7 7 7 .
Ef—Ef +z Ef—El -

(B3)
Similarly, the interband term can be rewritten as
a p f
[Xob(q’ 1nter - Z /Aeb Z(k q) ( )
k+q Tz
- ngkAi’z,@(—k—q—Q, @
¢
EZ
o) (B4)
E7k7Q — Efkaf(1 -z

In the second term, we have also made the substitution £ —
—£. Using Eq. (A14) for ¢’ = —¢, we get

1
[X(L)lb((L @) linter = _g Z /kAZ,b—K(k: q)f(Elf)
4

( 1 - )
X +

—¢ —¢ ’
Ex—Eggtz E—Eg —z

(B5)
with 5% as defined in Eq. (A15). Summing the intraband and
the interband terms, we obtain
sab

6(q, —w) = sx$0(q, w), (B6)
1(q, —w) = =575 (q, w). (B7)

2. Parity under momentum sign change

Substituting k — k — q/2, we rewrite the bare susceptibil-

ity as
b(q’ a)) —— Z /A%)/ - =, q)
F1EL) =/ (ELy)
X P o (B8)
k-3 k+‘l o+
Using
a q a q q
Ae/l;z<k+ 2 _Q> ZAZe’(k 3 Q> =pp Aee'( - E,Q),
(B9)
with p® as defined in Appendix A, we immediately find
%" (—a, —w) = pp’ 5"(q, ). (B10)
Combining this with Egs. (B6) and (B7), we obtain
X5 (=g, 0) = pP I (q, w), (B11)
60 (—q, ) = —p™ %5 (@, @), (B12)
where
P _ papbsab _ susb
= (1 = 28,2)(1 = 28,0)(1 — 2843)(1 — 2853).  (B13)
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APPENDIX C: CALCULATION OF ¥3(Q, 0)

In this Appendix, we prove the relation Eq. (27) for
7(33(—Q, 0). The corresponding relation for 5(33(Q, 0) fol-

J

lows from the parity of ¥%;°(q, @) under ¢ — —q. Using the
general expression Eq. (21) for the bare susceptibility and
Eq. (A8) for the coherence factor Azf (k, q), one obtains

+ + - -
)~(33(_Q7 0) — _l / [1 + /’lkl’lk_Q — Az](f(Ek ) - f(Ek,Q) f(Ek ) - f(EkQ))
8 Jk exex—Q EY -El, E. —E_,
1 / [1 hkhk,Q - Azil(f(E]j) - f(EQ,Q) f(Elz) - f(E]:rQ))
8 Jk exex—Q Ef —E_, E. - Ef,
1 hh_x + A? E! hh_x + A? Ef
=__Z/”:]_k K + ]{(k)e +|:1+k kK + ]{(k)—{}
4 =2 /K €xe_k Ek — Efk exe_k Ek — Efk
_y / (—0O)f (Ey) {%ek(gk — g-1) + 2 (e — h_y) } o
=+ Yk de (Elf - E:lf)(Elf - Efk)
[
In the second equation, we have used hx_q = —h_x, ex_q = To compute the RPA susceptibility ¥ = ¥o[1 — To%o]™", we

e_x, and Elf_Q = E*_. It is easy to see that the linear com-
binations g, = gk — gk, hjy = hx = h_y, and ¢} = ex T e_x
obey the relations b hf = hj — h*, = ef — ¢*, = ¢, ¢, and
h, = —g . Using these relations, we finally get

—O)f(E¢
=+ 7k

€k

2Eekg; + thhl:
(8 + e )(gy +Ley)

(8 + e ) (g, + Ley)

_y / (=Of(EQ) _ /f(E;)—f(EJ)
e de k €k .

(C2)

_y / (—0)f (E) 2texgy + e &) + (g5)?
=t vk dex

APPENDIX D: EXPANSION OF 1/%%(q, 0) FOR SMALL q

Here we derive the expansion of 1/%%2(q, 0) for small q to
quadratic order by using a block form of the susceptibility ma-
trix and Schur’s complement. The expansion of 1/%33(Q, w)
for small w proceeds in close analogy.

Since 7(6‘3(q, 0) = )Zg“(q, 0)=0 for az#3, the
3-component is decoupled from all the other components
for w = 0, so we need to consider only matrix elements with
indices 0,1,2. Hence, in this Appendix, ¥, Xo, and Iy denote
3 x 3 matrices formed only by these matrix elements. We
write ¥o and I'y in block form

v 0

xo=(ff$ ng), Fo=(2° ZU), (o1
where
io=(§§2 fﬂ), fo=<_§U 2(,)]) (D2)
and
v=<§§§> o = (7 1. (D3)

need to invert

- 1> — ToXo —Tov
1; - T = . . D4
3—Toko < U 1—2U)~(022> (D4
The inverse of a block matrix
A B
M= (C D) (D3)

with matrices A, B, C, D can be written as [33]

_ A" +A7'BS"lcA”!  —A~!BST!

I _

M= ( —s-lca™! st ) (D9
where S = D — CA™'B is the so-called Schur complement.
The irlverse of 15 —_Fo Xo is thus given by Eq. (D6) with A =
1, — Tojo, B=—Tov, C = —2Uv", and D =1 —2U 33>
Multiplying by jo on the left, one obtains

7%(q,0) =v'(q, 0) - w(q, 0) + 72*(q, 0)/S(q, 0), (D7)

where w = —A~'BS~!.

A converges to a finite 2 x 2 matrix forq — 0, B and C are
linear in q for small q, and D is of order q*. Hence, the second
term in Eq. (D7) diverges as 1/q> for q — 0, while the first
term tends to a constant and thus becomes irrelevant. Using
%3%(0,0) = (2U)~" we thus obtain

% =2U{1 - 2U%;%(q,0)
x>°(q,0)
—2Uv'(q, 0)[12 — ToFo(0, 0)] ' To v(q, 0)}
+0(q). (D8)
Defining I' = [1, — TgXo]~' T, one obtains Eq. (32).
APPENDIX E: BARE SUSCEPTIBILITIES
IN THE NEEL STATE

Since Q and —Q are equivalent wave vectors in the Néel
state, the functions gk and Ay obey the relations gk+q = gk
and hyxiqQ = —hx, respectively, and ey q = ex. Hence, the

134426-12
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quasiparticle energies E; and the functions Fyp (K, q, @) de-
fined in Eq. (22) are invariant under a momentum shift by Q,
that is, ElerQ = E]f and Frp(k + Q, q, w) = Fue (k, q, o).

The coherence factors A%, (k, q), A%, (k, q), A}7 (k, ), and
Aég (k, q) change signs under a momentum shift k — k + Q.
Hence, in the momentum integral in Eq. (21) for the cor-
responding bare susceptibilities, contributions from k and
k + Q cancel, such that

%63(q, ) = 7°(q, ©) = %,*(q, ®) = %5°(q. w) = 0. (El)

From the obvious relation A7} (k, q) = A}, (k, q + Q), one
obtains

%2(q, ) = 75> (q + Q, w). (E2)

Similarly, A% (k, q) = A% (k, q + Q) yields

% (q, 0) = 75> (@ + Q, w). (E3)
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