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Optimal protocol for spin-orbit torque switching of a perpendicular nanomagnet
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It is demonstrated by means of the optimal control theory that the energy cost of the spin-orbit torque induced
reversal of a nanomagnet with perpendicular anisotropy can be strongly reduced by proper shaping of both
in-plane components of the current pulse. The time dependence of the optimal switching pulse that minimizes
the energy cost associated with joule heating is derived analytically in terms of the required reversal time and
material properties. The optimal reversal time providing a tradeoff between the switching speed and energy
efficiency is obtained. A sweet-spot balance between the fieldlike and dampinglike components of the spin-orbit
torque is discovered; it permits for a particularly efficient switching by a down-chirped rotating current pulse
whose duration does not need to be adjusted precisely.
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I. INTRODUCTION

The discovery of spin-orbit torque (SOT) is a notable
milestone in the development of spintronics as it has made
it possible to boost the efficiency of electrical manipulation
of magnetism compared to conventional spin transfer torques
[1–3]. Magnetization switching by current-induced fieldlike
(FL) and dampinglike (DL) components of SOT is a partic-
ularly important application providing a basis for low-power
bit operations in nonvolatile technologies [4,5].

Typically, a SOT-induced magnetization reversal is real-
ized by applying an in-plane current in a heavy-metal (HM)
layer on which a switchable ferromagnetic (FM) element
is placed. Elements with perpendicular magnetic anisotropy
(PMA) are under a special focus due to their techno-
logical relevance. In a conventional protocol involving a
one-dimensional direct current, the deterministic reversal of
the PMA element relies only on the DL SOT [6,7]. As a
result, the switching current density and thereby the energy
cost of switching are not as low as they could possibly be
if the FL SOT was also used [8]. FL SOT-induced switching
can also be realized, but this requires a precise control over
the current pulse duration so as to avoid backswitching [9].
Moreover, to achieve definite switching of the PMA element,
some symmetry breaking needs to be established either by
applying an external magnetic field [2,3,10], which can be
mimicked by exchange coupling with an additional magnetic
layer [11–14], or by introducing lateral asymmetry [15,16]
or tilted anisotropy [17,18]. Out-of-plane torque for field-free
switching can also be generated due to the low-symmetry
point groups at the HM/FM interfaces [19] or thanks to the
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out-of-plane polarization of spin currents generated in an ad-
ditional magnetic layer [20].

Note that the complications associated with the conven-
tional SOT-induced magnetization reversal originate from use
of one-dimensional direct current. Such a simple switching
pulse provides a limited control over switching and makes it
hard to realize the full potential of SOT.

The issues arising in SOT-induced switching can be solved
by proper shaping of the current pulse. Pulse optimization has
been studied extensively in the past in the context of magne-
tization reversal by means of applied magnetic field [21–29]
and spin-transfer torque [30,31]. For SOT-induced reversals,
this approach remains unexplored, although its potential has
recently been demonstrated by Zhang et al. [32] who proposed
to use both in-plane components of the current to realize field-
free switching of a PMA element; assuming a fixed magnitude
but variable direction of the current, they obtained a strong
reduction in the switching current density and derived a pulse
yielding the shortest switching time. However, constraints
imposed on the current pulse prevented previous studies from
identifying the theoretical minimum of the energy cost of
SOT-induced switching. Optimization of the switching pro-
tocols with respect to materials properties and identification
of the right balance between switching speed and energy
efficiency have also been missing so far despite the great
fundamental and technological importance of this analysis.
Moreover, it is still unclear whether the protocols involving
2D currents are stable enough against thermal fluctuations to
be realized in practice.

In this article, we identify energy-efficient switching pulses
by applying a systematic approach based on the optimal con-
trol theory. To make the most of the pulse optimization, we
do not apply any constraints on the pulse shape and consider
independent variations of both in-plane components of the
current. We obtain a complete analytical solution for optimal
control paths (OCPs) of field-free magnetization switching,
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FIG. 1. Energy-efficient switching of a PMA nanoelement
(cylinder) by an optimal 2D electric current pulse �jm flowing in the
heavy-metal substrate (cross). The calculated optimal control path
for the switching for α = 0.1 and ξD = 3.56ξF is shown with the
green line. The direction of the normalized magnetic moment �s of
the element (optimal current �jm) is shown with the blue (red) arrow.
The inset shows the time dependence of x and y components of �jm

and z component of �s.

i.e., the reversal trajectories minimizing the energy cost asso-
ciated with joule heating, and derive optimal switching pulses
from the obtained OCPs.

Our analytical solution provides a theoretical limit
for energy-efficient control of SOT-induced magnetization
switching and reveals noteworthy exact results connecting
the minimum energy cost, optimal switching current, and
switching time with relevant materials properties. We uncover
a previously overlooked sweet-spot ratio of the FL and DL
torques for which a particularly appealing switching protocol
is possible. It is robust, corresponds to the lowest energy
cost and shortest switching time, and involves a quite simple
switching pulse that can likely be realized in the laboratory.

II. MODEL

Figure 1 shows the simulated PMA element whose mag-
netic moment is reversed by an in-plane current via SOT. The
element is assumed small enough to be treated essentially as a
single-domain particle at any time of the reversal process. The
energy E of the system is defined by the anisotropy along the
z axis,

E = −Ks2
z , (1)

where sz is a z component of the normalized magnetic moment
�s and K > 0 is the anisotropy constant. The task is to identify
the optimal current pulse that reverses the magnetic moment
from sz = 1 at t = 0 to sz = −1 at t = T , with T being the
switching time. Both the amplitude and the direction of the
current �j in the heavy-metal layer are allowed to vary in time.
This can be realized in the cross-type geometry permitting in-
dependent control of both in-plane components of the current;
see Fig. 1. The efficiency of the reversal is naturally defined by
the amount of joule heating generated in the resistive circuit
during the switching process [31]. In particular, the optimal
reversal is achieved when the cost functional

� =
∫ T

0
| �j|2dt (2)

is minimized. This optimal control problem is subject to a
constraint imposed by the zero-temperature Landau-Lifshitz-
Gilbert (LLG) equation describing the dynamics of the
magnetic moment under SOT [33]:

�̇s = − γ �s × �b + α�s × �̇s
+ γ ξF�s × (�j × �ez ) + γ ξD�s × [�s × (�j × �ez )]. (3)

Here, γ is the gyromagnetic ratio, α is the damping parameter,
�ez is the unit vector along the z axis, and �b is the anisotropy
field: �b ≡ −μ−1∂E/∂�s, with μ being the magnitude of the
magnetic moment. The third and the fourth terms on the
right-hand side (RHS) of Eq. (3) represent FL and DL com-
ponents of the SOT, respectively. The coefficients ξF and ξD

are defined by the spin Hall angle, saturation magnetization,
and thickness of the FM element, as well as by dimensionless
factors—efficiencies—characterizing the weights of the SOT
components [34].

III. RESULTS

To find the optimal switching current �jm(t ) that makes
� minimum, we follow the paradigm we applied earlier to
the magnetization reversal induced by applied magnetic field
[35]: the energy cost is first expressed in terms of the switch-
ing trajectory and then minimized so as to find the OCPs
for the switching process; after that, the optimal switching
pulse �jm(t ) is derived from the OCPs. Qualitative difference
between the field torque and SOT makes these calculations
significantly more involved compared to Ref. [35]. Here, we
only sketch briefly the derivations, but a complete analytical
solution to this nonlinear problem is available at [36].

1. Optimal control path for magnetization switching

We start by expressing the amplitude of �j in terms of the
dynamical trajectory using Eq. (3):

j = 2K

μ

(1 + α2)τ0θ̇ + α sin θ cos θ

(αξD − ξF) cos ϕ′ − (αξF + ξD) cos θ sin ϕ′ . (4)

Here, τ0 = μ(2Kγ )−1 defines the timescale of Larmor pre-
cession, θ and ϕ are the polar and azimuthal angles of �s,
respectively, and ϕ′ ≡ ϕ − ψ , with ψ being the angular co-
ordinate of the current (see Fig. 1). It is clear from Eq. (4)
that, for a given magnitude of the current-generated torque,
overall increase in the SOT coupling coefficients leads to a
proportional decrease in the switching current, and thereby
the energy cost. To elucidate a nontrivial effect of the SOT pa-
rameters, we introduce a variable β characterizing the balance
between the SOT components, via the following parametriza-
tion:

ξF = ξ cos β, ξD = ξ sin β, (5)

where ξ is the magnitude of the total SOT coupling, i.e., ξ ≡√
ξ 2

D + ξ 2
F .

On substituting Eq. (4) into Eq. (2), the energy cost of
the reversal becomes a functional of the switching trajectory.
Taking into account Eq. (5) and minimizing � with respect to
ϕ′, we obtain an optimal value of ϕ with respect to ψ (see also
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Ref. [32]):

ϕ′ = ϕ − ψ = arctan [tan(β + η) cos θ ], (6)

where η ≡ arctan(α). After eliminating the ϕ′ dependence of
� with the use of Eq. (6), the Euler-Lagrange equation for
θ can be derived [36]. Its solution satisfying the boundary
conditions θ (0) = 0, θ (T ) = π is expressed in terms of Jacobi
elliptic functions [36] (see Appendix A for the definition of
the elliptic integrals and functions). Finally, optimal ϕ(t ) is
obtained from optimal θ (t ) using the equation of motion [see
Eq. (3)], where ψ is eliminated using Eq. (6). In this way, the
OCP describing the switching trajectory that minimizes the
energy cost is completely defined. It corresponds to the mag-
netic moment rotating steadily from the initial state minimum
to the final one and at the same time precessing around the
anisotropy axis. Depending on whether the sign of tan(β + η)
is negative or positive, the sense of precession changes before
or after the system crosses the energy barrier, respectively.
However, the barrier crossing happens exactly at t = T/2,
which results from a general symmetry of the solution θm(t ):
θm(T/2 + t ′) = π − θm(T/2 − t ′), 0 � t ′ � T/2. The OCP
for α = 0.1, ξD = 3.56ξF , and T = T0 [see Eq. (12)] is shown
in Fig. 1.

2. Optimal switching pulse

Optimal control �jm(t ) can be derived from the OCP using
Eqs. (4) and (6). It corresponds to a rotating current whose
sense of rotation changes together with that of the magnetic
moment precession around the anisotropy axis. Although the
form of �jm(t ) is rather complex in a general case (see the inset
in Fig. 1), the following properties hold exactly. For finite
damping, the amplitude of the optimal current is modulated
such that it reaches a maximum value exactly at t = T/4 and
a minimum value at t = 3T/4, with the difference between
the extremal values given by

� jm = 4α j0√
1 + α2[|cos(β + η)| + 1]

, (7)

where j0 = K (μξ )−1. Equation (7) particularly signifies that
the current amplitude is constant for zero damping. The aver-
age current amplitude can also be expressed analytically:

〈 jm〉 = 4 j0τ0

√
1 + α2K[sin2(β + η)]

T
, (8)

where K[.] is the complete elliptic integral of the first kind
(see Appendix A). Notably, the average current does not
depend on the height of the energy barrier defined by the
magnetic anisotropy. Additionally, the following symmetry
holds in general: jm(0) = jm(T/2) = jm(T ).

3. Minimum energy cost of magnetization switching

The minimum energy cost �m is a monotonically decreas-
ing function of the switching time exhibiting two asymptotic
regimes (see Fig. 2). For fast switching, �m(T ) scales in-
versely with T and does not depend on the magnetic potential:

�m ≈ 4(1 + α2)K2[sin2(β + η)]

T γ 2ξ 2
, T 	 (α + 1/α)τ0. (9)

FIG. 2. Minimum energy cost of magnetization switching (blue
line) as a function of the inverse of the switching time for α = 0.1
and ξD = 3.56ξF . Red line shows the energy cost corresponding to
the constant-amplitude pulse derived in [32] for the same set of pa-
rameters. Dashed and dotted lines show short and infinite switching
time asymptotics, respectively

At infinitely long switching time, �m approaches the lower
limit:

�m → 4αK ln[1 + tan2(β + η)]

μγ ξ 2 sin2(β + η)
, T → ∞. (10)

Intersection of the asymptotics gives a characteristic switch-
ing time providing a tradeoff between the switching speed and
energy efficiency. For a given T , the energy cost correspond-
ing to the constant-amplitude pulse derived in [32] always
exceeds �m(T ) and even diverges at T → ∞ (see Fig. 2).

�m as a function of β is shown in Fig. 3. �m diverges
when αξD = ξF signifying no switching for this ratio of the
SOT coefficients, which was also pointed out in Ref. [32].
The divergence originates from the vanishing torque in the
direction of increasing θ at the equator. To realize switching
in this case, an additional force such as external magnetic field
needs to be applied to the system, similar to what is done in
conventional SOT-induced switching [13].

On the other hand, �m(β ) has minima at β = β∗, with
β∗ defined by tan(β∗ + η) = 0. The minima correspond to an
ideal ratio between the SOT coefficients,

ξD = −αξF, (11)

for which the switching is particularly efficient. For this ra-
tio, the torque generated by �jm is invested entirely into the
increase in θ , i.e., only into the motion which is relevant for
switching. Such a rational use of an external stimulus can
always be achieved for the optimal magnetization reversal
induced by applied magnetic field [35] via the adjustment of
all three components of the field. For SOT-induced switching,
realization of the SOT exclusively in the direction of increas-
ing θ is only possible for the ideal balance between ξD and ξF

due to the confinement of the switching current to xy plane.
The characteristic switching time defined by crossing of

the asymptotics of �m [see Eqs. (9) and (10)] also approaches
the minimum value (with respect to the variation of β) T0 for
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FIG. 3. Minimum energy cost of magnetization switching in
units of j2

0τ0 as a function of β for α = 0.1 and several values of the
switching time. Green solid line indicates the ideal ratio of the SOT
coefficients; red dashed line marks the ratio that prohibits switching.
The green (magenta) cross indicates ideal (nonideal) parameter val-
ues for which the optimal current pulse is shown in Fig. 4(a) (inset
of Fig. 1).

the ideal ratio of the SOT coefficients:

T0 = (1 + α2)π2

2α
τ0. (12)

For α = 0.1, T0 corresponds to just a few oscillations of the
magnetic moment. Upon substituting β = β∗ and T = T0 into
Eq. (8), the average switching current becomes (here and
below, an asterisk signifies a quantity corresponding to the
ideal ratio between the SOT coefficients)

〈 j∗m〉 = 4α j0

π
√

1 + α2
. (13)

Noteworthy, this characteristic current scales with α in the
low damping regime making it significantly smaller than the
critical current for conventional SOT-induced switching of a
PMA element [6].

4. Switching protocol for the sweet-spot ratio of the SOT
coefficients

Together with the shortest switching time and improved en-
ergy efficiency, the ideal ratio of the SOT coefficients provides
particularly simple switching protocol. Indeed, the Euler-
Lagrange equation describing the OCP simplifies significantly
and becomes identical to that derived for the magnetic field-
induced switching [35]. The optimal switching pulse gets
simpler as well. Its rotation frequency becomes equal to the
resonant frequency of the system:

f ∗
m ≡ 1

2π
ψ̇∗

m = cos(θ∗
m)

2πτ0(1 + α2)
. (14)

FIG. 4. (a) Time dependence of the optimal switching current for
the ideal ratio of the SOT coefficients [see Eq. (11)] α = 0.1 and
T = T0. Gray area in between the dashed lines indicates the range
of amplitudes used for the simplified current pulse [see Eq. (15)].
(b) Time dependence of the frequency of the optimal current pulse
for the ideal (solid green line) and nonideal (solid magenta line)
ratio of the SOT coefficients. Dashed black line shows the frequency
variation for the simplified pulse.

The frequency decreases monotonically with time and ex-
hibits a symmetry, f ∗

m(T/2 + t ′) = − f ∗
m(T/2 − t ′), 0 � t ′ �

T/2, signifying the sign change exactly at t = T/2. Time
dependence for the switching current and its frequency for
α = 0.1, T = T0, and ξD = −αξF is shown in Fig. 4. Overall,
the switching current for the ideal balance between the SOT
coefficients resembles a down-chirped pulse whose rotation
reverses at the instant of the barrier crossing and amplitude is
fairly constant in the low damping regime [see Eq. (7)].

Motivated by this result, we further investigate whether
the substitution of the optimal control by a simplified pulse
represented by a rotating current with constant amplitude and
time-linear frequency sweep indeed leads to magnetization
switching in the PMA element. For this, we simulate the
magnetization dynamics induced by current �js(t ) given by the
following ansatz:

�js(t ) = js cos[�(t )]�ex + js sin[�(t )]�ey, (15)

where �(t ) = 2π fmax(t − t2/T ). We additionally include
thermal noise in the simulations to verify robustness of the
switching (see Appendix B for the details of the magnetiza-
tion dynamics simulations). We perform the simulations for
T = T0, α = 0.1, and the ideal ratio of the SOT coefficients.
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We find that �js(t ) reliably induces magnetization switching
as long as its amplitude js is large enough and its initial
frequency fmax slightly exceeds the resonant frequency fr at
the energy minimum, fr ≡ [2πτ0(1 + α2)]−1. In particular,
for fmax = 1.4 fr and a typical for a memory element thermal
stability factor [37] of 60, the switching probability increases
from 0.89 to 0.97 as js changes from 0.17 j0 to 0.18 j0, and
becomes practically unity for js = 0.2 j0. As soon as the mo-
ment roughly reverses its orientation at t ≈ T , the pulse can
be terminated, but extending the pulse duration beyond T does
not compromise switching, as confirmed by our simulations.
The absence of unwanted instabilities such as backswitching
is expected since interaction of �js(t ) with the magnetic mo-
ment becomes progressively less effective for t > T where
the pulse frequency exceeds the resonant frequency of the
system, and the moment stays locked in the reversed position.
The switching protocol produced by the rotating current does
not require fine-tuning of the pulse duration and is therefore
robust.

On the other hand, the simplified switching protocol does
require the ratio between the SOT coefficients to be close
enough to the ideal value. Otherwise, the optimal switching
pulse can be quite different from that described by Eq. (15)
[see the inset of Fig. 1 and Fig. 4(b)], and no stable switching
on the timescale of moment oscillations can be obtained using
the simplified pulse (see Appendix B), although slower rever-
sal involving multiple precession motion can still be achieved
regardless of the ratio of the SOT coefficients [38] thanks to
the autoresonant excitation [39–41]. It is however expected
that slow autoresonant switching is quite sensitive to thermal
fluctuations that tend to disturb the phase locking.

IV. CONCLUSIONS AND DISCUSSION

In this work, we have presented a theoretical limit for
the minimum energy cost of the SOT-induced magnetization
reversal in the PMA nanoelement at zero applied magnetic
field and derived the corresponding optimal switching current
pulse as a function of the reversal time and relevant mate-
rial properties. We have identified an ideal ratio of the SOT
coefficients corresponding to a particularly efficient, robust,
and simple switching protocol. The average switching current
for the ideal balance between the DL and FL torques scales
with the Gilbert damping parameter, which makes it signifi-
cantly lower than a critical current in conventional switching
protocols. Our results reveal a target for the design of PMA
systems for energy-efficient applications and inspire experi-
mental studies of pulse shaping for the optimization of the
current-induced magnetization dynamics and switching.

Experimental realization of fast and energy-efficient
switching of PMA elements by means of chirped rotating
current requires the SOT coefficients to have opposite signs,
with FL torque being significantly larger than DL torque [see
Eq. (11)]. Several systems where this scenario is realized have
been reported; see, e.g., Refs. [42–44] and Table II in [45].
Moreover, the torques can be tuned by inducing piezoelectric
strain [46] or generating orbital currents [47].

While only the FL and DL torques are considered here, the
SOT can have additional angular dependence [48]. Optimiza-
tion of the magnetization reversal for such an extended SOT

model is a challenging problem that goes beyond the scope of
the present study. From general arguments it follows that fur-
ther decrease in the energy cost is conceivable in the extended
model, but this remains to be explored. Nevertheless, some
arguments on how the combination of the SOT coefficients
in the extended model affects the magnetization switching
can be provided without actually solving the optimal control
problem; see Appendix C.
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APPENDIX A: ELLIPTIC INTEGRALS AND FUNCTIONS

The elliptic integral of the first kind is defined as

F (ρ|k) =
∫ ρ

0

dr√
1 − k sin2(r)

, (A1)

where k is the elliptic modulus. The complete elliptic integral
of the first kind is given by

K(k) = F
(π

2

∣∣∣k)
. (A2)

The complete elliptic integral of the second kind is defined as

E (k) =
∫ π

2

0

√
1 − k sin2(r) dr. (A3)

The Jacobi amplitude am is defined as an inverse of the elliptic
integral of the first kind:

u = F (ρ|k), (A4)

ρ = am(u|k). (A5)

The Jacobi sn function is defined as

sn(u|k) = sin[am(u|k)]. (A6)

The Jacobi dn function is defined as

dn(u|k) =
√

1 − k sn2(u|k). (A7)

See Ref. [49] for further information about elliptic functions
and integrals.

APPENDIX B: MAGNETIZATION DYNAMICS
SIMULATIONS

Magnetization dynamics simulations were performed in
order to verify stable switching of the perpendicular nano-
magnet by a rotating current with constant amplitude and
time-linear frequency sweep. The simulations were car-
ried out by integrating the LLG equation [see Eq. (3)]
equipped with the current pulse �js(t ) [see Eq. (15)]. The LLG
equation was integrated numerically using the semi-implicit
scheme B as described in Ref. [50]. Interaction of the mag-
netic system with the heat bath was simulated by including a
stochastic term in the LLG equation.
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Each simulation had three stages: (1) initial equilibration
at zero applied current to establish Boltzmann distribution; (2)
switching where the current pulse is applied (note that thermal
fluctuations were also included during the switching stage);
(3) final equilibration at zero applied current. The duration
of the switching stage, i.e., the switching time, was chosen
to be T0 [see Eq. (12)]. At the end of the third stage, we
inspected the value of sz (z component of the unit vector �s
in the direction of the magnetic moment); we have taken the
value sz = −0.5 as the threshold for the successful switching.

For each value of the amplitude js and initial frequency
fmax of the current pulse, we repeated simulations N = 10 000
times in order to accumulate proper statistics. The switching
probability is defined as

p = Ns/N, (B1)

where Ns is the number of successful reversals.

For the ideal ratio of the SOT components [see Eq. (11)]
and any fixed amplitude of the switching current, we find
that the largest switching probability is obtained when the
frequency sweeping rate roughly coincides with that of the
optimal pulse at t = T/2 [see Fig. 4(b)]. This situation is
achieved when the initial frequency fmax is somewhat larger
than the resonant frequency fr at the energy minimum: fmax =
1.4 fr . We also confirm that extending the current pulse be-
yond T does not affect the switching probability.

When the ratio of the SOT components deviates from the
ideal value, the reversal by the pulse �js becomes progressively
less stable. In particular, when the dampinglike torque exceeds
the fieldlike torque by a factor of 3.56, magnetization switch-
ing is realized only for a very narrow range of the parameters
js, fmax.

APPENDIX C: EXTENDED SOT MODEL

We start with the LLG equation including the extended
model for SOT [48]:

�̇s = − γ �s × �b + α�s × �̇s + γ �s × (�j × �ez )[ξF + (�ez × �s)2ξ⊥
2 + (�ez × �s)4ξ⊥

4 ]

− γ �s × (�ez × �s)(�s · �j)[ξ⊥
2 + (�ez × �s)2ξ⊥

4 ] + γ �s × [�s × (�j × �ez )]ξD − γ �ez × �s(�s · �j)[ξ ‖
2 + (�ez × �s)2ξ

‖
4 ].

(C1)

In this extended model, the current-generated torque is given by the following equation:

�T = γ

1 + α2 �s × (�j × �ez )(χF + χ⊥
2 sin2 θ + χ⊥

4 sin4 θ ) − γ

1 + α2 �s × (�ez × �s)(�s · �j)(χ⊥
2 + χ⊥

4 sin2 θ )

+ γ

1 + α2 �s × [�s × (�j × �ez )]χD − γ

1 + α2 �ez × �s(�s · �j)(χ‖
2 + χ

‖
4 sin2 θ ), (C2)

where the following notations are introduced:

χF = ξF − αξD, χD = αξF + ξD, χ⊥
2 = ξ⊥

2 − αξ
‖
2 , χ

‖
2 = αξ⊥

2 + ξ
‖
2 , χ⊥

4 = ξ⊥
4 − αξ

‖
4 , χ

‖
4 = αξ⊥

4 + ξ
‖
4 . (C3)

Projections of �T on the directions of increasing θ and ϕ read

Tθ = γ j

1 + α2
[cos(ϕ − ψ )(χF + 2χ⊥

2 sin2 θ + 2χ⊥
4 sin4 θ ) + cos θ sin(ϕ − ψ )χD], (C4)

Tϕ = γ j

1 + α2
[− cos θ sin(ϕ − ψ )(χF + χ⊥

2 sin2 θ + χ⊥
4 sin4 θ ) + cos(ϕ − ψ )(χD + χ

‖
2 sin2 θ + χ

‖
4 sin4 θ )]. (C5)

No switching. Magnetization reversal is impossible if there exists a value of θ for which the following equation is satisfied:

cos(ϕ − ψ )(χF + 2χ⊥
2 sin2 θ + 2χ⊥

4 sin4 θ ) + cos θ sin(ϕ − ψ )χD = 0, (C6)

signifying zero Tθ [see Eq. (C4)]. This happens when either
of the following cases is realized:

χF + 2χ⊥
2 + 2χ⊥

4 = 0, (C7)
{
χD = 0,

χF + 2χ⊥
2 sin2 θ + 2χ⊥

4 sin4 θ = 0.
(C8)

The latter case translates into the conditions on χF , χ⊥
2 , χ⊥

4 by
demanding at least one of the roots of f (y) ≡ χF + 2χ⊥

2 y +
2χ⊥

4 y2 lie in the range from 0 to 1.
Zero ϕ torque. The model given by Eq. (3) shows that

the optimal ratio of the SOT coefficients corresponds to

zero current-induced torque in the direction of increas-
ing ϕ. While it remains to be seen whether the same
result holds for the extended model, it is interesting to
see what ratio of the SOT coefficients ensures no current-
induced torque in the ϕ direction—the direction irrelevant for
switching.

We start by finding the optimal current angle that provides
the largest torque in the θ direction (∂Tθ /∂ψ = 0),

ψ = ϕ + arctan

[
χD cos θ

χF + 2χ⊥
2 sin2 θ + 2χ⊥

4 sin4 θ

]
, (C9)

134404-6



OPTIMAL PROTOCOL FOR SPIN-ORBIT TORQUE … PHYSICAL REVIEW B 105, 134404 (2022)

and substitute that in Eq. (C5). The expression for the ϕ component of the SOT becomes

Tϕ = sin2 θ [χD cos2 θ (χ⊥
2 + χ⊥

4 sin2 θ ) + (χD − χ
‖
2 − χ

‖
4 sin2 θ )(χF + χ⊥

2 sin2 θ + χ⊥
4 sin4 θ )]√

χ2
D cos2 θ + [

χF + χ⊥
2 sin2 θ + χ⊥

4 sin4 θ
]2

. (C10)

It follows from Eq. (C10) that the current-induced torque in the ϕ direction vanishes for all values of θ in any of the four cases:

χ⊥
2 = 0, χ

‖
2 = χD, χ⊥

4 = 0, χ
‖
4 = 0, (C11)

2χ⊥
2 = −χF , 2χ

‖
2 = χD, χ⊥

4 = 0, χ
‖
4 = 0, (C12)

χD = 0, χ
‖
2 = 0, χ⊥

4 = 0, χ
‖
4 = 0, (C13)

χF = 0, χ⊥
2 = 0, χ⊥

4 = 0, χ
‖
4 = 0. (C14)

However, only Eqs. (C11) and (C13) are relevant as the other two represent special cases of the no-switching condition [see
Eq. (C7)].

[1] P. Gambardella and I. M. Miron, Philos. Trans. R. Soc. A 369,
3175 (2011).

[2] I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V.
Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and
P. Gambardella, Nature (London) 476, 189 (2011).

[3] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A.
Buhrman, Science 336, 555 (2012).

[4] S. V. Aradhya, G. E. Rowlands, J. Oh, D. C. Ralph, and R. A.
Buhrman, Nano Lett. 16, 5987 (2016).

[5] K. Garello, C. O. Avci, I. M. Miron, M. Baumgartner, A. Ghosh,
S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Appl.
Phys. Lett. 105, 212402 (2014).

[6] K.-S. Lee, S.-W. Lee, B.-C. Min, and K.-J. Lee, Appl. Phys.
Lett. 102, 112410 (2013).

[7] S. Fukami, T. Anekawa, C. Zhang, and H. Ohno, Nat.
Nanotechnol. 11, 621 (2016).

[8] T. Taniguchi, S. Mitani, and M. Hayashi, Phys. Rev. B 92,
024428 (2015).

[9] J. M. Lee, J. H. Kwon, R. Ramaswamy, J. Yoon, J. Son, X. Qiu,
R. Mishra, S. Srivastava, K. Cai, and H. Yang, Commun. Phys.
1, 2 (2018).

[10] C. O. Avci, K. Garello, C. Nistor, S. Godey, B. Ballesteros, A.
Mugarza, A. Barla, M. Valvidares, E. Pellegrin, A. Ghosh, I. M.
Miron, O. Boulle, S. Auffret, G. Gaudin, and P. Gambardella,
Phys. Rev. B 89, 214419 (2014).

[11] Y.-C. Lau, D. Betto, K. Rode, J. M. D. Coey, and P. Stamenov,
Nat. Nanotechnol. 11, 758 (2016).

[12] A. van den Brink, G. Vermijs, A. Solignac, J. Koo, J. T.
Kohlhepp, H. J. M. Swagten, and B. Koopmans, Nat. Commun.
7, 10854 (2016).

[13] S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, and H.
Ohno, Nat. Mater. 15, 535 (2016).

[14] Y.-W. Oh, Sh. C. Baek, Y. M. Kim, H. Y. Lee, K.-D. Lee, C.-
G. Yang, E.-S. Park, K.-S. Lee, K.-W. Kim, G. Go et al., Nat.
Nanotechnol. 11, 878 (2016).

[15] G. Yu, P. Upadhyaya, Y. Fan, J. G. Alzate, W. Jiang, K. L.
Wong, S. Takei, S. A. Bender, L.-T. Chang, Y. Jiang et al., Nat.
Nanotechnol. 9, 548 (2014).

[16] G. Yu, P. Upadhyaya, K. L. Wong, W. Jiang, J. G. Alzate, J.
Tang, P. K. Amiri, and K. L. Wang, Phys. Rev. B 89, 104421
(2014).

[17] J. Torrejon, F. Garcia-Sanchez, T. Taniguchi, J. Sinha, S. Mitani,
J.-V. Kim, and M. Hayashi, Phys. Rev. B 91, 214434 (2015).

[18] L. You, O. Lee, D. Bhowmik, D. Labanowski, J. Hong, J. Bokor,
and S. Salahuddin, Proc. Natl. Acad. Sci. USA 112, 10310
(2015).

[19] L. Liu, C. Zhou, X. Shu, C. Li, T. Zhao, W. Lin, J. Deng, Q.
Xie, S. Chen, J. Zhou et al., Nat. Nanotechnol. 16, 277 (2021).

[20] Sh. C. Baek, V. P. Amin, Y.-W. Oh, G. Go, S.-J. Lee, G.-H. Lee,
K.-J. Kim, M. D. Stiles, B.-G. Park, and K.-J. Lee, Nat. Mater.
17, 509 (2018).

[21] C. Thirion, W. Wernsdorfer, and D. Mailly, Nat. Mater. 2, 524
(2003).

[22] Z. Z. Sun and X. R. Wang, Phys. Rev. B 74, 132401 (2006).
[23] K. Rivkin and J. B. Ketterson, Appl. Phys. Lett. 89, 252507

(2006).
[24] Z. Z. Sun and X. R. Wang, Phys. Rev. Lett. 97, 077205 (2006).
[25] G. Woltersdorf and C. H. Back, Phys. Rev. Lett. 99, 227207

(2007).
[26] G. Bertotti, I. D. Mayergoyz, C. Serpico, M. d’Aquino, and R.

Bonin, J. Appl. Phys. 105, 07B712 (2009).
[27] N. Barros, M. Rassam, H. Jirari, and H. Kachkachi, Phys. Rev.

B 83, 144418 (2011).
[28] N. Barros, H. Rassam, and H. Kachkachi, Phys. Rev. B 88,

014421 (2013).
[29] L. Cai, D. A. Garanin, and E. M. Chudnovsky, Phys. Rev. B 87,

024418 (2013).
[30] X. R. Wang and Z. Z. Sun, Phys. Rev. Lett. 98, 077201 (2007).
[31] O. A. Tretiakov, Y. Liu, and A. Abanov, Phys. Rev. Lett. 105,

217203 (2010).
[32] Y. Zhang, H. Y. Yuan, X. S. Wang, and X. R. Wang, Phys. Rev.

B 97, 144416 (2018).
[33] P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, and M. D.

Stiles, Phys. Rev. B 87, 174411 (2013).
[34] J. Yoon, S.-W. Lee, J. H. Kwon, J. M. Lee, J. Son, X. Qiu, K.-J.

Lee, and H. Yang, Sci. Adv. 3, e1603099 (2017).
[35] G. J. Kwiatkowski, M. H. A. Badarneh, D. V. Berkov, and P. F.

Bessarab, Phys. Rev. Lett. 126, 177206 (2021).
[36] shorturl.at/jvIN2.
[37] Thermal stability factor is defined as a ratio between the energy

barrier and the thermal energy.
[38] As long as αξD �= ξF.

134404-7

https://doi.org/10.1098/rsta.2010.0336
https://doi.org/10.1038/nature10309
https://doi.org/10.1126/science.1218197
https://doi.org/10.1021/acs.nanolett.6b01443
https://doi.org/10.1063/1.4902443
https://doi.org/10.1063/1.4798288
https://doi.org/10.1038/nnano.2016.29
https://doi.org/10.1103/PhysRevB.92.024428
https://doi.org/10.1038/s42005-017-0002-3
https://doi.org/10.1103/PhysRevB.89.214419
https://doi.org/10.1038/nnano.2016.84
https://doi.org/10.1038/ncomms10854
https://doi.org/10.1038/nmat4566
https://doi.org/10.1038/nnano.2016.109
https://doi.org/10.1038/nnano.2014.94
https://doi.org/10.1103/PhysRevB.89.104421
https://doi.org/10.1103/PhysRevB.91.214434
https://doi.org/10.1073/pnas.1507474112
https://doi.org/10.1038/s41565-020-00826-8
https://doi.org/10.1038/s41563-018-0041-5
https://doi.org/10.1038/nmat946
https://doi.org/10.1103/PhysRevB.74.132401
https://doi.org/10.1063/1.2405855
https://doi.org/10.1103/PhysRevLett.97.077205
https://doi.org/10.1103/PhysRevLett.99.227207
https://doi.org/10.1063/1.3072075
https://doi.org/10.1103/PhysRevB.83.144418
https://doi.org/10.1103/PhysRevB.88.014421
https://doi.org/10.1103/PhysRevB.87.024418
https://doi.org/10.1103/PhysRevLett.98.077201
https://doi.org/10.1103/PhysRevLett.105.217203
https://doi.org/10.1103/PhysRevB.97.144416
https://doi.org/10.1103/PhysRevB.87.174411
https://doi.org/10.1126/sciadv.1603099
https://doi.org/10.1103/PhysRevLett.126.177206
http://shorturl.at/jvIN2


SERGEI M. VLASOV et al. PHYSICAL REVIEW B 105, 134404 (2022)

[39] G. Go, S.-J. Lee, and K.-J. Lee, Phys. Rev. B 95, 184401 (2017).
[40] G. Klughertz, P.-A. Hervieux, and G. Manfredi, J. Phys. D:

Appl. Phys. 47, 345004 (2014).
[41] G. Klughertz, L. Friedland, P.-A. Hervieux, and G. Manfredi,

Phys. Rev. B 91, 104433 (2015).
[42] J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T.

Suzuki, S. Mitani, and H. Ohno, Nat. Mater. 12, 240 (2013).
[43] X. Qiu, P. Deorani, K. Narayanapillai, K.-S. Lee, K.-J. Lee, H.-

W. Lee, and H. Yang, Sci. Rep. 4, 4491 (2014).
[44] R. Ramaswamy, X. Qiu, T. Dutta, S. D. Pollard, and H. Yang,

Appl. Phys. Lett. 108, 202406 (2016).
[45] A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova,

A. Thiaville, K. Garello, and P. Gambardella, Rev. Mod. Phys.
91, 035004 (2019).

[46] M. Filianina, J.-P. Hanke, K. Lee, D.-S. Han, S. Jaiswal, A.
Rajan, G. Jakob, Y. Mokrousov, and M. Kläui, Phys. Rev. Lett.
124, 217701 (2020).

[47] S. Ding, A. Ross, D. Go, L. Baldrati, Z. Ren, F. Freimuth, S.
Becker, F. Kammerbauer, J. Yang, G. Jakob, Y. Mokrousov, and
M. Kläui, Phys. Rev. Lett. 125, 177201 (2020).

[48] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov,
S. Blügel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella,
Nat. Nanotechnol. 8, 587 (2013).

[49] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables (US
GPO, Washington, D.C., 1948), Vol. 55.

[50] J. H. Mentink, M. V. Tretyakov, A. Fasolino, M. I. Katsnelson,
and T. Rasing, J. Phys.: Condens. Matter 22, 176001 (2010).

134404-8

https://doi.org/10.1103/PhysRevB.95.184401
https://doi.org/10.1088/0022-3727/47/34/345004
https://doi.org/10.1103/PhysRevB.91.104433
https://doi.org/10.1038/nmat3522
https://doi.org/10.1038/srep04491
https://doi.org/10.1063/1.4951674
https://doi.org/10.1103/RevModPhys.91.035004
https://doi.org/10.1103/PhysRevLett.124.217701
https://doi.org/10.1103/PhysRevLett.125.177201
https://doi.org/10.1038/nnano.2013.145
https://doi.org/10.1088/0953-8984/22/17/176001

