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Efficient solution strategy to couple micromagnetic simulations with ballistic
transport in magnetic tunnel junctions
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We present a computationally efficient strategy that allows us to simulate magnetization switching driven by
spin-transfer torque in magnetic tunnel junctions within a micromagnetic model coupled with a matrix-based
nonequilibrium Green’s function algorithm. Exemplary simulations for a realistic set of parameters are carried
out and show switching times below 4 ns for voltages above 300 mV or around 2 × 1010A m−2 for the P → AP
(parallel-to-antiparallel) direction. For AP → P switching, a trend reversal in the switching time is seen, i.e., the
time for magnetization reversal first decreases with increasing bias voltage but then starts to rise again.
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I. INTRODUCTION

A magnetic tunnel junction (MTJ) consists of two ferro-
magnetic layers that are connected by an insulating layer such
as MgO. The resistivity of such a stack depends on the angle
between the two ferromagnet’s magnetization directions [1,2].
This effect is called the tunnel magnetoresistance (TMR)
effect. It was further demonstrated that the magnetization
direction of a magnetic layer in an MTJ can be manipulated
by spin-polarized currents [3] due to a mechanism known
as spin-transfer torque (STT) [4–6]. The combination of the
two effects allows for a persistent memory technology called
magnetoresistive random access memory (STT-MRAM) that
is of technological interest [7,8].

Building on the pioneering work of Caroli et al. [9], the-
oretical attempts to describe the behavior of STT in MTJs
analytically have been made by Refs. [10–13] and describe the
torques arising from a free-electron model within the frame-
work of the Keldysh formalism and the WKB approximation
in great detail. On the basis of Ref. [10], Kubota et al. [14]
showed a qualitative agreement to their experimental findings
and their work was used in turn by Datta et al. in Ref. [15] as
the basis for the parameters in their computational work.

Although it is a standard technique in micromagnetism to
couple magnetization dynamics to spin-drift diffusion calcu-
lations to describe a vast variety of giant magnetoresistance
(GMR)-stack-based devices [16,17], the same does not hold
true for devices based on MTJs. Due to the ballistic nature
of the transport in MTJs, a local solution is insufficient and
coupling of magnetization dynamics with matrix-based ap-
proaches to solve for the wave functions within the insulating
region as presented, e.g., in Ref. [18] are generally very expen-
sive from a computational point of view. The computational
cost of this approach arises mainly due to the involved matrix
inversion. Analytical solutions such as the ones presented in
Ref. [13] can be used to calculate the transport properties
instead, with comparably little computational load. However,

analytical solutions are derived for predetermined stack con-
figurations and are thus limited to them. Similar problems are
faced when using heuristic models in combination with pa-
rameters extracted from experiments. This approach is further
limited by data availability: While there are a lot of studies
on the electrical transport properties through a variety of MTJ
stack configurations, the amount of data on voltage-dependent
angular momentum transport such as in Refs. [14,19] is
sparse.

The general versatility of numerical solutions remains their
biggest draw. Thus, there is a demand for efficient ways to
introduce numerically obtained transport properties into mag-
netization dynamics simulations.

After giving an introduction to both magnetization dy-
namics and the nonequilibrium Green’s function formalism,
we will present a solution strategy that results in highly
performant algorithms for fixed-voltage and fixed-current
simulations. The paper is organized as follows: Section II
outlines how to introduce torque to the Landau-Lifshitz-
Gilbert equation and how this torque can be obtained from
the nonequilibrium Green’s function formalism. In Sec. III, a
solution strategy based on the torque’s properties is proposed
and simulated switching behavior of an STT-MRAM cell is
presented and discussed in Sec. IV.

II. METHODS

Within the framework of micromagnetism, the magne-
tization dynamics in an MTJ can be described by the
Landau-Lifshitz-Gilbert equation

∂m
∂t

= −γ m × Heff + αm × ∂m
∂t

+ T , (1)

where γ denotes the gyromagnetic ratio, m is the local magne-
tization unit vector field, α the Gilbert damping parameter, and
Heff the effective field acting on the local magnetization. T is
the torque due to the magnetic moments that are transported
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through the barrier region of the MTJ. This torque can be
obtained from nonequilibrium Green’s function (NEGF) cal-
culations [12,15] as described in the following: Assuming that
the local magnetic moment can be attributed to localized d
electrons while charge and spin are transported by s electrons,
the properties of the latter can be modeled by the device
Hamiltonian

Ĥ (ε⊥, x) =
[

p̂2

2m∗
e

+ u(x) + ε⊥

]
I2 + Jsd (x)m(x) · σ. (2)

Here, m∗
e is the effective mass of the s electrons, u(x) is

the local potential energy, Jsd the exchange coupling energy
between the delocalized and localized electrons, and ε⊥ the
energy in the transverse momentum component, i.e., perpen-
dicular to the current direction and parallel to the interfaces
between materials, so that the kinetic energy can be expressed
by ε − u(x) = ε⊥ + ε‖. This Hamiltonian is then brought into
its discretized form in order to solve the Schrödinger equa-
tion truncated to the device region [20]

[ε − Ĥ (ε⊥, x) − �̂R(ε‖, x)]ψ (ε, ε⊥, x)|x∈[x0,xN−1] = Ŝ(ε‖, x),

(3)

with the open boundary conditions �̂R(ε‖, x) and a source
term of the form

Ŝ(ε‖, x) = √
vL(ε‖)δ(x − xL ) + √

vR(ε‖)δ(x − xR). (4)

The retarded Green’s function ĜR(ε, ε⊥, x, x′) is obtained by
solving Eq. (5),

[ε − Ĥ (ε⊥, x) − �̂R(x, ε‖)]ĜR(ε, ε⊥, x, x′) = δ(x − x′),

(5)

and thus

ĜR(ε, ε⊥, x, x′) ∗ Ŝ(ε‖, x′) = ψ (ε, ε⊥, x) (6)

holds true. Within the tight-binding approximation [21], the
discretized Hamiltonian with site-to-site hopping energy

t = h̄2

2m∗
e	x2

(7)

reads

Hi j (ε⊥) =
⎧⎨
⎩

(ui + 2t + ε⊥)I2 + Jsd mi · σ, i = j,
−t I2, j = i ± 1,

02,2, else.
(8)

The open boundary conditions

�R
L (ε‖) = −tRL

[
exp

(
ik↑

L 	x
)

0
0 exp

(
ik↓

L 	x
)
]

R†
L (9)

and

�R
R (ε‖) = −tRR

[
exp

(
ik↑

R	x
)

0
0 exp

(
ik↓

R	x
)
]

R†
R (10)

with the rotation matrices RL and RR from the z axis to the
local spin-quantization axis, i.e., the local magnetization di-
rection in the left and right lead, respectively, are included in

the self-energy matrix:

�R
i j (ε‖) =

⎧⎨
⎩

�R
L (ε‖), i = j = 0,

�R
R (ε‖), j = i = N − 1,

02,2, else.
(11)

After calculating the retarded Green’s function by matrix in-
version via Eq. (12),

GR(ε, ε⊥) = [εI2N − H (ε⊥) − �R(ε‖)]−1, (12)

the kinetic Eq. (14) with the in-scattering function (13) is
solved:

�in
i j (ε, ε‖)=

⎧⎨
⎩

i fL(ε)
[
�R

L (ε‖) − �
R†
L (ε‖)

]
, i = j = 0,

i fR(ε)
[
�R

R (ε‖) − �
R†
R (ε‖)

]
, j = i=N − 1,

02,2, else,

(13)

Gn(ε) =
∫

GR(ε, ε⊥)�in(ε, ε⊥)GA(ε, ε⊥)dε⊥. (14)

The two functions fL(ε) and fR(ε) are the occupation
functions (Fermi-Dirac distributions) for the left and right
lead, respectively. This procedure yields the nonequilibrium
Green’s function (15), which is proportional to the local den-
sity matrix. A more detailed discussion of this method can be
found in Ref. [22], although not for its spin-polarized form:

Gn
i, j (ε) = 2π	x[ψ (ε, xi )

†ψ (ε, x′
j )]. (15)

The local spin accumulation

sk (xi ) = μB

2π	x

∫
Trσ [Gn

ii(ε)σk]dε (16)

is the origin of the torque acting on the magnetization due to
the coupling between s and d electrons [13,23], as described
by

T = ∂m
∂t

∣∣∣∣
sdcoupling

= − Jsd

h̄Ms
m × s. (17)

It is a common technique [4] to separate the torque into its
dampinglike and fieldlike contributions, Tdl and Tfl, respec-
tively. The base vectors of the torque components are obtained
as stated in (19) and (20) from the local magnetization and the
magnetization of the source region p—that is the magnetiza-
tion at the left interface for the right lead and vice versa:

T = T dl + T fl, (18)

T fl = τfl m × p, (19)

T dl = τdl m × (m × p). (20)

III. MODELING

For all calculations in this work, the MTJs are character-
ized by the spin-dependent potentials U↑ and U↓ inside the
magnetic material, the barrier height Ub within the insulating
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FIG. 1. Voltage dependence of the resistivity and current density
for the parallel (P) and antiparallel (AP) magnetization configuration
of a symmetric MTJ with two semi-infinite ferromagnetic leads.
The parameters are U↑ = −2.25 eV, U↓ = −0.1 eV, Ub = 0.77 eV,
L = 0.7 nm, and m∗

e/me = 0.8.

layer, and the spin-independent potential Uc within the con-
ducting lead attached to one of the magnetic layers, such that

u(z) =

⎧⎪⎪⎨
⎪⎪⎩

UFM − eV/2, z < zL,

Ub + eV (z−zL )
zR−zL

− eV/2, zL � z � zR,

UFM + eV/2, zR < z � zR + LFL,

Uc + eV/2, z > zR + LFL,

(21)

UFM = (U↓ + U↑)/2, (22)

Jsd = (U↓ − U↑)/2. (23)

MTJs that can be described by such a function could be seen to
be symmetric with respect to their parameters. The modeling
of the device via (21) assumes a semi-infinite magnetic layer
on one side of the structure and a semi-infinite nonmagnetic
layer on the other side. In this sense, the junction is asymmet-
ric. The thickness of the insulating layer is L = zR − zL and
the thickness of the finite-sized magnetic layer (that will act
as a free layer in the micromagnetic simulations) is LFL. The
applied voltage V introduces a linear change in the barrier po-
tential and shifts the Fermi levels in the leads. When doing the
integration of Eq. (16), it is sufficient to consider only energies
that lie between the two Fermi levels since no other state can
contribute to the current flow and the spin accumulation.

If not stated otherwise, all results are obtained for
U↑ = −2.25 eV, U↓ = −0.1 eV, Uc = −3 eV, Ub = 0.77 eV,
L = 0.7 nm, LFL = 1 nm, and m∗

e/me = 0.8, mostly in accor-
dance with Ref. [15].

As depicted in Fig. 1, the resistivity and the TMR ratio of
a tunnel junction depend on the applied voltage. The TMR
ratio of an MTJ can be measured either with a fixed current
or a fixed voltage. For the selected set of parameters, the two
torque components τfl and τdl do not depend on the angle θ

between the reference and free-layer magnetization directions
for fixed voltages [19]. This can be seen in Fig. 2. Therefore,
it is possible to precompute τfl and τdl for micromagnetic
simulations with a fixed voltage, such that the torque can be

FIG. 2. Angular independence of the average torque components
(circles mark the fieldlike torque component, triangles mark the
dampinglike torque component) for different voltages. (a) and (b) il-
lustrate the torques acting on the free layer for positive voltages and
negative voltages, respectively.

obtained from Eqs. (19) and (20) for every time step of the
Landau-Lifshitz-Gilbert equation (LLG) integration. Since
the matrix inversion in (12) is computationally expensive, the
performance of the whole algorithm will greatly benefit from
this procedure.

The full computation strategy for fixed voltages is then
as follows: For the NEGF calculations a finite-difference
one-dimensional (1D) mesh is set up along the direction per-
pendicular to the interfaces that truncates the semi-infinite
lead problem to the region of interest. For the micromagnetic
simulations, either a finite-difference or finite-element mesh
for the whole device is generated. This mesh might also in-
clude nonmagnetic leads or other extensions to the MTJ stack
and can be discretized much coarser than the mesh used for
the transport problem.

Next, Eq. (16) is solved for θ = ∠[m(zL ), m(zR)] = π/2
and the resulting accumulation s(V, z) is projected onto
−m × (m × p) and m × p, yielding sfl and sdl such that

seff(V, z) = −sflm × (m × p) + sdlm × p (24)

results in the same torque as the original s(V, z) when plugged
into Eq. (17). Equation (17) also relates sfl and sdl with τfl

and τdl. As their torque counterparts, sfl and sdl do not change
with θ and torque for every configuration of m and p can be
calculated from them. Note that the component of s parallel to
m cannot contribute to the exerted torque. Figure 3 shows the
spin-accumulation components normal to the local magneti-
zation direction in the free layer for exemplary voltages.

After storing sfl and sdl, the integration of the LLG can be
started and for every time step, the contributions to Heff have
to be computed. Contributions might be independent of the
vector field m such as, e.g., an external field, or might depend
on the magnetization such as, e.g., the exchange field. As can
be seen easily from Eq. (1), the effective field contribution
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FIG. 3. Spatial dependence of the spin accumulation components
orthogonal to the local magnetization direction (z direction) in the
free layer for positive and negative voltages. (a) shows the spin ac-
cumulation components for V = 350 mV, i.e., electrons are injected
from the right, and (b) for V = −350 mV, i.e., electrons are injected
from the left. The length of the ferromagnetic lead is assumed to be
LFM = 1 nm, indicated above by a dashed vertical line.

equivalent to T is just

H torque = Jsd

h̄Msγ
s. (25)

Hence, in every region of the device m and p are read out from
the respective interface values according to the rule

p =
{

m(zR), z < zL,

m(zL ), z > zR,
(26)

and the local effective field due to the torque is calculated after
constructing seff from the resulting basis vectors and the stored
values of sfl and sdl. Once again, this reconstructed value
of the spin accumulation has no component along the local
magnetization direction and differs therefore from the actual
value that would be obtained from Eq. (16) for the current
magnetization configuration. However, the resulting torques
do not differ since no contribution of the effective field Heff

along m influences the dynamics yielded by the LLG.
In the case of fixed-current experiments, the torque compo-

nents depend on the angle θ . Still, the strategy described above
can be adapted by computing a lookup table for different
values of θ before simulating the magnetization dynamics, so
that the torque components can then be interpolated from the
stored values.

The discretization chosen for the transport problem will be
at least one order of magnitude smaller than the discretization
of the mesh for the magnetization dynamics problem, and thus
the torque obtained from the former should be averaged to
be used with the latter. The average values of τfl and τdl are
obtained over the length of the ferromagnetic free-layer LFL

[11,13]:

〈τ 〉 = 1

LFL

∫ zR+LFL

zR

τ (z)dz. (27)

FIG. 4. Voltage dependence of the (a) fieldlike and (b) damp-
inglike torque components. While the fieldlike torque component
stays positive whether the bias voltage is positive or negative, the
dampinglike torque has a zero crossing at zero bias. This enables
STT-based switching. However, for voltages above ≈700 mV, there
is another sign change in this component and bidirectional switching
becomes impossible.

This method of averaging is justified by assuming that (i) the
micromagnetic assumption is not violated, i.e., the magneti-
zation only changes slightly from mesh node to mesh node,
and (ii) LFL is shorter than the mean free path length for s
electrons in the ferromagnetic leads. It should be noted that
while no scattering is taken into account, reflections of both
interfaces of the free layer are.

IV. RESULTS AND DISCUSSION

A functional STT-based MRAM cell can be switched
from the parallel configuration (P) to the antiparallel con-
figuration (AP) and vice versa by changing the polarity of
the applied voltage accordingly. This form of bidirectional
switching is only possible due to the sign reversal of the
dampinglike torque with respect to the current direction, i.e.,
〈τdl〉(V > 0) > 0 and 〈τdl〉(V < 0) < 0 or 〈τdl〉(V > 0) < 0
and 〈τdl〉(V < 0) > 0. The voltage dependence of the aver-
aged values of τfl and τdl in the presented simulations can
be inspected in Fig. 4. One curious feature of the depicted
behavior is a trend reversal of the dampinglike torque for
voltages above ≈0.35 V. This indicates a decrease in the
switching efficiency/switching time for increasing currents
from a certain point on for the AP → P switching direction
until switching becomes impossible as a result of the sign
reversal of the dampinglike torque for V > 0.7 V. Meanwhile
the fieldlike contribution seems to increase with the volt-
age, independent of its polarity. This observation is not a
novel one and similar behavior can be seen and was noted
in theoretical studies of torques in MTJs from analytical
descriptions in Refs. [10–13]. A comparison to measurements
in Ref. [14] confirmed this behavior, although its ramifications
are generally not observed in experimentally obtained switch-
ing probabilities and critical current measurements.
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FIG. 5. Voltage dependence of the (a) fieldlike and (b) damp-
inglike torque components for different stacks. All mean values are
obtained for LFM = 1 nm. The blue lines (circles) correspond to a
symmetric stack with semi-infinite ferromagnetic leads. The orange
lines (upward triangles) are the same as in Fig. 4 for m∗

e/me = 0.8
and correspond to a stack with a semi-infinite reference layer and a
1-nm free layer followed by a semi-infinite nonmagnetic conductor.
The green lines (left triangles) correspond to a stack that has two
finite-sized ferromagnets of 1 nm thickness each attached to the
insulator.

Figure 5 shows how different models of the MTJ stack
influence the behavior of the torque components. The first
case (FM/I/FM) models the tunnel junction to consist of
two semi-infinite ferromagnetic leads attached to an insula-
tor. The second case (FM/I/FM/C) conforms to Eq. (21)
and and differs from the FM/I/FM case in that it includes
reflections from the free layer/conductor interface. The in-
clusion of this reflections yields larger absolute values of
dampinglike torque. The last depicted case (C/FM/I/FM/C)
assumes that the length of the reference layer is also 1 nm
and reflections from the reference layer/conductor interface
are also included. In all cases, the mean values are obtained
from Eq. (27) with LFM = 1 nm. The different structures
of the stack are easily modeled by modifying Eq. (21) ac-
cordingly. This flexibility is one of the key advantages of
numerical solutions compared to analytical ones. The mi-
cromagnetic simulations are achieved by the PYTHON library
magnum.fe [24]. Integration of the modified LLG given by
Eq. (1) coupled with the spin accumulation from Eq. (16)
via Eq. (17) yields the switching behavior shown in Fig. 6.
In these micromagnetic simulations, the FM/I(0.7)/FM(1)
structure is stacked along the z direction. The values in the
parentheses indicate the layer thickness in nm. The lower
ferromagnetic layer is the reference layer (z < zL), and the
upper layer is the free layer (z > zR). Note that the refer-
ence layer exhibits no magnetization dynamics and its size
in the micromagnetic simulations is thus arbitrary while it
is modeled semi-infinite by Eq. (21) in the context of the
NEGF calculations. The results therefore resemble the be-
havior of an MTJ with a very thick reference layer. The
saturation magnetizations for the reference and free layers
are Ms = 1.24/(4π ) × 107 A m−1 and 1/(4π ) × 107 A m−1,

FIG. 6. Simulation of the magnetization dynamics in the coupled
LLG+NEGF system for different values of the bias voltage V . Sim-
ulations in (a) are initialized with their magnetization of the free
layer almost parallel to the reference-layer magnetization, i.e., the
positive x direction. (b) shows simulations that are initialized with an
antiparallel configuration.

respectively. The uniaxial anisotropy of the reference layer
(Ku = 106 J m−3) with the easy axis along the x direction
fixates the local magnetization. In the free layer, the effective
uniaxial anisotropy constant is set to be Ku = 4 × 103 J m−3

and the anisotropy axis is tilted by ≈5◦ out of the x direction
towards the z direction. The anisotropy is labeled effective,
since the demagnetization field is not taken into account ex-
plicitly but rather its effects are included in the anisotropy
field term. In both ferromagnets, the exchange coupling is
A = 2.8 × 10−11 J m−1 and the Gilbert damping parameter α

is 0.08.
The P → AP switching shown in Fig. 6(a) is enabled by

negative voltages and requires less current flow than AP → P
switching, which is illustrated in Fig. 6(b). The minimal
writing-pulse duration tc for deterministic switching is plotted
against the applied bias voltage in Fig. 7 and can be compared
easily to Fig. 6. As already discussed in the context of Fig. 4,
the critical pulse duration tc for AP → P switching does in-
deed increase for voltages above ≈0.35 V.

Hysteresis loops of the same system are shown in Fig. 8. In
contrast to the switching behavior simulations, the hysteresis
loops are obtained by applying pulses of fixed current for a
duration of 30 ns each. In Fig. 8(a), the easy-axis hysteresis
loop is shown for different values of the anisotropy constant
Ku. As expected, an increase in the critical current for in-
creasing values of Ku is observed. Figure 8(b) shows a wider
range of applied currents. Here, a second hysteresis loop can
be seen for positive currents (positive voltage). This second
loop arises from the sign reversal of the dampinglike torque
component, which was discussed earlier and is illustrated in
Fig. 4(b).

Experimental observations of a second loop on one voltage
branch are presented by Devolder et al. in Ref. [25] in the con-
text of the well-known back-hopping phenomenon. Reference
[25] picks up on the sign reversal of the dampinglike torque
for large bias voltages in Ref. [10] as a possible explanation.
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FIG. 7. Voltage dependence of the critical pulse duration tc, i.e.,
the minimum pulse duration required for deterministic switching.

However, the additional loop in Ref. [25] is located after the
P → AP transition.

The back-hopping effect usually manifests itself in the
coexistence of both the P and AP state for a single voltage
value. The effect can be observed either on one voltage branch
(e.g., in Ref. [26]) or both (e.g., in Ref. [27]). The idea that
the back-hopping effect is closely related to the behavior of
the dampinglike torque in MTJs should be taken with great
caution and should be subjected to further research for the
following reasons: First, although it might lead to a second
magnetization reversal event on the positive voltage branch,
the quadratic behavior would not be able to explain back hop-
ping on both voltage branches. Second, time-resolved studies
of the back-hopping events carried out in Ref. [25] in combi-
nation with the computational results from Ref. [28] indicate
a coexistence of both a P and AP state for a single voltage and
a cyclic process in which the spin-polarization layer and the
free layer exert critical dampinglike torque on each other, thus
leading to alternating switching of both layers.

V. CONCLUSION

We presented a highly performant algorithmic strategy that
couples NEGF-based tunnel-current calculations with mag-
netization dynamic simulations in a micromagnetic context.
This was achieved by utilizing the constant nature of both
the fieldlike and dampinglike torque components with respect

FIG. 8. (a) shows easy-axis hysteresis loops for the stack under
investigation for different values of the anisotropy constants. (b) de-
picts the arise of a second loop due to the quadratic behavior of the
dampinglike torque component for Ku = 4020 J m−3. In both figures,
a vertical red line indicates j = 0 A m−2. The pulse duration for
every data point is 30 ns.

to the angle between the reference layer and free layer for
fixed voltages. This method can be easily extended to torque
components with an angular dependence or fixed-current
simulations by the introduction of a lookup table. The compo-
nents can then be interpolated from the actual angle between
the two magnetization directions in every time step of LLG
integration. While more computationally expensive than its
fixed voltage counterpart, this strategy is still very performant,
since it requires computationally expansive matrix inversions
only during the setup phase.

The simulations carried out in this piece of work show
P → AP switching times around 2–6 ns for voltages above
200 mV. For AP → P switching, the shortest critical pulse
duration is slightly above 7.5 ns at around 350 mV. We have
also reported the emergence of a second easy-axis hysteresis
loop on the positive voltage branch due to the quadratic nature
of the dampinglike torque in the fully coherent NEGF regime.
This somewhat unexpected feature should be further investi-
gated as it might offer some further insight into the still not
fully understood back hopping in STT-MRAM cells.
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