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Reduction of the symmetry of a spin chain by external electric field and strain: Quantum effects
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Quantum spin-1/2 system, in which spin, electric, and elastic subsystems are coupled, is studied analytically.
We have shown that the external magnetic and electric field and strain, which reduce the symmetry, can affect
many observable characteristics of the system. The analysis reveals how quantum critical values of the governing
parameters can manifest themselves in the temperature behavior of those observables. Predicted effects can be
useful for application in many fields of microelectronics.

DOI: 10.1103/PhysRevB.105.134409

I. INTRODUCTION

Electro-magneto-elastic interaction attracts the attention of
researchers. The main reason for such an attention is the
practical use of that interaction. Namely, for instance, us-
ing the external magnetic field one can change their electric
properties, or the application the external magnetic field can
affect strains in the system, etc. Then the systems, in which
the electro-magneto-elastic coupling is strong enough can be
used as, e.g., switching devices, or the regulation units for
memory storages in the modern microelectronics. Phononic
control of magnetic properties [1,2], spintronics [3–5], mag-
netophononics [6], straintronics [7,8] are the prime examples
of such an application. Piezoelectric systems are compounds,
which can generate electric field from applied stress/strain, or
vice versa, generate the strain as the reaction to the applied
electric field [9]. Those systems can be used as ultrasonic de-
tectors, ignition systems, sonar devices, or microphones. The
possibility of the external field control of such devices with
the Joule heat suppression implies achievement of ultralow
power microelectronic devices, which is very important, es-
pecially at low energies. The most studied subjects, in which
electro-magneto-elastic interaction manifests itself, are multi-
ferroics, where, e.g., magnetic and ferroelectric order or both
are present [10–16]. However, it is clear from general grounds
that similar effects can exist in insulating spin systems without
magnetic and ferroelectric ordering.

The nature of the electro-magneto-elastic coupling is the
following. Ligands (nonmagnetic ions) surrounding magnetic
ions determine the crystalline electric field, which acts on
magnetic ions. This field, together with the spin-orbit in-
teraction and the exchange coupling, defines the single ion
magnetic anisotropy, or the magnetic anisotropy of the effec-
tive (indirect superexchange) interaction between spins in the
spin system. Then strains of the elastic subsystem can change
the distribution of ligands, changing the internal crystalline
electric field. On the other hand, the external electric field also,
as the crystalline electric field of ligands, acts on the orbital

moments of magnetic ions. The latter, in turn, due to the
spin-orbit coupling, affect the single-ion spin anisotropy or the
anisotropy of the indirect exchange coupling between spins.
On the other hand, the external magnetic field changes the
direction of spins, and affects via the spin-orbital coupling the
orbital moments of ligands, changing, in turn, their positions
via strains. Those changes also affect distribution of charges,
yielding different electric characteristics. Symmetry of the
system plays a crucial role in the determination of physical
properties of such compounds. The change of the symmetry
can yield transitions to novel physical phases with properties,
different from the initial one.

It is important to study quantum many-body spin insulat-
ing system, in which interactions between spin, electric, and
elastic subsystems can take place, to understand how that
mechanism reveals itself there. Spin chain compounds can
serve as the very good quantum many-body testing ground
for the consideration of the interaction between electric, mag-
netic, and elastic subsystems. In those compounds the reduced
dimensionality causes the enhancement of quantum and ther-
mal fluctuations, which destroy magnetic ordering at nonzero
temperatures [17]. However, the coupling between spins along
the distinguished direction can be very strong, hence, those
systems manifest quantum many-body effects. Also very im-
portant, spin-1/2 chains permit to obtain exact theoretical
results [18], which give the opportunity to check them in com-
parison with the data of experiments in spin chain compounds.

Recently we have studied magnetic, electric, and elastic
characteristics of the spin chain system coupled to the electric
and elastic subsystem [19]. In that study we investigated the
situation, in which the external electric field and strain do not
change the symmetry of the system (to be precise, the symme-
try was changed to the higher one only in one critical point).
In the present paper we consider the qualitatively different
case, in which the strain or the applied external electric field
reduce, as a rule, the spin symmetry of the spin-1/2 chain
system. Obviously, in spin-1/2 case there exists only interion
magnetic anisotropy. We have calculated the renormalization
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of the magnetic, electric, and elastic characteristics of the spin
chain system caused by the symmetry-reducing coupling to
the external electric field and strain. We show how quan-
tum critical points, present in the system, with the coupling
between spin, electric, and elastic subsystems determine the
features of the low-temperature behavior of the mentioned
characteristics.

II. HAMILTONIAN OF THE PROBLEM

The Hamiltonian of the considered orthorhombic spin
chain compound, in which the spin subsystem is coupled to
the electric and the elastic ones, can be written as [20,21]
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where Sx,y,z
n are the operators of spin projections of the spins

1/2 situated at the site n, H is the magnetic field H directed
along the z axis (we use the units in which the product of
the effective g-factor g and the Bohr magneton μB is equal
to unity gμB = 1), I = (Jx + Jy)/2, J = (Jx − Jy)/2, Jx,y,z are
the parameters of the magnetically anisotropic exchange in-
teraction, (we consider mostly the case with −|I| � Jz � |I|;
the most interesting effects are related to the aniferromagnetic
spin-spin interactions). Then, E ≡ Ey is the external electric
field directed along the y axis (below we consider only the ex-
ternal electric field), ε is the related component of the electric
permittivity, e is the related component of the piezoelectric
modulus (do not confuse with the charge of the electron).
Also, C is the elastic modulus (for this geometry it is C66)
(in what follows we call those components for simplicity
just electric permittivity, piezoelectric modulus, and elastic
modulus), u is the strain (u ≡ uxy − uxy0, and u0 ≡ uxy0 is
the static strain), and a1,2 and b1,2 are the coefficients of the
magneto-electric and magneto-elastic couplings, related to the
exchange-antisymmetric and exchange-symmetric couplings,
respectively (all issues are connected with the coordinate y).
In highly symmetric crystals the elastic modules are related to
the velocities of sound as C = ρv2, where ρ is the density
of the crystal, and v is the velocity of sound. One often
measures the velocities of sound to determine the absolute
values of elastic modules and their relative changes as func-
tions of, e.g., the temperature, the external fields, etc. [22]. On
the other hand, the electric permittivity and the piezoelectric
modulus can be also measured in magneto-electro-acoustic
experiments [21,23,24]

In this contribution electric and elastic degrees of free-
dom of the system are studied as classical variables. In our
consideration we limit ourselves with the longitudinal sound
(for which the direction of the wave vector and polarization
coincide). The form of the electro-magnetic and strain-
spin and piezoelectric coupling in the Hamiltonian is the
particular case of the general interactions between spin, elec-
tric, and elastic degrees of freedom

∑
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∑
ipq aipqEiS

p
n Sq

m,∑
m,n

∑
i j pq bi j pqui jS

p
mSq

n , and
∑

ipq eipqEiupq, where n, m nu-
merate the lattice sites, and i, j, p, q = x, y, z [20] with a1,2,
b1,2, and e being the components of the tensors aipq, bi j pq, and
eipq. Here we use the form of magneto-electric and magneto-
elastic couplings similar to [21] where the studied effects
were observed in the magnetically ordered multiferroic. The
considered effect is related to the orientation of the axes of
the magnetic anisotropy of the spin-spin interaction in the
chain, determined mostly by the distribution of non-magnetic
ligands, surrounding magnetic ions, through which the in-
direct exchange between spins of magnetic ions is realized.
The spin-orbit interaction together with the orientation of
orbitals of ligands and magnetic ions affects the anisotropy
of the interspin interactions in the chain, the key issue of the
present study. For this direction of the electric field and related
strains one deals with two kinds of the magneto-electric and
magneto-elastic couplings, the exchange-symmetric and the
exchange-antisymmetric ones (1). We see that strain- and
electric field-induced magnetic anisotropy is lower than the
original orthorhombic: They yield the monoclinic anisotropy.
It principally differs this geometry from the one, studied
in [19].

Suppose for simplicity that the chain is open (open
boundary conditions). Then using the unitary transformation
(rotation of all spins with respect to the axis z by the angle ψ)
we can re-write the Hamiltonian (1) as
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(2)

where J1 = [J2 + (a2E + b2u)2]1/2 and tan 2ψ = −(a2E +
b2u)/J . Notice that the angle ψ does not enter the expression
for the Hamiltonian for the open chain.

III. RENORMALIZATION OF THE MAIN
CHARACTERISTICS

Then we perform the analysis similar to Ref. [19]. Con-
sider the average value of the component of the spin
quadrupole moment (here and below we deal only with
the spin quadrupole moments) of the chain per site Q1 =
(1/N )

∑
n〈Sx

nSy
n+1 − Sy

nSx
n+1〉 (the brackets denote the averag-

ing with the density matrix, and N is the length of the chain),
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and χQ1, the component of the quadrupole susceptibility of
the spin chain, related to Q1, and the average value of the
other component of the spin quadrupole moment of the chain
Q2 = (1/N )

∑
n〈Sx

nSx
n+1 − Sy

nSy
n+1〉, with χQ2, the component

of the quadrupole susceptibility of the spin chain, related to
Q2. From thermodynamics we know that Q1 = ∂F/∂ (a1E ) =
∂F/∂ (b1u), where F is the free energy of the system per site,
and χQ1 = a−1

1 ∂Q1/∂E = b−1
1 ∂Q1/∂u. On the other hand, it

follows that Q2 = −∂F/∂J1 with ∂Q2/∂J1 = χQ2. We can
also use the obvious relations ∂Q1/∂E = a1χQ1, ∂Q1/∂u =
b1χQ1, ∂Q2/∂E = [a2(a2E + b2u)/J1]χQ2, and ∂Q2/∂u =
[b2(a2E + b2u)/J1]χQ2. It is easy to see that the component
of the quadrupole moment Q1 is nonzero only for Ey �= 0 or
(uxy − uxy0) �= 0, (it is present in monoclinic systems), while
Q2 is nonzero in the absence of the electric field and strain (it
is present in the orthorhombic system too).

From the elasticity theory [25] we define the com-
ponent of the elastic deformation σ ≡ σxy, related to
uxy, as σ = (∂F/∂u) = C(u + u0) + eE + b1Q1 − b2(a2E +
b2u)Q2/J1, and the definition of the piezoelectric modulus
e = (∂σ/∂E ), see [20], it can be calculated

eeff = e + a1b1χQ1 − a2b2 f , (3)

where

f = (a2E + b2u)2J1χQ2 + J2Q2

J3
1

. (4)

The definitions for the electric induction D = −4π (∂F/

∂E ) = εE − 4πe(u + u0) − 4πa1Q1 + 4πa2(a2E + b2u)Q2/

J1 and the electric permittivity ε = ∂D/∂E yield the effective
permittivity

εeff = ε − 4πa2
1χQ1 + 4πa2

2 f . (5)

Finally, according to the elasticity theory [25] we have
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The right-hand side of that equation can be transformed as
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Then we can calculate ∂E/∂x using the equation of the elec-
tric neutrality (we use here only the necessary component of
the electric induction)
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The coefficient in the rewritten Eq. (6) in front of ∂u/∂x is the
renormalized elastic modulus

Ceff = C + b2
1χQ1 − b2

2 f + 4π
e2

eff

εeff
. (9)

For convenience we can introduce the relative changes of
the electric permittivity 	ε = (εeff − ε)/ε, the piezoelectric
modulus 	e = (eeff − e)/e, and the elastic modulus 	C =
(Ceff − C)/C.

We see that the renormalized electric permittivity, piezo-
electric, and elastic module for the electric field directed
along y axis and the strain uxy, which reduce the symme-
try of the system from the orthorhombic to the monoclinic,
are determined by two (not by one component of the ten-
sor of the quadrupole susceptibility, as for the the electric
field Ex and the strain uxx − uyy, which keep the symmetry
orthorhombic or enlarge the symmetry to the tetragonal one)
[19], components of the quadrupole susceptibility, and on the
component of the quadrupole moment itself. The effect of
the exchange-antisymmetric coupling is determined by the
component of the quadrupole susceptibility, similar to the
previous case [19]. It is characteristic for the monoclinic
symmetry, while the effect of the exchange-symmetric cou-
pling is determined by the quadrupole susceptibility and the
quadrupole moment itself, characteristic to the orthorhombic
symmetry, in the combination f , in contrast to the pre-
vious case. Contributions from the exchange-antisymmetric
and exchange-symmetric parts of the electric-quadrupole and
strain-quadrupole couplings renormalize the effective electric
permittivity, piezoelectric modulus, and elastic modulus in
opposite ways, reducing or enlarging their values (at least
formally, see below). The mentioned components of the
quadrupole susceptibility and the quadrupole moment of the
spin chain can be calculated as derivatives of the thermo-
dynamic potential, the Helmholtz free energy F . Hence, in
the framework of the Gibbs canonical ensemble, they do not
depend on the eigenfunctions of the system. It is not so, when
one calculates some other characteristics of the system, which
cannot be expressed as the derivatives of the thermodynamic
potential, e.g., correlation functions between not neighboring
spins.

IV. SPECIAL CASES

To find the free energy F of the spin chain with the Hamil-
tonian (1) or (2), we can use the Jordan-Wigner transformation
[26] connecting spin operators and operators of creation and
destruction of spinless fermions. Using then the Fourier trans-
formation we rewrite the Hamiltonian (2) as [27]

H = NC(u + u0)2

2
− ε

NE2

8π
+ NeE (u + u0)

− I1

(
Nh

2
+ N	

4
+

∑
k

[
(h − cos(k − φ))a†

kak

− γ

2
(a−kake−ik + H.c.) − 	

N
cos(k)ρ−kρk

])
, (10)

where a†
k (ak) creates (destroys) the fermion with the quasi-

momentum k, I1 = [I2 + (a1E + b1u)2]1/2, 	 = Jz/I1, γ =
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J1/I1, tan φ = (a1E + b1u)/I , and ρk = ∑
p a†

p+kap. We see
that Eq. (10) is the generalized lattice form of the Hamiltonian
of the one-dimensional massive Thirring model [28], see also
[29,30]. For the one-dimensional massive Thirring model the
eigenvalues of the Hamiltonian can be written as [31–34]
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8π
+ eE (u + u0) − Iz

4

− I1h

2
+ I1	

N
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(h − |γ | cosh β j ), (11)

where the rapidities {β j}M
j=1 are determined as the solutions of

the Bethe ansatz equations

N |γ | sinh β j

= 2πAj + φ + 2
M∑

k=1
k �= j

tan−1[	( tan(β j − βk )/2)], (12)

Aj are integers or half-integers, and M is the number of spins
down. Solving the set of equations (12) with respect to β j ,
and putting the solutions to (11) one gets eigenvalues of the
one-dimensional massive Thirring Hamiltonian. The phase φ

determines the finite-size corrections [35].
Let us define new more convenient parameters a =

|γ | exp[ξ�/(π + ξ )], where iξ = ln[(1 + i	)/(1 − i	)] is
determined by the interaction Jz, and the parameter � is
connected with the number of down spins via (M/N ) =
(aξ/π sin(ξ )) sinh[π�/(π + ξ )]. Notice that for the nonin-
teracting case Jz = 0 one gets a = |γ |. Then the ground state
energy of the model per site can be written as
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)]

− I1aξ

2 sin(ξ )

[
1

2π + ξ
sinh

(
(2π + ξ )�

π + ξ

)
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(
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)]
+ eEu − ε
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8π
. (13)

For example, at H = 0 we have M = N/2, which defines
the value of � = [(π + ξ )/π ] sinh−1[π sin(ξ )/2aξ ]. Differ-
entiation of the ground-state energy ET g with respect to J ,
E , or u yields the necessary values of Q1,2 and χQ1,2 for
the considered model in the ground state as a function of
H , E , and u. One can, using the developed technique of the
thermal Bethe ansatz [18], construct nonlinear integral equa-
tions, which describe thermodynamics of the one-dimensional
massive Thirring model. However it is impossible to ob-
tain analytic solutions of those equations in the closed form
(except of the limiting cases of low and high temperatures).
The other two ways to take into account interactions between
spinless fermions in (10) is to use [36] the Bethe ansatz so-
lution for the XYZ spin chain [37] (known only for H = 0,
however for the lattice case), or the Hartree-Fock-like approx-
imation, which were used for the considered spin chain in the
case of nonzero Ex and uxx − uyy [19].

The situation is simplified for the case Jz = 0, for which
the Hamiltonian (10) is the quadratic form of Fermi operators.
Using the Bogoliubov transformation we obtain for the free

energy of the system per site

F = C(u + u0)2

2
− ε

E2

8π
+ eE (u + u0)

−T

N

∑
k

ln [2 cosh(εk/T )] , (14)

where T is the temperature (we use the units in which the
Boltzmann constant is unity, kB = 1), and

εk = [a1E + (b1u)] sin(k)

+
√

(H − I cos(k))2 + J2
1 sin2(k) . (15)

The expectation values of Q1,2 and χQ1,2, can be easily calcu-
lated from Eqs. (14) and (15),
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)
,

χQ1 = −(4NT )−1
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(
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) ,
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(
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2T

)
√

(H − I cos(k))2 + J2
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,

χQ2 = (4NT )−1
∑
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( εk

2T
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+ 2T sin2(k)(H − I cos(k))2

[(H − I cos(k))2 + J2
1 sin2(k)]3/2

tanh
( εk

2T

)]
. (16)

We see that the component of the quadrupole susceptibility
related to the exchange-antisymmetric coupling, is negative,
hence the total renormalization of the electric permittivity is
positive, similar to the previously studied case [19]. It is easy
to see that f is positive, hence there are two contributions,
which determine the renormalization of the elastic modulus.
The first one is the magneto-elastic contribution, which yields
the softening of the modulus, and the other one, caused by the
piezoelectricity, yields hardening of the elastic modulus.

V. ANALYSIS OF THE RESULTS

The low-temperature behavior of all thermodynamic char-
acteristics of the spin chain is determined by quantum critical
points (lines), governed by the magnetic field H and the elec-
tric field E , or the strain u.

Quantum critical points (lines), as usual for quantum chain
systems, are determined by the dispersion law εk . It is easy to
see that for (a1E + b1u)2 < J2

1 the dispersion law is gapped
for all k except of the value of H = Hc1 = I at which the
dispersion law is gapless at k = 0. On the other hand, the
dispersion law is gapless for (a1E + b1u)2 � J2

1 and H2 �
H2

c2
= I2 + (a1E + b1u)2 − J2

1 .
At H = 0 the quantum critical values (lines in the ground

state E -u phase diagram) are determined from the equation(
a2

1 − a2
2

)
E2

c + (
b2

1 − b2
2

)
u2

c + 2(a1b1 − a2b2)Ecuc = J2.

(17)
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FIG. 1. The ground state E -u phase diagram of the spin chain
system in the absence of the magnetic field for Jz = 0 in the nonde-
generate case.

In the most degenerate trivial case a1 = a2 and b1 = b2 there
are no critical values of the electric field and strain, and the
dispersion law is gapped (except of the critical point H = Hc

at k = 0 for a nonzero magnetic field). In the less degenerate
cases, e.g., if a1 = a2 = a and b1 �= b2, there is only one
critical value (parabolic line in the ground state phase diagram
electric field-strain) of the electric field

Ec = (b1 + b2)u2
c − J2

2auc
, (18)

and vice versa, if b1 = b2 = b and a1 �= a2, there is only
one critical value (parabolic line in the ground-state phase
diagram) of the strain

uc = (a1 + a2)E2
c − J2

2bEc
. (19)

In the general case the critical line in the ground-state phase
diagram electric field-strain is the rotated hyperbola, see
Eq. (17). The ground state phase diagram is illustrated in
Fig. 1: It corresponds to the case with a2

1 − a2
2 > 0 and b2

1 −
b2

2 > 0, in which there exist the critical strain at zero electric
field and the critical electric field at zero strain. Notice that at
all those critical lines Hc1 = Hc2. In the region of the phase
diagram between two critical lines the dispersion law of spin
excitations is gapped, in the other regions it is gapless.

There are only two quantum critical points of the model,
governed by the magnetic field, namely Hc1, present in the
gapped part of the E -u ground-state phase diagram, and Hc2,
present in the gapless part. At the critical line of the E -u
diagram both values are equal, Hc1 = Hc2.

The standard way to see the influence of the critical point
governed by the magnetic field H is to study the magnetic
field dependence of the magnetic moment and the magnetic
susceptibility. The z projection of the magnetic moment per

FIG. 2. Magnetic moment of the spin-1/2 chain with I = 1, J =
0.3, Jz = 0 for T = 0.01 and a1 = 1, a2 = 0.5 as a function of the
external magnetic field H for the external electric field E = 0 (blue-
dashed line), E = Ec = 0.2

√
3 (red-solid line), and E = 0.7 (black-

dotted line).

site, which is equal to

M = 1

2N

∑
k

(H − I cos k) tanh
(

εk
2T

)
√

(H − I cos(k))2 + J2
1 sin2(k)

, (20)

as well as the magnetic susceptibility χ = ∂M/∂H , can be
easily calculated. In the ground state the magnetic suscepti-
bility manifests the logarithmic singularity at H → Hc1 for
the values of the electric field and strain, satisfying the re-
lation (a1E + b1u)2 < J2

1 , and the square root singularity at
H = Hc2 for (a1E + b1u)2 > J2

1 .
In what follows we consider the case u = 0 for simplicity,

and investigate the effect of the electric field on the
studied characteristics of the spin chain system. In that
case there is only one value of the critical electric field
Ec = ±J/

√
a2

1 − a2
2 . It is clear from the above that the effect

of the strain can be considered in a similar way, with the
obvious change a1,2E → b1,2u, and with qualitatively similar
behavior.

Figures 2 and 3 manifest the low-temperature (T = 0.01)
magnetic field behavior of the magnetic moment and the
magnetic susceptibility. In these figures and in what follows
the following parameters are used: I = 1, J = 0.3, a1 = 1,
a2 = 0.5, b1 = −1, b2 = −0.5, e = 2, ε = 20, and C = 8.5.

We see that at low temperatures the magnetic moment and
the component of the magnetic susceptibility χ depend on the
values of the external electric field (and strain) too. However,
unlike the different direction of the electric field, see [19], the
difference in the behavior of these magnetic characteristic is
not so dramatic at the critical value of the electric field Ec.
For instance, for the electric fields close to Ec, for nonzero
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FIG. 3. Magnetic susceptibility for the spin-1/2 chain as a func-
tion of the external magnetic field H and various values of the
external electric field E . The parameters and notations are the same
as in Fig. 2.

temperature it is difficult to distinguish between the square-
root and logarithmic singularities present in the ground state
magnetic susceptibility.

Let us now illustrate the features of the quantum phase
transitions in magneto-electric, magneto-elastic, and piezo-
electric effects in the spin chain system.

First, let us examine the influence of the quantum critical
point, governed by the magnetic field, on the calculated above
relative changes of the piezoelectric modulus, electric permit-
tivity and elastic modulus.

Fig. 4 manifests the temperature behavior of the piezo-
electric modulus of the spin chain for various values of the
magnetic field H . We see that in general the temperature
behavior of 	e manifests a plateaux-like behavior at low
temperatures, then it grows with T , reaches the maximum,
and then it shows monotonic decay with the growth of the
temperature. The piezoelectric modulus in general decreases
with the growth of the applied magnetic field. The quantum
critical point at H = Hc1 reveals itself in the absence of the
low-temperature plateau.

Similar behavior is demonstrated by the electric permittiv-
ity, see Fig. 5. It is clear, because the formulas for the changes
of the electric permittivity and the piezoelectric modulus are
similar. Again, the external magnetic field yields the decrease
of the electric permittivity of the system.

Finally, Fig. 6 shows the relative changes of the elastic
modulus with temperature for various values of the external
magnetic field.

We can see that at high temperatures the elastic modulus is
softening with the decay of T , shows a minimum, and then,
manifests the hardening at lower temperatures. At all values
of the applied magnetic field except of the quantum critical
value H = Hc the elastic modulus shows small plateaux at

FIG. 4. The temperature dependence of the relative change of the
piezoelectric modulus of the spin-1/2 chain for various values of the
external magnetic field H . The parameters of the Hamiltonian are
the same as in Fig. 2. H = 0 corresponds to the blue-dashed line;
H = 0.5 is shown with the green-dashed-dotted line, H = Hc1 = 1
is for the red solid line, and H = 1.5 is shown with the black-dotted
line.

FIG. 5. The temperature dependence of the relative change of the
electric permittivity of the spin-1/2 chain for various values of the
external magnetic field H . The parameters of the Hamiltonian are
the same as in Fig. 2. H = 0 corresponds to the blue-dashed line;
H = 0.5 is shown with the green-dashed-dotted line, H = Hc1 = 1
is for the red-solid line, H=1.5 is for the black-dotted line.

134409-6



REDUCTION OF THE SYMMETRY OF A SPIN CHAIN BY … PHYSICAL REVIEW B 105, 134409 (2022)

FIG. 6. The temperature dependence of the relative change of
the elastic modulus of the spin-1/2 chain for various values of the
external magnetic field H . The parameters of the Hamiltonian are
the same as in Fig. 2. H = 0 corresponds to the blue-dashed line;
H = 0.5 is shown with the green-dashed-dotted line, H = Hc1 = 1
is for the red-solid line.

the lowest temperatures. The applied magnetic field yields the
hardening of the elastic modulus.

Then we examine the influence of the quantum critical
point, caused by the external electric field on the mentioned
characteristics of the spin chain.

Again, the temperature behavior of the piezoelectric mod-
ulus, see Fig. 7, and the electric permittivity, see Fig. 8,
manifest maxima at intermediate temperatures, and the low-
temperature plateaux at most of values of the applied electric
field except of the critical one. At the quantum critical value
E = Ec the piezoelectric modulus and the electric permittivity
grow at low T . On the other hand, the temperature dependence
of the elastic modulus, see Fig. 9, manifests minima for the
most of values of the applied electric field. At the quantum
critical value E = Ec the elastic modulus manifests softening
till the lowest temperature.

Thus we see that quantum critical points, characteristic for
the quantum spin chain, can manifest themselves in the low-
temperature behavior of various characteristics of the system.
For this geometry of the electric field (and strain) the most
spectacular changes are seen not in the magnetic susceptibility
(as it was for E = Ex [19]), but in the behavior of the electric
permittivity, piezoelectric modulus, and the elastic modulus in
the external electric field.

Analysing the behavior of studied characteristics for
nonzero value of Jz at least for −I � Jz � I in the ground state
(using the mentioned above non-perturbative Bethe ansatz
results) and at nonzero temperatures (using the Hartree-Fock
like approximation [19], we can conclude that the magnetic,
magneto-electric, piezoelectric, and magneto-elastic effects in

FIG. 7. The temperature dependence of the relative change of the
piezoelectric modulus of the spin-1/2 chain for various values of the
external electric field E . The parameters of the Hamiltonian are the
same as in Fig. 2. E = 0 corresponds to the blue-dashed line; E =
Ec = 0.2

√
3 is shown with the red-solid line.

the spin chain manifest qualitatively similar to the case Jz = 0
behavior.

It is also important to stress that in experiments it is easier
to reach the critical values of E than u, because for large

FIG. 8. The temperature dependence of the relative change of
the electric permittivity of the spin-1/2 chain for various values of
the external electric field E . The parameters of the Hamiltonian and
notations are the same as in Fig. 7.
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FIG. 9. The temperature dependence of the relative change of
the elastic modulus of the spin-1/2 chain for various values of the
external electric field E . The parameters of the Hamiltonian and
notations are the same as in Fig. 7.

values of strain one can overcome the threshold of the elas-
ticity theory and deal with the plastic deformation, where
our theory is not applicable. Unfortunately, we are not
aware about data of magneto-electric and magneto-elastic
experiments for spin-chain compounds. However, it is pos-
sible to estimate the values of the magneto-electric and
magneto-elastic coupling constants in real compounds with
the electro-magneto-elastic coupling, a1,2 and b1,2, using,
e.g., [21] for the samarium ferroborate: Their values at low
temperature are about 7 × 10−2 μC/m2 and 18 × 10−6 J/m3,
respectively, i.e., a1,2 	 b12. The critical values of the electric
field and strain are determined by the value of the in-plane
magnetic anisotropy J . For spin-chain compounds the latter is
of order of 	g2 times the isotropic exchange along the chain
[18], where 	g is the difference between the effective in-plane
g factors. Such a difference for spin-chain compounds can be
of order of 0.01–0.1 [38,39]. For organic spin-chain systems
the isotropic exchange is of order of 10 K [40], and for spin-
chain crystals can be of order of 100 K [41]. For example, for
the spin-chain crystal 6(MAP)CuCl2 the isotropic exchange

parameter along the chain is 110 K, while the in-plane mag-
netic anisotropy is 0.76 K [41].

VI. SUMMARY

In summary, using analytical quantum theory we have
considered the effect of the external electric field, magnetic
field, and strain, which reduce the effective symmetry, on the
spin chain system coupled to electric and elastic subsystems
of the insulating spin-chain crystal. We have shown that the
low-temperature behavior of the characteristics of the system,
like the magnetic susceptibility, electric permittivity, elastic
and piezoelectric module manifest features, governed by the
quantum critical points of the spin system. Unlike previously
studied case of the electric field and strain, which do not
reduce the symmetry, in the present case the effect is deter-
mined not only by one component of the spin quadrupole
susceptibility, but by two components of the susceptibility,
and by the component of the spin quadrupole moment it-
self. Such a difference yields more complicated ground-state
phase diagram with nonlinear quantum critical lines (for the
symmetry-preserving strain and electric field such a line is
linear). Those critical values can be seen in the special be-
havior of the temperature dependencies of the mentioned
observables. It is different in many aspects from the behavior
of similar characteristics of magnetically ordered multifer-
roics, while some features are similar [21,23,24]. On the other
hand, the general features of the temperature and external
field behavior of mentioned characteristics are reminiscent of
those, observed recently in the rare-earth paramagnet [42].
Such a similarity permits us to conclude that the effects,
studied in our paper, have the generic character for magnetic
systems with the strong enough coupling between spin, elec-
tric, and elastic subsystems. Contrary, the manifestation of
quantum critical points and lines are characteristic for quasi-
low-dimensional spin systems, and we expect that they can
be observed in, e.g., spin-chain compounds, with relatively
strong magneto-electro-elastic coupling. We point out that the
predicted effects can be very useful in modern microelectron-
ics, due to the possibility to govern, e.g., electric properties
by application of the external magnetic field or strain, for the
production of switching quantum devices, or in fabrication of
ensembles of qubits for quantum computers, which states can
be governed by external electro-magnetic fields and strains.
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