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Ground-state phase diagram and thermodynamics of coupled trimer chains
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The density matrix renormalization group and quantum Monte Carlo methods are used to describe coupled
trimer chains in a magnetic field h. The Hamiltonian contains exchange terms involving the intratrimer coupling
J1 (taken as the unit of energy) and the intertrimer coupling J2, plus the Zeeman interaction for a magnetic
field h along the z direction. Results for the magnetization per trimer m are calculated in regimes of positive
and negative values of the ratio J = J2/J1, from which the rich field-induced ground state phase diagram h
versus J is derived, with the presence of a Luttinger liquid, the 1/3 plateau (m = 1/2), and the one of fully
polarized magnetization (m = 3/2). Also, zero-field Lanczos calculation of the spin-wave dispersion from the
1/3 plateau for Sz = 1 is shown at the previous regimes of J values. In addition, we also report on the decay of
correlation functions of trimers along open chains, as well as the average two-magnon distribution. The ground
state is ferrimagnetic for 0 < J � 1, and is a singlet for −1 � J < 0. In the singlet phase, the spin correlation
functions along the legs present an antiferromagnetic power-law decay, similar to the spin-1/2 linear chain, thus
suggesting that the ground state is made of three coupled antiferromagnetically oriented chains. In the singlet
phase, the dimensionless thermal magnetic susceptibility per site normalized by 1/|J| gets closer to 1/π2 as
the temperature T → 0. For the ferrimagnetic phase, we fit the susceptibility to the experimental data for the
compound Pb3Cu3(PO4)4 and estimate the model exchange couplings: J1 = 74.8 K and J = 0.4. These values
imply a range of energies for the magnon excitations that are in accord with the data from neutron scattering
experiments on Pb3Cu3(PO4)4 for two excitation modes. The 1/3 plateau closes only at 1/|J| = 0 with J < 0.

DOI: 10.1103/PhysRevB.105.134423

I. INTRODUCTION

Chains of spin-1/2 sites exhibit a rich quantum behavior
depending on the way the spins are coupled [1]. The spin-
1/2 antiferromagnetic linear chain [2] is a paradigmatic model
with a gapless spectrum that unveiled, for example, collective
excitations such as the spinons and holons [1]. On the other
hand, the physics of short-range valence bond states manifests
in the singlet gapped ground state of a spin-1/2 two-leg ladder
[3–5], which has two spins in each unit cell. For ladders with
n legs, the ground state is gapped, with a finite correlation
length, for n even, while it is gapless, with a power-law decay
of correlation functions, for n odd [6,7].

In a similar but more complex fashion, chains of coupled
spin-1/2 trimers have a unit cell made of three spin-1/2
sites and exhibit rich phase diagrams. We notice two typical
exchange pathway arrangements for unfrustrated bipartite lat-
tices, both in accord with the topological Lieb-Mattis theorem
[8]. In the first case [9–13], the lattice can be divided into
two groups with the same number of sites, and the ground
state is a gapless singlet. In particular, the magnetic features
of the compound Cu3(P2O6OH)2 are investigated through this
model [9,11,14]. In the second case [15–17], there are two
unit-cell sites in one sublattice and one unit-cell site in the
other; thus, a spontaneous break of the rotation symmetry
occurs. The ground state has a finite magnetic moment in the
thermodynamic limit and exhibits a ferrimagnetic order [18].
The low-energy magnon spectra [16,17,19] have a ferromag-

netic gapless Goldstone mode, due to the broken symmetry,
and two gapped excitations, one ferromagnetic and the other
antiferromagnetic. The Hamiltonians in this category are used
to understand the magnetism of the ferrimagnetic phosphates
A3Cu3(PO4)4 (A = Ca, Sr, and Pb). Considering non-bipartite
frustrated lattices, we mention the diamond chains [20,21],
which have a singlet ground state and model the azurite com-
pound Cu3(CO3)2(OH)2 [22–24]. Further, frustrated models
exhibit frustration-induced magnon condensation [25], first-
order phase transitions [26], and pseudo-phase-transitions
[27].

In any of the above-mentioned coupled trimer chains, a
magnetization plateau at 1/3 of the saturation magnetization
(a 1/3 plateau) is observed in the magnetization curve as a
function of a magnetic field. This is in accord with the topo-
logical Oshikawa-Yamanaka-Affleck criteria [28], due to the
number of unit-cell sites and the absence of broken translation
symmetry. However, the quantum state of the three unit-cell
spins depends on the parameter regime and the Hamiltonians
considered. In some cases, two of the unit-cell spins are in
a singlet state [21], while in others, the same spins are in
a coherent superposition of triplet states [19]. Further, we
mention that the edge states present at the 1/3-plateau phase
of unfrustrated [29] and frustrated [30] models with open
boundaries were recently investigated.

In this work, we calculate the phase diagram of coupled
trimer chains by using density matrix renormalization group
(DMRG) [31] and quantum Monte Carlo (QMC) methods. In
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FIG. 1. Sketch of the spin-1/2 trimer chain Hamiltonian. The
total number of trimers is denoted by L. The intratrimer coupling
is J1, while the intertrimer one is J2; the ratio between the couplings
is defined as J ≡ J2/J1.

Sec. II, we present the Hamiltonian of the trimer chain and the
details of the methods mentioned above. In Sec. III, we show
the bounds of the 1/3 plateau and fully polarized plateau,
besides the parameter region in which a singlet antiferromag-
netic phase is found. In Sec. IV, we discuss the low-energy
excitation modes from the 1/3-plateau state (three-magnon
excitations), and from the singlet antiferromagnetic phase, a
spinon excitation as in the spin-1/2 linear chain [32]. Further,
in Sec. V, we consider the edge states of open chains, which
are associated with the 1/3 and the fully polarized plateaus.
We investigate the thermal susceptibility χ at zero magnetic
field in Sec. VI, and the closing of the 1/3 plateau in Sec. VII.
We summarize our results in Sec. VIII.

II. MODEL AND METHODS

The coupled trimer chain Hamiltonian is sketched in Fig. 1.
For a chain of L coupled trimers in a magnetic field, the
Hamiltonian in units of the intratrimer coupling J1 reads

H

J1
=

L∑
i=1

[Ai · (B1,i + B2,i )

+ J (Ai · B2,i+1 + B1,i · Ai+1)] − Szh, (1)

where each trimer i has three spin-1/2 spins (h̄ ≡ 1) at sites
Ai, B1,i, and B2,i, with spin operators denoted by Ai, B1,i, and
B2,i, respectively, while the ratio J ≡ J2/J1, where J2 is the
intertrimer coupling. We define h as the magnetic field in units
of J1/gμB, where μB is the Bohr magneton and the g factor is
assumed the same at all sites. The total spin component in
the z direction (field direction) is Sz. We consider m as the
magnetization per trimer in units of gμB, such that m ≡ Sz/L.

Our zero-temperature results were obtained with the den-
sity matrix renormalization group (DMRG) on chains with
open boundary conditions and exact diagonalization on closed
chains. We retained up to 243 states per block in the DMRG
calculations and the maximum discarded weight was 1 ×
10−8. The thermal magnetic susceptibility was obtained with
the quantum Monte Carlo (QMC) method, the looper al-
gorithm, using the code from the Algorithms and Libraries
for Physics Simulations (ALPS) project [33]. We have used
1 × 105 Monte Carlo steps in the QMC calculations.

III. MAGNETIZATION CURVES AND PHASE DIAGRAM

Considering first the case of zero field, h = 0, the ground-
state total spin for J > 0 is very distinct from the J < 0
case. For J > 0, the ground-state total spin is 1/2 per trimer,
as shown in Fig. 2(a), and presents a spontaneously broken

FIG. 2. Magnetization per trimer m as a function of the magnetic
field h for the indicated values of J = J2/J1. Density matrix renor-
malization group results for an open chain with L = 120 trimers.
The insets show a zoom of the curves in the vicinity of (a) the 1/3
plateau and (b) the fully polarized plateau to have a better view of
the magnetizations of localized edge states.

rotation symmetry in spin space. On the other hand, for J < 0,
the ground state is a rotationally invariant singlet state, as
shown in Fig. 2(b). In particular, the ground-state total spin
for J > 0 is in accord with the Lieb-Mattis theorem [8], while
the trimer chain Hamiltonian does not satisfy the requirements
of this theorem for J < 0. For J = 0 the trimers are decoupled
and there is a degeneracy between total spin states from 0 to
1/2 per trimer. In particular, we mention that the ferrimagnetic
phase is also observed in the phase diagram of frustrated
chains, like the distorted diamond chain [21], and perturbation
theories can be developed from the state of decoupled spin-
1/2 trimers [21].

In the presence of a magnetic field h �= 0, the magnetiza-
tion curves of the trimer chain, for J � 0 [Fig. 2(a)] and J < 0
[Fig. 2(b)], present two magnetization plateaus: the fully po-
larized plateau (FP plateau) at the saturation magnetization
ms = 3/2 and the 1/3 plateau at magnetization m = ms/3 =
1/2. These are integer magnetization plateaus; they do not
break the translation symmetry of the Hamiltonian, and are
in accord with the topological Oshikawa-Yamanaka-Affleck
criteria [28]. In the insets of Figs. 2(a) and 2(b) we show
the presence of localized edge states, manifested as in-gap
magnetization states inside the thermodynamic-limit plateaus.
The edge states are associated with the topological nature of
the magnetization plateaus. We notice the presence of edge
states related to the 1/3 plateau in a region of positive values
of J and to the FP plateau for J < 0.

We present in Fig. 3(a) the phase diagram of the trimer
chain as a function of magnetic field and of the ratio J . The
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FIG. 3. (a) Magnetic field h vs exchange ratio J phase diagram
of the trimer chain. We show the transition lines from the gapped
1/3 plateau, h1/3,+ and h1/3,−, and the fully polarized (FP) plateau,
hs, to gapless Luttinger liquid (LL) phases. The phase diagram is
estimated from the DMRG results for chains with up to L = 120
trimers. For h = 0, the ground state is a singlet for −1 � J < 0, and
is ferrimagnetic for 0 < J � 1. In the inset we present the average
spin at A and B1 (or B2) sites at the 1/3 plateau. The relative ori-
entation of the average spins changes from a ferrimagnetic pattern,
found in the range −0.75 < J < 1, to a ferromagnetic orientation in
−1 < J < −0.75, as sketched in (b).

gapped FP plateau is bounded by the saturation field hs, while
the 1/3-plateau phase is bounded by the lower and higher
critical fields, h1/3,− and h1/3,+, respectively. We notice that
h1/3,− = 0 for J � 0, since, in zero field, the ground-state total
spin is 1/2 per trimer and is degenerate for J = 0. The gapped
phases are separated by gapless Luttinger liquid (LL) phases.
We also show the average spin at A and B sites in the inset
of Fig. 3(a) for the 1/3-plateau magnetization. The average
spin in a trimer presents an antiferromagnetic arrangement for
−0.75 � J � 1, implying a ferrimagnetic ground state, and a
ferromagnetic orientation for −1 � J � −0.75, as sketched
in Fig. 3(b).

IV. LOW-ENERGY EXCITATIONS

In this section we discuss the low-energy magnetic ex-
citations from the 1/3-plateau phase and from the singlet
ground state of the −1 � J < 0 region. We obtain the energy
Eq(Sz ) of finite chains with periodic boundary conditions as a
function of the lattice wave vector q for a fixed value of Sz by
using exact diagonalization.

For the 1/3-plateau state, we consider three magnetic ex-
citations in zero magnetic field, as shown in Fig. 4. Two of
them, ω

(−)
0 and ω

(−)
1 , carry a spin �Sz = −1 and are given by

ω(−)
n (q) = En

q (Sz = L/2 − 1) − Eq=0(Sz = L/2), (2)

FIG. 4. Spin-wave modes from the 1/3-plateau magnetization
(m = 1/2) for the indicated values of J and magnetic field h = 0,
where q is the lattice wave vector. The modes ω

(−)
0 and ω

(−)
1 have

spin �Sz = −1, while the mode ω(+) has spin �Sz = 1. The data are
exact-diagonalization results for a closed chain with L = 10 trimers.

for n = 0, lowest energy in the sector (q, Sz = SGS − 1), and
n = 1, first excitation in the same sector. Notice that the
ground state in zero field has the total spin SGS = L/2 for
J � 0, while in the range −1 � J � 0, this is the total spin
of the ground state only for h1/3,− � h � h1/3,+. In fact, as
shown in Fig. 4, ω

(−)
0 (q) < 0 in zero field for J < 0, with the

q = π sector as the lowest one. For h �= 0, we add the Zeeman
term, −hSz, to the energy, and the excitation energy changes
as

ω
(−)
0 (q, h) = ω

(−)
0 (q) + h. (3)

Hence, the critical field (h = h1/3,−) for which the ground
state has Sz = L/2 can be obtained from the condition
ω

(−)
0 (q = π, h1/3,−) = 0, such that h1/3,− = −ω

(−)
0 (π ). The

values of h1/3,− thus obtained are in excellent accord with
those from DMRG, shown in Figs. 2 and 3.

The excitation ω
(−)
1 (q) is higher than ω

(−)
0 (q), approxi-

mately dispersionless and near 1 for J > 0. In fact, for J = 1
the chain has a local parity symmetry [34] and an exact dis-
persionless mode in the sector Sz = L/2 − 1 with one singlet
between B2 of one trimer and the B1 of the nearest neighbor
trimer. In fact, there is a crossing between localized and dis-
persive modes as follows. The localized excitation is observed
[34] in the last two points near the zone boundary of the
excitation ω

(−)
0 (q), while the last two points near the zone

boundary of the excitation ω
(−)
1 (q) are, in fact, a continuation

of the dispersive mode observed in the four points near q = 0
of ω

(−)
0 (q). As shown in Fig. 4, for 0 < J < 1 the excitation

ω
(−)
1 (q) gains some dispersion, implying a certain mobility of

the local singlet, but there is not a crossing between the modes,
since in this case there is not a local symmetry. Also, ω

(−)
1 (q)

acquires a minimum in a value of q �= 0 and π .
The third excitation in Fig. 4, ω(+)(q), carries a spin �Sz =

+1 and is calculated from

ω(+)(q) = Eq(Sz = L/2 + 1) − Eq=0(Sz = L/2). (4)
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For J > 0 the minimum energy is observed at q = 0, while for
−1 < J < 0 the minimum is found at q = π . In the presence
of a magnetic field, this mode condenses in the critical field
h = h1/3,+. Since, for h �= 0, we have

ω(+)(q, h) = ω(+)(q) − h, (5)

the condition at critical field is ω(+)(qmin, h = h1/3,+) = 0,
where qmin = 0 for J > 0 and qmin = π for J < 0. The critical
field thus obtained is also in excellent agreement with the
DMRG results, shown in Figs. 2 and 3. For 0 � J � 1, we
notice that analytical results [19] from perturbation theory
or interacting spin-wave analysis are in good accord with
the exact-diagonalization data depending on the value of J .
Perturbation theory is better for lower values of J , J � 0.5,
while spin-wave analysis gives better results for 0.5 � J � 1.

We start the discussion of the low-energy magnetic exci-
tations from the singlet ground state of the trimer chain in
zero field, for −1 < J < 0, by considering the spin correlation
functions in the ground state. We use DMRG in open chains
to calculate the correlation functions in sublattices A and B as
follows:

CX (l ) = 〈〈SX,i · SX, j〉〉|i− j|=l , (6)

where 〈. . .〉|i− j|=l is an average over all pairs of trimers i and
j separated by the distance l , X = A or B, and B can be either
B1 or B2, since the correlations are equal along the sublattices
B1 and B2.

The spin correlation functions are shown in Fig. 5(a) and
exhibit an alternating pattern. Also, for sufficiently low dis-
tances to avoid edge effects, the correlation functions have
an 1/l decay. In a linear antiferromagnetic chain [1], the
asymptotic behavior of the spin correlation functions in the
singlet ground state, at zero magnetic field, has the following
form:

〈S(0) · S(l )〉 ∼ c1
1

l2
+ c2(−1)l ln1/2(l )

l
, (7)

where the amplitudes c1 and c2 are not universal. At large
distances, the dominant term in Eq. (7) is (−1)x/l , discarding
the ln factor. Thus, in the trimer chain, our data suggest that
the spins in each sublattice are correlated as in the antiferro-
magnetic spin-1/2 linear chain, following the form in Eq. (7),
with a short-range magnetic pattern as sketched in Fig. 5(b).

The low-energy magnetic excitations from the ground
state, �, shown in Fig. 5(c) reinforce this picture. In partic-
ular, the antiferromagnetic spin-1/2 linear chain presents an
alternation of the ground-state wave vector between the values
0 and π , as shown from the Bethe ansatz solution [32]. On the
other hand, the low-energy excitations of the spin-1/2 linear
chain are spinons [1], which, in the thermodynamic limit, have
the dispersion relation [32]

ε(q)(spinon) = π

2
Jlinear chain| sin(q)|, (8)

where Jlinear chain is the superexchange coupling between
nearest-neighbor spins.

We use exact diagonalization to calculate �(q) for finite
chains with periodic boundary conditions for −1 � J < 0
from

�(q) = Eq(Sz = 1) − Eq=q0 (Sz = 0), (9)

FIG. 5. (a) Density matrix renormalization results for the alter-
nating correlation functions between spins at B1 (or B2) sites and
at A sites, (−1)lCB(l ) (left panel) and (−1)lCA(l ) (right panel), re-
spectively, as a function of the distance l between trimers, for J < 0
and the J values indicated in the figure, for an open chain with L =
120 trimers. The intermediate-distance behavior suggests a 1/l (full
lines) antiferromagnetic power-law correlation along each sublattice,
A, B1, or B2, as sketched in (b). (c) Exact-diagonalization results for
the low-lying magnetic excitation mode from m = 0, with total spin
S = 1, for J = J2/J1 = −1.0, −0.8, −0.6, −0.4, and − 0.2 (from
bottom to top) as a function of a translated lattice wave vector
|q − q0| in a closed chain, normalized by |J|. We present the data for
two system sizes L = 8 (filled symbols) and L = 10 (open symbols).
The ground-state energy (with S = 0) is observed at the wave vector
q = q0 with q0 = π for L = 8 and q0 = 0 for L = 10.

where q0 is the ground-state wave vector, which is q0 = π if
L is a multiple of 4 and q0 = 0 otherwise, for L even, as in
the antiferromagnetic spin-1/2 linear chain. In Fig. 5(c) we
show �(q) for L = 8 and L = 10 as a function of |q − q0|,
normalized by |J|. Although the system sizes are short, we
can suggest some features for the thermodynamic limit. The
general trend of the curves points to a periodicity like in
Eq. (8), but the dependence on J is not as simple as in Eq. (8)
for the system sizes shown.

V. EDGE STATES

The 1/3 and the fully polarized plateaus satisfy the
Oshikawa-Yamanaka-Affleck (OYA) topological criterion for
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FIG. 6. Average magnon distribution in the state with two
magnons added to (a) 1/3 plateau: 〈n〉 = 〈Sz

l 〉Sz=(L/2)+2 − 〈Sz
l 〉Sz=L/2

(the inset is a zoom of the main figure), and (b) the FP plateau:
〈n〉 = 〈Sz

l 〉Sz=3L/2 − 〈Sz
l 〉Sz=3L/2−2, with l as the trimer index, for an

open chain with L = 120 trimers.

their occurrence in magnetization curves of magnetic in-
sulators [28]: (mu − Su) = integer, where mu and Su are
respectively the magnetization and the maximum spin in a unit
period of the ground-state wave function. In the trimer chain,
there is not a broken translation symmetry; thus mu = 1/2 for
the 1/3 plateau and mu = 3/2 for the fully polarized state,
with Su = 3/2 in both cases. Further, the nontrivial topo-
logical nature of a magnetic state gives rise to zero-energy
edge states, as expected from the bulk-edge correspondence
[35,36]. In fact, edge-mode properties have proved useful in
investigating topological quantum phase transitions [29,37–
40]. On the other hand, it was shown [41] that spin-S an-
tiferromagnets on d-dimensional lattices present fractionally
quantized magnetization at the corners, similarly to ionic
crystals. In addition, the edge magnetization can have a non-
topological origin [30]. In particular, in Ref. [30] the authors
have shown that U (1) and site-inversion symmetry protects
the edge magnetizations in the ferrimagnetic phase of the
Union Jack stripe. Besides, the appearance of magnon den-
sities at the edges of alternating ferrimagnetic chains depends
on magnon interactions [42] and the uniform local potentials
of the associated Holstein-Primakoff Hamiltonians.

In Fig. 6, we present the edge magnon densities of the
trimer chain by considering the magnon distribution as two
magnons are added to the insulating states at m = 1/2 (fer-
rimagnetic state) and m = 3/2 (fully polarized state). As
evidenced in the inset of Figs. 2(a) and 2(b), the localized
magnetization states inside the thermodynamic plateaus ap-
pear for m = 3/2 and J < 0, and for m = 1/2 and J > 0. The
magnons carry a spin �Sz = +1 in the case of m = 1/2, and
a spin �Sz = −1 for m = 3/2, such that their distributions

along the chain are calculated through

〈n〉 = 〈
Sz

l

〉
Sz=(L/2)+2 − 〈

Sz
l

〉
Sz=L/2 (10)

for m = 1/2, and through

〈n〉 = 〈
Sz

l

〉
Sz=3L/2 − 〈

Sz
l

〉
Sz=3L/2−2, (11)

for m = 3/2, where Sz
l is the spin of the trimer l .

For the ferrimagnetic state at m = 1/2, we observe in
Fig. 6(a) the presence of magnon density at the edges of the
trimer chain for J > 0. However, the magnon distribution be-
comes less localized as J decreases from J = 1, and turns into
bulk excitations for J < 0.5. As in the case of ferrimagnetic
alternating chains [42], the magnon densities at the edges can
have two contributions: one from the geometry of the system
and the other from the magnon-magnon interactions. In the
case of the fully polarized plateau, the edge magnon density
shows up for J < 0. Here, the sites at the edges are coupled
to the chain by only one antiferromagnetic bonding, while the
other sites have at least one ferromagnetic bond: J < 0. Thus,
the localization of the two magnons at the edges of the chain
minimizes the total energy, and the edge magnon densities
have only a geometrical origin.

VI. SUSCEPTIBILITY

This section discusses the finite-temperature magnetic
susceptibility of the trimer chain with quantum Monte
Carlo simulations. Initially, we examine the antiferromagnetic
regime, J < 0, and, next, the ferrimagnetic phase, observed
for J > 0. In the last case, we compare our results with the
experimental data for the Pb3Cu3(PO4)4 phosphate [43,44],
which is a ferrimagnetic quasi-one-dimensional compound.

In Fig. 7, we study the magnetic susceptibility of the trimer
chain for J < 0. In Fig. 7(a), we present the susceptibility per
site of the trimer chain, and of the antiferromagnetic spin-1/2
linear chain. For simplicity, we define J1 as the superexchange
coupling between the nearest neighbors in the linear chain.
The low-T behavior of χ for the linear chain is given by [45]

χ (T )

Ng2μ2
B

= 1

2πv
+ 1

4πv ln(T/T0)
, (12)

where the spin-wave velocity v = J1π/2 is the slope of the
dispersion relation obtained from the Bethe ansatz and T0 is
a nonuniversal constant. The logarithmic correction implies
that χ (T ) has an infinite slope as T → 0. Notwithstanding,
Eq. (12) is expected to be universal [45] under some general
conditions. Introducing the expression for v into Eq. (12), we
obtain

χJ1

Ng2μ2
B

= 1

π2

{
1 + 1

2 ln(T/T0)

}
, (13)

so that χ (0)J1 = 1/π2. The value of T0 = √
π/8 exp(γ +

1/4)J ≈ 2.87J1 is an exact result [46], and was confirmed
by thermodynamic Bethe ansatz calculations [47,48]. In
Fig. 7(a), we also show that χ for the trimer chain has an
increasing slope and approaches the value 1/π2 as T → 0,
in agreement with Eq. (12). In fact, much lower temperatures
are required to obtain the value of T0. Also, since the value
of χ (0)J1 is near 1/π2, the data show that the spin-wave
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FIG. 7. Quantum Monte Carlo results for the magnetic suscep-
tibility χ per site. (a) Trimer chain with L = 128 and J = −1,
and antiferromagnetic linear chain with N = 128 sites. The cross
indicates the exact value of χ at T = 0 for the antiferromagnetic
linear chain: 1/π 2. In the inset we highlight low-temperature regime.
Open symbols are results for a trimer chain with L = 256 and for the
antiferromagnetic linear chain with N = 256. (b) Trimer chain for
the indicated values of J , the cross also marks the value 1/π2. In the
inset we present |J|χJ1 which is equal to |J2|χ .

velocity for the trimer chain is near v = J1π/2 for J = −1.
As evidenced in the inset of Fig. 7(a), finite-size effects are
not appreciable in both chains, in the range of temperatures
exhibited.

In Fig. 7(b), we present χ for different values of J . For
J = 0, decoupled trimers, the susceptibility has a paramag-
netic behavior with χ ∼ 1/T as T → 0 [see also Fig. 8(a) for
χT ]. For J < 0, the susceptibility curve exhibits a maximum
marking the crossover from the low-temperature regime to the
high-temperature decoupled-trimer behavior. This maximum
is found in a temperature that increases with decreasing J . In
the inset of Fig. 7(b), we present (J1χ ) normalized by 1/|J|,
so that (J1χ )/(1/|J|) = |J|(J1χ ) = |J2|χ . For any value of
J (<0), the data approach J1χ (0) for the antiferromagnetic
linear chain: 1/π2. A simple reasoning can be used to explain
this behavior. Although the spin-wave velocity of the trimer

FIG. 8. (a) Product of the susceptibility χ by the temperature
T as a function of T . Quantum Monte Carlo (QMC) results for
J = 0, 0.2, 0.4, and 1.0, and experimental data from Ref. [43] for
the compound Pb3Cu3(PO4)4; in this case we use two sets of values
for J1 and g: J1 = 74.8 K and g = 2.09, J1 = 96.7 K, and g = 2.20.
(b) χT for Pb3Cu3(PO4)4 per mole of trimers and QMC results with
the indicated J with the respective J1 and g. (c) Spin-wave modes for
J = 0.2 and J1 = 96.7 K calculated with exact diagonalization for a
trimer chain with L = 10; they correspond to the normalized modes
ω

(−)
0 , ω

(−)
1 , and ω(+) shown in Fig. 4. We also indicate the central

values of two excitations modes of the compound Pb3Cu3(PO4)4:
9.00 meV and 13.7 meV, as was estimated in Ref. [44] at T = 8 K
from neutron scattering experiments.

chain can have a complex dependence on J2, we expect that
v is an increasing function of |J2|. Further, the low-energy
magnetic excitations shown in Fig. 5 suggest that v is nearly
proportional to |J| = |J2|, by fixing J1 ≡ 1. If we use v =
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|J2|π/2 in Eq. (12), we obtain that |J2|χ (0)/Ng2μ2
B = 1/π2,

as suggested by the data in the inset of Fig. 7(b).
We remark that an antiferromagnetic pattern like that of

the linear spin-1/2 chain was reported in Ref. [49] for the
unfrustrated diamond chain, and their data also suggest a finite
susceptibility at T = 0.

In Fig. 8(a), we present the magnetic susceptibility per
trimer for J > 0, where the trimer chain is found in the
ferrimagnetic regime. One of the signatures of the ferrimag-
netic phase is a minimum in the χT versus T curve at
zero field. This minimum marks a crossover between the
low-temperature ferromagnetic regime, for which χ ∼ 1/T 2

[50,51], and the high-temperature decoupled-trimer (J = 0)
behavior. Thus, the minimum of χT and its temperature lo-
cation decrease with J . As discussed above, for J = 0, the
data in Fig. 7(b) show that χ ∼ 1/T as T → 0, with χT
becoming very flat in the low-T regime, as shown in Fig. 8(a).
In order to estimate the values of J1, J2, and g for the phosphate
Pb3Cu3(PO4)4, we fit the QMC results to the experimental
data for this compound [43]. The value of J1 is estimated
by comparing the dimensionless value of the temperature,
kBT/J1, with its value in the experimental curve for all values
of J . Further, we compare the value of the minimum of χT in
the experimental curve and the dimensionless QMC data for
all values of J , thus obtaining g for each value of J . Finally,
with these values of g and J1, we normalize the experimental
curve and compare it with the QMC data for all values of J
simulated. Following this procedure, we have found that the
experimental curve is best fitted by J = 0.2 and J1 = 96.7 K,
in the low-T regime, while above the crossover temperature,
the best fit occurs for J = 0.4 and J1 = 74.8 K, as shown in
Fig. 8(a) and in Fig. 8(b). The curve for J = 0.4 starts to
depart from the experimental one at about T ∼ 25 K. The
three-dimensional ordering temperature for this compound
is estimated from specific-heat data [43] to be T3D ≈ 1.3 K,
and does not affect the value of J appreciably. Lastly, we
also mention that the enhancement of J above the crossover
temperature could be associated with lattice vibrations.

The trimer chain compound Pb3Cu3(PO4)4 was also inves-
tigated through neutron scattering experiments [44]. From this
study, two excitation modes were observed at T = 8 K: one at
energy 9.00 meV, and the other at 13.7 meV, as indicated in
Fig. 8(c). We also show in this figure the magnon modes ω

(−)
0 ,

ω
(−)
1 , and ω(+), previously presented in Fig. 4, for J = 0.2

and J1 = 96.7 K = 8.34 meV. We thus see in Fig. 8(c) that
the optical mode ω(+) is centered at approximately 13.7 meV,
indicating that it is one of the excitations observed in the
neutron scattering experiment [44]. Also, the nearly flat mode
ω

(−)
1 is centered at 7.7 meV, which departs about 16% from

the second mode found by neutron scattering. The gapless
mode, ω

(−)
1 , is in a range of energies that was not investigated

in detail in Ref. [44].

VII. CLOSING OF THE 1/3 PLATEAU FOR J < −1

The 1/3-plateau width decreases as J decreases in the
region J < 0, as shown in the phase diagram, Fig. 3(a). In this
section we investigate the 1/3 plateau for J < −1 and discuss
two possibilities for the gap-closing behavior in this region.

FIG. 9. Locus of the magnetization at 1/3 of saturation in the
h/|J| (magnetic field in units of |J2|/gμB) versus 1/|J| = J1/|J2|
plane, for J2 < 0. The points are obtained by extrapolating the critical
fields from chains of size L = 120, 180, and 240. In the inset we
present the plateau width �/|J| as a function 1/|J|. Dashed lines are
guides to the eye.

First, we notice that for a finite value of J1 and J2 → −∞,
or 1/|J| = J1/|J2| → 0, the trimers are decoupled with each
trimer having a total spin equal to 3/2; see Fig. 1. Since in
this case the chain is composed of totally uncorrelated spin-
3/2 trimers, the total spin is degenerate for h = 0. Thus, any
finite magnetic field saturates the magnetization at 1/|J| = 0.
We remark that the trimer chain is also decoupled for J = 0,
however in this case with the trimers in a spin-1/2 total spin
with a gap. Thus, a finite magnetic field, h = 1.5, is required
to put the trimers in the spin-3/2 state and the chain in the
fully polarized state, as shown in Figs. 3 and 4.

Since |J2| is the higher energy scale for J < −1, it is better
to consider the energy in units of |J2| instead of J1. Thus, be-
cause h is the magnetic field in units of J1/gμB, the magnetic
field in units of |J2|/gμB is h/|J| = hJ1/|J2|, and the plateau
width (the gap) � in units of |J2|/gμB is given by �/|J|.

In Fig. 9 we show the region where the 1/3 of the saturation
magnetization, ms/3, is found in the plane h/|J| versus 1/|J|,
and also indicate the decoupled-chain limit. The points are
calculated with DMRG by extrapolating the upper and the
lower critical fields for m = ms/3 by using their values for
L = 120, 180, and 240 trimers. We do not show the scale
behavior of these critical fields, but we mention that it follows
a simple straight line as a function of 1/L for each value of
1/|J| considered. For the lower value of 1/|J| shown, the
value of the plateau width �/|J| is very tiny, in the limit of
our precision. In fact, we present in the inset of Fig. 9 the
exponential behavior of the plateau width as 1/|J| → 0.

We can draw two scenarios from the numerical data. In the
first one, the plateau width becomes exactly null at a value
of 1/|J| higher than zero. In this case, the transition would
be of a Kosterlitz-Thouless (KT) type to a gapless Luttinger
liquid phases with a power-law decay of the transverse spin
correlation functions. In particular, KT transition points were
observed in ferrimagnetic chains [29,52] and branched chains
[53,54]. In the other scenario, the gap is null only at the

134423-7



R. R. MONTENEGRO-FILHO et al. PHYSICAL REVIEW B 105, 134423 (2022)

FIG. 10. (a) Transverse spin correlation function 	L (l ) between
sites in the A sublattice as a function of trimer distance l for the
indicated system sizes L and 1/|J| = J1/|J2| = 1/| − 3.5| ≈ 0.28.
(b) Exponent η[l] calculated from the fitting of (−1)l	L (l ) to a func-
tion ∼1/lη[l] considering the intervals of l shown in the figure and
1/|J| = 1/| − 3.5| ≈ 0.28. (c) Exponent η as a function of 1/|J|.
(d) Linear behavior of ln(�/|J|), where �/|J| is the 1/3-plateau
width in units of |J2|/gμB, as a function of (1/|J|)−2/3. The fitting
straight line implies that �

|J| ∼ 6600 exp[−9.0(1/|J|)−2/3] as |J| →
∞.

decoupled-chain limit, such that a very tiny gap is observed for
any finite value of 1/|J|. This behavior is observed in ladder
[4,5] and zigzag models [55,56] as the coupling between the
two spin-1/2 chains that compose these systems is reduced to
zero. We present data below that supports the second scenario
for the spin trimer chain.

To investigate the possibility of a KT transition, we follow
a strategy that was successfully used in the boson Hubbard
model in one dimension [57] and in an anisotropic ferrimag-
netic chain [29]. In the gapless Luttinger liquid phase, the
asymptotic behavior of the transverse spin correlation func-
tions is

	(l ) ∼ 1

lη
, (14)

and η = 0.25 at the KT transition point. We thus use DMRG
to estimate η by fitting the transverse spin correlation function
in finite-size open systems and extrapolating the result to
L → ∞. For a chain of size L the transverse spin correlation
function between the spins in the sublattice A is calculated
through

	L(l ) ≡ 〈〈S+(i)S−(i + l )〉〉i, (15)

where 〈〈. . .〉〉i indicates the quantum expectation value and an
average of the correlation over all pairs of A sites at trimers
with a distance l between then, in order to minimize the
effects of the open boundaries. In Fig. 10(a) we exemplify
the behavior of 	L(l ) for 1/|J| = 1/| − 3.5| ≈ 0.28 for L =
120, 180, and 240. To estimate η, we choose three intervals
of l: [1,16], [16,32], and [32,48], to fit (−1)l	L(l ) to Eq. (14).
Using a linear scale function in 1/L, we obtain the extrapo-
lated value η[l] for each interval. This procedure is illustrated

in Fig. 10(b) for 1/|J| ≈ 0.28. The estimated values of η

are shown in Fig. 10(c) as a function of 1/|J|. We define η

as (η[l],max + η[l],min)/2, with an error (η[l],max − η[l],min)/2,
where η[l],max and η[l],min are the maximum and the minimum
values of η[l], respectively. Thus, we did not detect a point at
which η = 0.25 for the values of 1/|J| investigated, although
η approaches 0.25 as 1/|J| → 0. This implies that the KT
transition does not occur down to the lowest value shown:
1/| − 3.9| = 1/3.9 ≈ 0.26. However, the data do not preclude
the possibility of gap closing for 1/|J| � 0.26.

Considering the second scenario, that the gap closes ex-
actly at 1/|J| = 0, we have obtained a good fitting of our data
to the analytical formula [56] suggested by field theory to the
gap closing in the case of the zigzag chain near the decoupled
two chains from its antiferromagnetic phase. The analytical
expression [56] for the zigzag chain adapted to our model is
given by

�

|J| = D exp

[
−c

(
1

|J|
)−2/3]

, (16)

such that

ln

(
�

|J|
)

= ln D − c

(
1

|J|
)−2/3

. (17)

We show in Fig. 10(d) that our gap satisfies this expression for
the lowest values of 1/|J| calculated.

Thus, with J2 < 0, down to the lowest values of 1/|J|, our
results indicate that the gap closes only at 1/|J| = 0. Further,
since the chain is not in a critical phase at 1/|J| = 0 for
J2 < 0, we do not have a genuine phase transition in our case
in this scenario. However, a deeper analytical study of the
trimer chain, out of the scope of this investigation, can put
this conclusion in a more firm basis.

VIII. SUMMARY

We have investigated the rich phase diagram of the spin-
1/2 trimer chain for −1 � J � 1 in the presence and in the
absence of a magnetic field. The ground state at zero field is
ferrimagnetic for J > 0, in accord with the Lieb-Mattis theo-
rem, and a singlet state for −1 � J < 0, a range of J for which
the Lieb-Mattis theorem does not apply. We have shown that
the field-dependent magnetization exhibits the fully polarized
plateau, and the 1/3 plateau for all values of J . In the 1/3
plateau, the unit-cell spins have a ferrimagnetic orientation
for −0.75 � J < 1, and a ferromagnetic orientation for −1 �
J � −0.75. For finite-size systems with open boundaries, the
1/3 plateau is made of two steps for 0.5 � J � 1; likewise,
the fully polarized plateau has the same referred feature for
−1 � J < 0. The breaking of the plateaus is associated with
the magnon occupation of localized states at the edges of the
chain. We have argued that, for the fully polarized plateau, the
magnon density at edge states has a purely geometrical origin.
In contrast, the edge densities in the 1/3 plateau have a mixed
nature: geometrical and from magnon-magnon interactions.
The low-energy bulk magnon excitations have three bands:
two ferromagnetic—the first is gapless and dispersive, the sec-
ond is gapped and nearly flat, for excitations carrying a spin
�Sz = −1—and the third is a dispersive antiferromagnetic
mode, carrying a spin �Sz = +1. The gapless ferromagnetic
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mode is unstable for −1 � J < 0, in which case the singlet
state is the ground state at zero magnetic field. The low-energy
excitation from the singlet state, normalized by |J|, follows
a profile similar to the spinon band of the antiferromagnetic
spin-1/2 linear chain. In particular, the minimum energy in
the excitation spectrum presents an alternation between q = 0,
for even system sizes excluding multiples of 4, and q = π , for
system sizes that are multiples of 4, as in the spin-1/2 linear
chain.

The magnetic susceptibility χ times the temperature, χT ,
has a minimum as a function of T in the ferrimagnetic phase,
0 < J � 1. We determine the values of the coupling constants,
J and J1, to fit the experimental susceptibility of the ferri-
magnetic trimer-chain compound Pb3Cu3(PO4)4. Further, we
confirm that the centers of the two gapped magnon bands of
the Pb3Cu3(PO4)4 are in accord with the coupling constants
estimated from the susceptibility. For the singlet phase, −1 �
J < 0, our data evidence that the dimensionless susceptibility

per site normalized by 1/|J| approaches 1/π2 as the temper-
ature T → 0, similarly to the spin-1/2 linear chain. Finally,
the transverse spin correlation functions and the gap behavior
for J → −∞ point to a closing of the 1/3 plateau only at
1/|J| = 0 with J < 0.
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