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Genuine multipartite correlations in a boundary time crystal
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In this paper we study genuine multipartite correlations (GMC’s) in a boundary time crystal (BTC). Boundary
time crystals are nonequilibrium quantum phases of matter in contact to an environment, for which a macroscopic
fraction of the many-body system breaks the time translation symmetry. We analyze both (i) the structure (orders)
of GMC’s among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state. We
find that, in the thermodynamic limit (and only in such a limit), multipartite correlations of all orders grow
indefinitely in time in the BTC phase, further displaying a persistent oscillatory behavior around their mean
growth. The orders of the correlations show a power-law decaying hierarchy among its k partitions. Moreover,
in the long-time limit the GMC’s are shown extensive with the system size, contrasting to the subextensive
scaling in the non time crystals (ferromagnetic) phase of the model. We also discuss the classical and quantum
nature of these correlations with basis on multipartite entanglement witnesses, specifically, the analysis of the
quantum Fisher information (QFI). Both GMC and QFI are able to capture and distinguish the different phases
of the model. Our paper highlights the genuine many-body properties of these peculiar nonequilibrium phases
of matter.
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I. INTRODUCTION

Time crystals are many-body interacting systems sponta-
neously breaking the time translational symmetry. The idea
was first proposed by Wilczek [1] suggesting its existence
in the ground state of a closed many-body system. Soon
after its proposal, however, studies by Bruno [2], Watanabe
and Oshikawa [3] showed that such forms of time crystals
are impossible (at least for not too long-ranged interacting
systems), proving a no-go theorem for the existence of these
phases in thermal equilibrium quantum states. These results
thus indicated that a proper ground for time crystal phases
are under nonequilibrium conditions. Many studies were pur-
sued along this direction, with fruitful results, showing the
existence of time crystal in driven closed systems as well as
in open dynamics, breaking from a continuous to a discrete
time translational symmetry [4–28]. The experimental real-
ization of discrete time crystals was soon realized after its
proposal [29–33], as well as the observation of interactions
between two time crystals [34] and a real-space observation
in magnons systems [35]. More recently, the time-crystalline
eigenstate order has been observed on a quantum proces-
sor [36]. Some reviews about time crystals are available in
Refs. [37–39].

In order to spontaneously break time translation symme-
try the quantum system must support, in the thermodynamic
limit (and only in such a limit), long-range order in time,
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featuring therefore rigid and persistent oscillations [5]. A
particular form of time crystals was proposed in Ref. [4]
for quantum systems in contact to an environment, in which
only macroscopic fraction of the many-body system breaks
time translation symmetry, thus dubbed as boundary time
crystal (BTC). Recently the study of BTC’s in extended d-
level collective systems [40] have shown a rich dynamical
phenomenology. In such BTC’s the system was shown to
break a continuous time translation symmetry, in which it
self-organizes oscillating in a persistent way in the thermody-
namic limit. The persistent dynamics can be observed through
a local order parameter, as its macroscopic magnetization. The
characteristics of BTC’s, however, may not be restricted to
local order parameters. Quantum fluctuations, for example,
can play an important role in their characterization showing
an effective non-Markovian dynamics [41]. The structure of
(classical and quantum) correlations may also hinder valuable
information about such peculiar phases of matter, unraveiling
its genuine many-body properties. This is a subject we shall
explore in this paper.

In this paper we study genuine multipartite correlations
(GMC’s) in a boundary time crystal phase. We analyze both
(i) the structure (orders) of GMC’s among the subsystems in
the nonequilibrium steady state of the system, as well as (ii)
their build-up during the dynamics of an initially uncorrelated
state.

These correlations are shown to grown indefinitely in time,
showing a persistent oscillatory behavior (around the mean
growth) in the thermodynamic limit—and only in this limit.
The system we analyze is an open quantum system of spins
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TABLE I. Main results of the paper.

BTC phase Ferromagnetic phase

GMC Extensive with the system size Subextensive with the system size (finite in the
N → ∞)

NESS

QFI Subextensive with the system size (do not witness
entanglement)

Extensive with the system size (witness
entanglement)

GMC Persistent oscillations around a mean algebraic
growth

Exponential decay towards a constant value DYNAMICS

QFI Persistent oscillations around a mean algebraic
decay

Exponential decay towards a constant value

1/2 interacting collectively with a common environment [4].
The quantifier for the GMC’s we employ in our analysis was
proposed by Girolami et al. [42]. Recently this measure was
applied to understand the collective behavior in the Dicke
superradiance [43] and in the quantum phase transition of the
Lipkin-Meshkov-Glick model [44]. In addition to the GMC’s,
we also study the behavior of the quantum Fisher information
(QFI) in the system, which works as a witness for multipartite
quantum (entanglement) correlations [45–48]. The QFI cap-
tures the oscillatory characteristics of the BTC dynamics, but
it is not able to fully discriminate the quantum nature of their
correlations. We discuss these results with connection to the
purity and coherence of the NESS. For readers convenience,
we summarized the main results of the paper in Table I.

The paper is organized as follows. In Sec. II we present
the model under study. The GMC’s and QFI measures are
introduced in Sec. III. We study in Sec. IV the properties
of these correlations in the NESS of the model, and their
dynamics are shown in Sec. V. The conclusions are presented
in Sec. VI.

II. BOUNDARY TIME CRYSTAL

In this section we present the model studied in the
manuscript supporting a BTC [4]. BTC’s occur at the bound-
ary of the system, with a macroscopic fraction of the system
breaking the continuous time translation symmetry, while
the bulk remaining invariant in time. In a general form, the
Hamiltonian of the whole system can be described as Ĥ =
ĤB + Ĥb + V̂ , where ĤB and Ĥb are the Hamiltonian of the
bulk and boundary, respectively, and V̂ is the interaction term.
The whole system evolves according to the Schrödinger equa-
tion |ψ (t )〉 = e−iĤt |ψ (0)〉, where we have set h̄ = 1, while
the state of the boundary is obtained by tracing out the bulk
ρ̂b = trB|ψ (t )〉〈ψ (t )|. Within a Markovian approximation the
dynamics of the boundary system in the interaction picture is
governed by the following master equation:

d

dt
ρ̂b = L̂[ρ̂b], (1)

where L̂ is the Lindbladian super operator, a complete positive
and trace preserving map. A characteristic of a BTC is the
existence of an order parameter Ôb for the subsystem at the
boundary with limNb,NB→∞ Tr[Ôbρ̂b] = f (t ), with f (t ) being
a time periodic function and Nb (NB) the number of spins, or
degrees of freedom, at the boundary (in the bulk).

The physical model of the BTC studied here describes
the cooperative emission of two-level systems [49–54], with
Lindbladian given by

d

dt
ρ̂b = iω0[ρ̂b, Ŝx] + γ

S

(
Ŝ−ρ̂bŜ+ − 1

2
{Ŝ+Ŝ−, ρ̂b}

)
, (2)

with ω0 being the intensity of the external field, γ is the
effective decay rate, Ŝα = ∑N

i=1 σ̂ i
α are collective spin opera-

tors, for which σ̂ k
α are the Pauli matrices with α = x, y, z, S =

Nb/2 = N/2 is the total spin, and Ŝ± = Ŝx ± iŜy are collective
ladder operators of lowering and raising, respectively. While
for ω0 < γ the model shows a trivial (time-independent) fer-
romagnetic steady state, in the case ω0 > γ one observes the
emergence of a BTC. The oscillating frequency of the BTC
is an incommensurate of the coupling constants ω0/γ , thus
featuring a continuous time translation symmetry breaking
[4]. We set up γ = 1.0, so it will be omitted from now on.

Due to the collective nature of the interactions the sys-
tem conserves the total angular momentum. We work in the
subspace with maximal angular momentum, described by the
symmetric Dicke states |N, ne〉

|N, ne〉 = 1√(N
ne

) ∑
i

Pi(|↓〉⊗(N−ne ) ⊗ |↑〉⊗ne ), (3)

where ne is the number of excited (up) spins and the sum is
taken over all possible permutations of ne, described by the
permutation operator Pi, and

(N
ne

)
is the binomial coefficient

required to normalize the Dicke state. The Dicke states are
totally symmetric by permutation of their spins, a property
that will be useful in order to evaluate the GMC’s.

In our studies we shall compute the GMC’s for different
k-partite partitions, studying both its dynamics as well as
their nonequilibrium steady states. We evolve the master equa-
tion from an initial uncorrelated pure state, specifically the
ground state of Ĥb = ω0Ŝx, |ψ (0)〉 = |−〉⊗N , towards mixed
combinations of Dicke states. To evolve the system density
matrix we use the Runge-Kutta method of fourth order in
order to solve numerically the differential master equation.
The nonequilibrium steady states, reached in the asymptotic
times (t → ∞), are also obtained both from a direct numer-
ical diagonalization of the Lindbladian or analytically (see
Appendix A).
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III. MEASURES OF GENUINE MULTIPARTITE
CORRELATIONS

We introduce in this section the GMC’s [42] and quantum
Fisher information (QFI) [55–57]. The former can be viewed
as the information that is encoded in the density matrix of
a system of N spins ρ̂N that is missing for an observer that
has access only to parts of the system. For instance, for an
observer that has access only to the state of individual spins, it
is not possible to know how spins are correlated with each
other. Therefore, all information related to correlations in-
volving two or more spins is missing for this observer. To
quantify these correlations in a system, we first define the set
of uncorrelated states.

Definition (k-partite genuine product states [58]). The set
of states that have up to k subsystems is defined as,

Pk :=
{

σN =
m⊗

j=1

σk j ,

m∑
j=1

k j = N, k = max{k j}
}

, (4)

where σk j is a subsystem of k j spins. This set contains all the
sets Pk′ with k′ < k, such that P1 ⊂ P2... ⊂ PN−1 ⊂ PN .

The multipartite correlations of order higher than k, de-
noted by Ik→N , is computed by the smallest distance of the
state ρ̂N to states in the set Pk . Despite the relative entropy
being a pseudodistance, it will be used in order to simplify the
calculations, leading to

Ik→N (ρN ) = min
σN ∈Pk

S(ρN ||σN ), (5)

with the minimization being taken over all product states
σN = ⊗m

i=1 σki ∈ Pk and S(ρ||σ ) = −S(ρ) − tr(ρ log σ ) is
the quantum relative entropy, with S(ρ) = −tr(ρ log ρ) the
von Neumann entropy. The closest product state σN of ρN is
the product of the reduced states of ρN [42,59–61], then

Ik→N (ρN ) = S
(
ρN

∥∥ ⊗m
i=1 ρki

)
=

m∑
i=1

S
(
ρki

) − S(ρN ). (6)

As the physical system is invariant by spin permutation, the
evaluation of Eq. (6) becomes simpler [42]

Ik→N (ρN ) = �N/kS(ρk ) + (1 − δN mod k,0)

× S(ρN mod k ) − S(ρN ), (7)

so that �N/k is the floor function and ρN mod k describes the
subsystem with N mod k spins.

The GMC’s of order k, denoted by Ik , are genuine corre-
lations among k subsystems of the whole system and can be
calculated as the difference between the correlations of order
higher than k − 1 → N and those of order higher than k → N ,

Ik (ρN ) = Ik−1→N (ρN ) − Ik→N (ρN ). (8)

Genuine multipartite correlations. Summarizing, the
GMC’s in permutationally invariant systems are given by

Ik (ρ̂N ) = �N/(k − 1)S(ρk−1) − �N/kS(ρk )

+ (1 − δN mod k−1,0)S(ρN mod k−1)

− (1 − δN mod k,0)S(ρN mod k ) (9)

for k > 1. For k = 1 we have instead,

I1(ρN ) ≡ NS(ρ1) − S(ρN ), (10)

which describes the total correlations presented in the system,
i.e., how close is the state ρN from the totally uncorrelated
state.

Quantum Fisher information. The GMC’s encompass both
classical an quantum multipartite correlations among the sub-
systems. It would be interesting to discriminate both types of
correlations in the phases of the model. Therefore we also
study the QFI, which is a well-known witness of k-partite
quantum entanglement [45–47]. Specifically, we compute the
maximum QFI optimized over the global spin observables Ŝα .
The optimum (maximum) QFI for a general mixed state is
given by the maximum eigenvalue of the 3 × 3 matrix:

[	]kl = 2
∑
i, j

(pi − p j )2

pi + p j
〈 j|Ŝk/2|i〉〈i|Ŝl/2| j〉, (11)

with k, l = x, y, z, pi + p j > 0, and ρ̂ = ∑
i pi|i〉〈i| is the

spectral decomposition of the state. We denote the maximum
of the QFI as Fmax. The entanglement witness feature comes
from a simple inequality: the state ρ̂ has k-partite entangle-
ment if Fmax(ρ̂)/N > (k − 1). Otherwise, if Fmax < N it is not
possible to conclude that the system is not entangled, since the
witness Fmax may have just failed to capture it, behaving as a
flawed entanglement witness for such a system.

IV. NON-EQUILIBRIUM STEADY STATES

We first study the structure of the correlations in the
non-equilibrium steady states (NESS) of the system. The
NESS is reached after long times (t → ∞) of the evolution
dictated by master equation Eq. (1), or in other words, it
corresponds to the solution of the Lindbladian differential
equation d

dt ρ̂NESS = L̂[ρ̂NESS] = 0. The exact expression for
the NESS of this model is known [49], and given by (see
Appendix A)

ρ̂NESS = 1

N η̂η̂†, (12)

with

η̂ =
N∑

j=0

(Ŝ−/g∗) j, (13)

where g = iω0N/2 and the normalization constant is

N = N
N∑

j=0

1

|g̃|2 j

j∑
m=0

(−1)m

2m + 1

(
j

m

)
, (14)

for which g̃ = 2g/N .

A. Genuine multipartite correlations

Despite the exact expressions for NESS, it is not immediate
how to extract (compute) the genuine correlations from it. For
moderate finite system sizes (of the order of N � 212) one can
write explicitly the state numerically and directly compute its
properties. For the thermodynamic limit (N → ∞), however,
we perform a truncation over the η̂ operators and compute
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FIG. 1. Genuine multipartite correlations (GMC’s) for the NESS of the system, considering different k partitions and along the full phase
diagram of the system. (a) We show the GMC’s for k = 1 (crosses) and k = 6 (circles) and different system sizes, showing their behavior in
the two different phases of the model: while in the ferromagnetic phase it has subextensive, but finite, correlations [i.e., limN→∞ Ik/N = 0 with
limN→∞ Ik �= 0—see panel (b) for the finite size scaling], in the BTC phase it features extensive multipartite correlations [panel (c)]. We show
in (d) the correlations in the thermodynamic limit within our truncated ansatz approach, corroborating this behavior for all k partitions. In the
inset of the figure we show the quantum phase transition at (ω0)c = 1, for which the multipartite correlations of all orders display a power-law
critical behavior, with Ik/N ∼ (ω0 − (ω0)c)β and exponent β ∼ 0.3. In panel (e) we show structure of GMC’s with the k orders, in the BTC
phase. We see a power-law decay of genuine correlations with k [the inset display the raw reduced entropy S(ρk )/k].

analytically its n-body correlations up to n ∼ 10, therefore
also its GMC’s of order n (see Appendix A for details). The
truncation approach is based on considering only a few “�tr”
terms in the sum of excitations in Eq. (13). We have observed
that the correlations within this truncated ansatz converge
exponentially fast to the exact results for increasing �tr , thus
leading to negligible inaccuracies even for finite �tr and to
a reliable computation of the GMC’s in the thermodynamic
limit.

We show our results for the GMC’s in Fig. 1. We first
observe that the NESS has nonzero GMC’s along the two
different phases of the model. In the ferromagnetic phase
(0 � ω0 < 1), however, the spins have much weaker corre-
lations among each other compared to the BTC phase. While
the GMC’s in the ferromagnetic phase are subextensive with
system size (i.e., limN→∞ Ik/N = 0, but nevertheless nonzero
limN→∞ Ik �= 0), within the BTC phase the spins feature ex-
tensive GMC’s. See Figs. 1(b) and 1(c) for the finite size
scaling of the correlations along the two phases, and Fig. 1(d)
for the correlations in thermodynamic limit, obtained through
the truncation ansatz approach. As usual in spontaneous sym-

metry breaking theory, the different ordered phases arise due
to the interacting nature of their constituents, correlations
play therefore a fundamental role in their characterization.
We see that this behavior is corroborated in the BTC of our
model, leading to the extensivity of the GMC’s. It is inter-
esting to put these results in context to different forms of
TC’s, such as those occurring in closed systems. In this case
one can stabilize discrete time crystals (DTC’s), for which
correlations are also expected. A non-null mutual information
between distant spins (in the Floquet eigenstates) is shown
along the DTC’s and tends to zero as one approaches the
invariant (non-TC) phase [10,13]. We recall that the mutual
information between two spins quantify the total correlations
between them, i.e., quantum and classical correlations [62],
in the same spirit as GMC’s. We show in Fig. 1(d) (inset
panel) that the GMC’s display a second-order phase transition
at the critical point (ω0)c = 1.0, with a power-law singularity
Ik/N ∼ (ω0 − (ω0)c)β and exponent β ∼ 0.3.

The structure of GMC’s in the NESS shows a peculiar
behavior, see Fig. 1(e). The hierarchy among k-partite orders
Ik > Ik+1 is almost preserved, except for partitions with k not
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being a multiple of N . In this case the multipartite correlations
display an atypical oscillatory behavior—mathematically, this
could also be attributed to the role of the floor function in
Eq. (7), which brings an additional contribution. Nonethe-
less, in the thermodynamic limit they are absent, and we
see a power-law hierarchy Ik ∼ k−α , with α > 0. Moreover,
from the simpler reduced density matrix entropies (inset
panel)—which do not necessarily corresponds to multipartite
correlations—there is no oscillatory behavior. It is interest-
ing try reasoning these oscillations on top of monogamy
of correlations between the subsystems; since they are per-
mutationally invariant, breaking the symmetry might induce
atypical behavior. This subject must be deeper understood,
but stands as an interesting perspective. We also recall that
such a behavior has also been found in other physical systems
[43,44].

B. Quantum Fisher information

In an attempt to discriminate the classical and quan-
tum roots of the multipartite correlations, we examine the
QFI along the two phases of the model. We find, surpris-
ingly, that the QFI witnesses quantum entanglement only in
the ferromagnetic phase (the one with substantially weaker
GMC’s)—see Fig. 2(a). For finite system sizes, the QFI in
the ferromagnetic phase increases its value for increasing
the coherent field ω0, witnessing k-partite entanglement till
reaching its maximum value close to (ω0)c. A similar result
was also observed for two-spins entanglement captured by the
negativity quantifier [49]. The QFI, however, also witnesses
entanglement between larger groups of spins—a subexten-
sive number of spins. Precisely, it witness k ∼ O(1)-partite
entanglement as shown by a finite-size scaling analysis [see
Fig. 2(b)]. Moreover, when close to the quantum phase transi-
tion, the maximum witnessing entanglement occurs for a finite
system size N∗, which depends on the couplings parameters.

On the other side, for the BTC phase there is not wit-
nessing of entanglement and the QFI decays as a power law
with the system size [inset panel of Fig. 2(a)]. Nevertheless,
GMC’s are known extensive in this phase, so these results
point towards either (i) to the classicality of these correlations,
or (ii) simply a failure of QFI to witness entanglement, or
(iii) a third route with possibly discord-like quantumness of
correlations (nor classical neither entanglement). Ultimately
we are not able to fully discriminate these three possibilities,
it is nevertheless interesting to discuss them in connection
to the purity and coherence of the NESS. The NESS in the
BTC phase are known as highly mixed states [22,49], for
which the computation of entanglement is in general a highly
nontrivial task. This property may related to the failure of the
QFI to witness its entanglement. On the other hand, besides
highly mixed, the NESS have a peculiar structure in the Dicke
basis described by an “almost diagonal” density matrix (not
fully diagonal though), i.e., with a very low coherence in the
Dicke basis (see Appendix B, for a detailed discussion). In the
extremal limit with ω0/κ → ∞ the coherence in the Dicke
basis tends to zero and the density matrix becomes diagonal
in such a basis. States in this diagonal form were studied in
Refs. [63–65] and shown not having entanglement, however,
they do have quantum-discord correlations [66]. If the proper-
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FIG. 2. Maximum value of the quantum Fisher information
(Fmax) for the NESS of the system along the phases of the model.
We show in panel (a) Fmax for varying couplings and different
system sizes. The QFI witnesses multipartite entanglement only
in the ferromagnetic phases, reaching its peak around the critical
coupling. Panel (b) shows the finite-size scaling of the QFI in the
ferromagnetic phase. The BTC phase [inset of panel (a)] presents a
vanishing power-law decay with system size.

ties of this extremal limit can be extended through all BTC
phase, we would conclude that the phase is nonentangled,
but quantum-discord correlated. We cannot assure this fact,
however, since an extremal limit may be a singular point and
not fully descriptive for the whole phase properties.

V. DYNAMICS

In this section we discuss the dynamical properties of the
correlations through GMC’s quantifier and QFI witnesses,
along the different phases of the model.

A. Genuine multipartite correlations

The behavior of the GMC’s during the dynamics is shown
in Fig. 3. For short times, t � 1, the GMC’s grow according
to a power law for both phases of the model and any kth order.
In the ferromagnetic phase, after this initial transient time the
GMC’s quickly decay to a constant value in which the system
goes towards its NESS—Fig. 3(a). The behavior is similar for
all orders of k, differing only in the amount of correlation, i.e.,
decreasing its value for higher values of k.

On the other hand, in the time crystal phase, the spins after
the initial transient time (i.e., for t � 1) turn into a periodic
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FIG. 3. Dynamics of GMC’s for different kth orders and along
the two different phases of the model. In panel (a) we show
the dynamics in the ferromagnetic phase with ω0 = 0.5, and panel
(b) shows the dynamics in the BTC phase with ω0 = 2. The number
of 1/2−spins in the system is N = 120.

motion leading to an oscillatory and growing dynamics for
the correlations—see Fig. 3(b). The correlation growth (and
oscillations) are damped due to the interaction with the envi-
ronment, with a lifetime depending both on the system size as
on the system couplings.

We show in Fig. 4(a) the dependence of their dynamics
with the system size. Specifically, we find that the correlations
behave as

Ik (t ) ∼ tβN e−	N t cos(νt ) + Ik
NESS, (15)

where Ik
NESS ≡ Ik (t → ∞) is its nonequilibrium steady-state

value, βN characterizes the power-law growth, ν is the fre-
quency of the oscillations, and 	−1

N corresponds to the lifetime
of the dynamics.

While for intermediate times (t � 1) it is clear the power-
law growth (dominant term in the above equation), for long
times the exponential term plays the major role damping
the correlations. We can extract the lifetime of the dynamics
from its long-time behavior, Ik (t ) − Ik

NESS ∼ e−	N t for t � 1,
whose exponential depends on the decay rate 	N shown in
Fig. 4(b) (or from a nonlinear fit of the dynamics). We obtain
that the lifetime of the correlations diverges algebraically with
the system size (	N ∼ N−1), see inset panel of Fig. 4(a),
highlighting the intermittent growth of GMC’s in the thermo-
dynamic limit.
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FIG. 4. We show in panel (a) the dynamics of the total corre-
lations I1(t ) within the BTC phase, for ω0 = 2 and different system
sizes. After an initial transient time, the correlations oscillate and
grow according to a power law, which are however, damped due
to finite size effects according to Eq. (15). In panel (b) we show
the approach of the correlations to their steady-state values, in a
log-linear scale, highlighting the exponential behavior with a de-
creasing damping rate for increasing system sizes. The damping rate
for different system sizes is shown in the inset of panel (a), displaying
a divergence of the correlations lifetime in the thermodynamic limit.

B. Quantum Fisher information

We show in Fig. 5 the dynamics of the maximum QFI Fmax

along the two phases of the model. We see some similarities
as compared to GMC’s: While the QFI quickly saturates to
a constant value in the ferromagnetic phase, it displays per-
sistent dynamics (with a size-dependent damping rate) within
the BTC phase. It is surprisingly to notice that the QFI wit-
nesses entanglement in its dynamics only in the ferromagnetic
phase. In the BTC phase, apart from short times t � 1, we
have that Fmax < N does not truly witness any multipartite
entanglement correlations. We recall however that QFI is a
witness, and not a full quantifier of entanglement, thus we can
not discard the possible presence of such correlations along
the dynamics of the phase. Nevertheless, the QFI in the BTC
captures the oscillatory and persistent (in the thermodynamic
limit) behavior. We see in Fig. 5(b) that the QFI decays to-
wards its steady state value according to

Fmax(t )/N ∼ t−αN e−	N t cos(νt ) + Fmax,NESS, (16)

with Fmax,NESS ≡ Fmax(t → ∞) being its nonequilibrium
steady-state value, αN characterizes the power-law decay, 	N

is the effective decay rate, and ν, as for GMC’s, is the BTC
frequency. As for GMC, the effective decay rate vanishes
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FIG. 5. The maximum value of QFI (Fmax) during the dynamics
for the two phases of the model and different system sizes. In panel
(a) we show the dynamics in the ferromagnetic phase (ω0 = 0.5),
for which one can observe that genuine multipartite entanglement
between two spins are generated and maintained, even for long times.
In the panel (b), for the BTC phase with ω0 = 2.0, we see that
QFI witnesses entanglement only for short times, and show a rather
oscillatory decay towards its steady state value. The lifetime of the
this oscillatory dynamics diverge in the thermodynamic limit, as can
be seen from the log-linear inset panel.

algebraically with the system size 	N � N−1. The inset of
Fig. 5(b) highlights the divergence of the lifetime for the
oscillatory dynamics in the thermodynamic limit.

VI. CONCLUSIONS AND PERSPECTIVES

In summary, we studied GMC and QFI in a many-body
system composed by spin-1/2 particles interacting with an
environment that can be in a ferromagnetic or BTC phase, de-
pending on the coupling parameters. We found for the NESS
of the system that all orders of the GMC are extensive with
system size in the BTC phase, while are subextensive in the
ferromagnetic phase. Furthermore, the GMC show a second-
order phase transition between these phases with associated
critical exponent β ≈ 0.3. Given that such quantifier accounts
for classical as well as quantum correlations, we also analysed
the QFI in order to witness multipartite entanglement be-
tween the spins of the system. Surprisingly, the QFI vanishes
with the system size in the BTC phase, detecting entanglement

only in the ferromagnetic phase. We are therefore not fully
able to resolve the nature of the correlations present at the
NESS of the BTC phase, although we have indications that it
has at least quantum discord correlations—from the analysis
of the extreme case ω0/κ → ∞). The dynamics of both GMC
and QFI show in the thermodynamic limit, and only in such
a limit, a persistent oscillatory dynamics. While the GMC
display the persistent oscillatory behavior around a mean alge-
braic growth Eq. (15), for all k orders of genuine correlations,
the persistent oscillations in the QFI appears around a mean
algebraic decay Eq. (16).

An interesting perspective stands for a deeper investigation
of the nature of the correlations (classical or quantum) and
their role in the BTC phase. Furthermore, the time crystals
is nevertheless shown strongly correlated, thus enabling the
possibility of exploiting such correlations to improve ther-
mal machines by reversing the heat flow [67]. Also, as the
structure of GMC’s presents a peculiar behavior dependent
of k in the NESS, also noticed in different systems [43,44],
it would be worth an investigation of their roots in connec-
tion to these different models where the same behavior was
observed, from the role of floor function in the quantifier to
monogamy/frustration of their correlations. Lastly, the subex-
tensivity of the GMC’s in the ferromagnetic phase and its
extensivity in the BTC phase poses the question if this is a
characteristic of continuous phase transitions, as it seems to
happen also in the second order quantum phase transition of
the Lipkin-Meshkov-Glick model [44]. This question is worth
of investigation and we leave it as an a future work.
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APPENDIX A: ANALYTIC CALCULATION OF THE NESS

1. Steady state of Dicke model

The steady state of Dicke model can be written as [49]

ρ̂ss = 1

D
η̂η̂†, (A1)

where

η̂ =
N∑

j=0

(
Ŝ−

g∗

) j

, (A2)

with g = iω0
N
2 and the normalization constant is

D =
N∑

j,l=0

Tr

(
Ŝ−

g∗

) j(
Ŝ+

g

)l

=
N∑

j=0

Tr(Ŝ−Ŝ+) j

(g∗g) j
. (A3)

In order to calculate the NESS in the thermodynamic limit it
was made a truncation of the steady state in Eq. (A1). For that
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FIG. 6. Panel on the left on log-linear scale shows the truncation approaching to the exact NESS exponentially fast for ω0 > 1 and k = 2, 6,
while the one in the right on log-log scale shows the truncation approaching in a power law behavior to the exact NESS for ω0 = 1 and
k = 1, . . . , 6.

we used the following ansatz

η̂ =
�tr∑
j=0

(
Ŝ−

g∗

) j

, (A4)

where �tr determines the order of the truncation ansatz.
Since in the thermodynamic limit the multipartite correla-

tions can be approximated by

Ik (ρ̂)

N
∼ S(ρ̂k−1)

k − 1
− S(ρ̂k )

k
, (A5)

with “∼” excluding finite-size effects, we can analyze the
effect of truncation in S�tr (ρk )/k, which one was made with
numerical computation. The results are shown in Fig. 6. We
see that S�tr (ρk )/k approaches exponentially fast to the NESS
with varying truncation thresholds on the BTC phase (ω0 >

1), see left panel, while this quantity follows a power law
for the critical coupling ω0 = 1 (right panel). For practical
purposes, the NESS was considered with 50 spins. More
specifically,

S�tr (ρ̂k )/k ∼ Aω0 e−αω0 �tr + Bω0 , ω0 > 1, (A6)

S�tr (ρ̂k )/k ∼ Aω0�
−αω0
tr + Bω0 , ω0 = 1, (A7)

where Bω0 ≡ S�tr (ρ̂ss)/k, and Aω0 and αω0 are constants.
Extrapolating the above scaling, we can obtain the exact

S�tr (ρ̂k )/k for the exact NESS (Bω0 in the above notation), as
shown in Fig. 7. We see that for �tr = 10, with k = 1, 2, 6,
it approaches to the exact NESS for ω0 ∼ 1.2. Increasing the
values of �tr , for instance �tr = 50, we have ω0 ∼ 1.05, so that
in the limit S�tr→∞ (ρ̂k )/k → 0 for ω0 → 1. This behavior is in
agreement with the GMC’s presented in Fig. 1(d).

2. Computation of the NESS observables

In order to compute the ρ̂ss observables, we begin calculat-
ing the trace TrS− jS+ j . Notice first that

S− jS+ j |S, sz〉 =
sz+ j−1∏

s=sz

[S(S + 1) − s(s + 1)]|S, sz〉. (A8)

with S = N/2. Thus,

TrS− jS+ j =
+S∑

sz=−S

sz+ j−1∏
s=sz

[S(S + 1) − s(s + 1)]

−−−−−→
lim S→∞
lim j/S→0

+S∑
sz=−S

(
S2 − s2

z

) j
, (A9)

results in

TrS− jS+ j =
+S∑

sz=−S

j∑
m=0

(
j

m

)
(S2) j−m

(−s2
z

)m

=
j∑

m=0

(
j

m

)
(S2) j−m(−1)m

[ +S∑
sz=−S

(
s2

z

)m

]
. (A10)

In the case in which lim S → ∞ the Faulhaber’s formula can
be used, such that

2
+S∑

sz=−S

(
s2

z

)m � 2S2m+1

2m + 1
,

then

lim
S→∞
j/S→0

TrS− jS+ j = 2S2 j+1
j∑

m=0

(−1)m

2m + 1

(
j

m

)
. (A11)

1 1.1 1.2 1.3
0

0.2

0.4

0.6

FIG. 7. S�tr (ρ̂k )/k as function of the pumping frequency ω0 for
different partition sizes k = 1, 2, 6 and number of spins in the sys-
tem. As �tr increases the system state approaches the exact NESS.
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One can see that, within these limits (S → ∞, j/S → 0) it is also true that

TrS− j1 S+l1 S− j2 S+l2 ...S− jn S+ln = δ∑
i ji=J,

∑
i li TrS−JS+J , (A12)

which was already computed above. Similarly, with the same reasoning as above, we see that

TrS− jS+ jSl
z

S→∞−−−−−→
j/S,l/S→0

j∑
m=0

(
j

m

)
(S2) j−m

(−s2
z

)m =
j∑

m=0

(−1)m

(
j

m

)
(S2) j−m

+S∑
sz=−S

(sz )2m+l

= δ mod 2l,02S2 j+l+1
j∑

m=0

(−1)m

2m + l + 1

(
j

m

)
. (A13)

Consequently, we have

D = Trρ̂ss =
∞∑
j=0

TrS− jS+ j

|g|2 j
= 2

∞∑
j=0

S2 j+1

|g|2 j

j∑
m=0

(−1)m

2m + 1

(
j

m

)
= 2S

∞∑
j=0

1

|g̃|2 j

j∑
m=0

(−1)m

2m + 1

(
j

m

)
, (A14)

with g̃ = g/S and g = (iwS)/k. Also

D
〈
S− j1 S+ j2 S j3

z

〉 =
∞∑

j,l=0

TrS−( j1+ j)S+( j2+l )S j3
z

g∗ jgl
=

∞∑
j′= j1
l ′= j2

TrS− j′S+l ′S j3
z

g∗ j′− j1 gl ′− j2 , (A15)

we know δJ= j′,l ′ , then

D
〈
S− j1 S+ j2 S j3

z

〉 =
∞∑

J=max( j1, j2 )

TrS−JS+JS j3
z

g∗J− j1 gJ− j2
=

∞∑
J=max( j1, j2 )

δmod2 j3,0
2S2J+1+ j3

|g|2Jg∗− j1 g− j2

J∑
m=0

(−1)m

2m + 1 + j3

(
J

m

)

= δmod2 j3,0
2S j1+ j2+ j3+1

g̃∗− j1 g̃− j2

∞∑
J=max( j1, j2 )

1

|g̃|2J

J∑
m=0

(−1)m

2m + 1 + j3

(
J

m

)
. (A16)

Notice that the macroscopic observable m̂α ≡ Ŝα

S , according to the above equations will be independent of “S”, implying that

〈m̂αm̂β〉 = 1

D

TrŜα Ŝβρss

S2
= F (α, β, g̃), (A17)

in which the terms O(S3) have been neglected.

3. Reduced density matrices (from collective spin observable-tomography)

Based on the idea of quantum state tomography, a reduced state with k particles out of N can be written as

ρ̂k = TrN−k{ρ̂} =
∑

α1...αk=x,y,z,I

〈
σ̂

α1
1 ...σ̂

αk
k

〉
2k

σ̂
α1
1 ...σ̂

αk
k . (A18)

We can infer the correlators 〈σ1...σk〉 from the collective ones 〈S1...Sk〉, as follows:

1

Sk
〈Ŝα1 ...Ŝαk 〉 = 1

Sk

N∑
i1...ik=1

〈
σ̂

α1
i1

...σ̂
αk
ik

〉 1

2k
= 1

(2S)k

⎡
⎢⎢⎣ ∑

{ik}
i1 �=i2...�=ik

〈
σ̂

α1
i1

...σ̂
αk
ik

〉 + ∑
{ik}

i1 �=i j�2

〈
σ̂

α1
i1

...σ̂
αk
ik

〉 + ...

⎤
⎥⎥⎦. (A19)

Due to the particles permutation symmetry the expected value is independent of site indexes, i.e., particle indexes, then

1

Sk

〈
Ŝα1 ...Ŝαk

〉 = 1

Sk

N∑
i1...ik=1

〈
σ̂

α1
i1

...σ̂
αk
ik

〉 1

2k
= 1

(2S)k

⎡
⎢⎢⎣〈

σ̂
α1
i1

...σ̂
αk
ik

〉
i1 �=i2...�=ik

∑
{ik}

i1 �=i2...�=ik

+〈
σ̂

α1
i1

...σ̂
αk
ik

〉
i1 �=i3...�=ik

∑
{ik}

i1 �=i j�2

+...

⎤
⎥⎥⎦, (A20)

where in the limit S → ∞ the first sum becomes
(N

k

) ∼ Nk

k! ∼ O(NK ) and the second one ∼( N
k−1

) ∼ O(Nk−1), with (2S)k = Nk .
Taking only the leading term 〈σ̂ α1

i1
...σ̂

αk
ik

〉i1 �=i2...�=ik /k! we get

〈
σ̂

α1
1 ...σ̂

αk
k

〉 = k!
〈Ŝα1 ...Ŝαk 〉

Sk
. (A21)
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FIG. 8. Absolute values of the density matrix elements in a colormap in Dicke basis for the NESS of the system along the phases of the
model. The first element of the row and column represents all spins in excited state, while the last one all spins are in the ground state. We show
in panel (a) for N = 128 the behavior of density matrix in the ferromagnetic phase when increasing ω0 until its critical value (ω0)c = 1. Panel
(b) shows the zoom in the diagonal of the density matrix in the BTC phase with ω0 = 2.0 for some values of N . In the inset of right-lower
panel the absolute values of the density matrix for N = 850 and ω0 = 500.0.

Therefore, the reduced state can be described as

lim
S→∞
k/S→0

ρ̂k =
∑

α1...αk=x,y,z,I

k!
〈Ŝα1 ...Ŝαk 〉

(2S)k
σ̂

α1
1 ...σ̂

αk
k . (A22)

APPENDIX B: COHERENCE IN THE BTC

In order to further discuss the qualitative behavior of the
GMC’s and QFI we explore the role played by quantum co-
herence [68] in the Dicke basis in the NESS and in the system
dynamics for finite times.

1. Coherence of the NESS

Figure 8(a) shows for N = 128 that more close the system
is to the phase transition ω0 = (ω0)c = 1, more coherence
the density matrix of total system has. Although the exis-
tence of quantum coherence in a system does not imply it is
entangled, once coherence is basis dependent, it may work
as resource for entanglement [69]. This indicate that in the
ferromagnetic phase the system is entangled and intensify this
correlations close to the quantum phase transition, as shown
in Fig. 2.
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FIG. 9. Absolute values of the density matrix elements in a colormap in Dicke basis with N = 128 for the dynamics of the system along
the two phases of the model. The first element of the row and column means all spins in excited state and the last one all spins are in ground
state. We show in panel (a) the density matrix in the ferromagnetic phase (ω0 = 0.5) for some times of the dynamics, starting from a pure
separable state |ψ (0)〉 = |−〉⊗N at t = 0 until reaching the NESS at t = 30.0. Panel (b) shows the density matrix of the system in the BTC
phase with ω0 = 2.0. At the time t = 5.34 we find a valley in the dynamics of GMC’s (Ik), so that in the next time t = 7.26 a peak in Ik is
found. This alternating behavior is maintained until t = 14.48, which enable us to see the matrix approaching to the quasidiagonal NESS.

On the other hand, observing the density matrix of the
system ρN in the BTC phase for large N in the NESS as
shown in Fig. 8(b), we can see that it approaches to a diagonal
matrix [22], or a linear convex combination of Dicke states,
as happens in Dicke superradiance phenomenon [70]. Due to
the limitation of computational resources, we plot the density
matrix elements until N = 850. Despite an almost diagonal
form, the NESS still have a nonnull coherence in the ther-
modynamic limit for finite ω0/κ . Notwithstanding, we obtain
that the adjacent elements of the main diagonal are decreasing
in the extremal limit with ω0/κ → ∞. This can be observed
in the inset of the right-lower panel of Fig. 8(b), which shows
the absolute value of the matrix elements for ω0/κ = 500. As

demonstrated in Refs. [63–65] a state in this form is separable,
then, pointing towards that the NESS of the system in this
limit is not entangled. Despite of that, this a quantum state,
once it has discord-like quantum correlations [66].

2. Coherence of the dynamical state

In Fig. 9(a) we can see the dynamics of the system in the
ferromagnetic phase with ω0 = 0.5 and N = 128 spins. The
initial pure state |ψ (0)〉 = |−〉⊗N at t = 0 is separable and as
time passes it is driven to Dicke states that have mostly the
spins in the ground state, which are approximately described
by few excitations of the state |N, 0〉. What prevents the NESS
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of being entirely in |N, 0〉 is the weak field ω0. Here, we call
the attention to the fact that the initial state has coherence
in the Dicke basis, although it is separable. This result is in
accordance with the discussion above, once the existence of
quantum coherence does not imply in entanglement, but it can
be converted to entanglement through incoherent operations
[71].

Figure 9(b) shows the dynamics of the system in the BTC
phase for ω0 = 2.0 and N = 128. The times were chosen to

capture the valleys and peaks of GMC’s [as in Fig. 3(b), for
instance], so that at time t = 5.34 it describes a valley and at
the second time t = 7.26 it is in a peak, and so on alternately.
We notice that in the peaks of GMC’s the density matrix is
near its quasidiagonal form, while in the valleys it has larger
coherence. Similarly to NESS in the BTC phase, the states
of the system in the peaks are almost diagonal and present
higher values of GMC’s compared to the ferromagnetic
phase.
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