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Effect of magnetocrystalline anisotropy on magnetocaloric properties of an AlFe2B2 compound
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It is well known that the temperature dependence of the effective magnetocrystalline anisotropy energy obeys
the l (l + 1)/2 power law of magnetization in the Callen-Callen theory. Therefore, according to the Callen-Callen
theory, the magnetocrystalline anisotropy energy is assumed to be zero at the critical temperature where the
magnetization is approximately zero. This study estimates the temperature dependence of the magnetocrystalline
anisotropy energy by integrating the magnetization versus magnetic field (M-H ) curves, and found that the
magnetocrystalline anisotropy is still finite even above the Curie temperature in the uniaxial anisotropy, whereas
this does not appear in the cubic anisotropy case. The origin is the fast reduction of the anisotropy field,
which is the magnetic field required to saturate the magnetization along the hard axis, in the case of cubic
anisotropy. Therefore, the magnetization anisotropy and anisotropic magnetic susceptibility, which are the key
factors of magnetic anisotropy, could not be established in the case of cubic anisotropy. In addition, the effect
of magnetocrystalline anisotropy on magnetocaloric properties, as the difference between the entropy change
curves of AlFe2B2 appears above the Curie temperature, is in good agreement with a previous experimental
study. This is proof of magnetic anisotropy at slightly above Curie temperature.

DOI: 10.1103/PhysRevB.105.134402

I. INTRODUCTION

Heat-assisted magnetic recording is an important method
for increasing the capacity and energy efficiency of data stor-
age [1,2]. Magnetic materials with strong magnetocrystalline
anisotropy energy (MAE) are required to maintain the stability
of small-sized magnetic particles for a long time. The other
side is the difficulty in changing the magnetic state using the
write head during the writing process. As the magnetocrys-
talline anisotropy energy depends on temperature, applying
heat can decrease the coercivity (magnetic field required
to change the magnetic state) of magnetic material [1,2].
Therefore, the temperature dependence of MAE is a crucial
characteristic of magnetic materials to determine the magnetic
field needed to change the magnetization. In early theoretical
studies, the effective magnetocrystalline anisotropy constant
was found to be proportional to a polynomial of magnetization
M3 and M10 in uniaxial and cubic anisotropy, respectively, [3].
Subsequently, the l (l + 1)/2 power law (where l is the or-
der of anisotropy constants) of magnetocrystalline anisotropy
energy, the so-called Callen-Callen theory, was reproduced
in previous studies by using the constrained Monte Carlo
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method [4,5]. If the magnetization is equal to zero at the Curie
temperature, MAE should be equal to zero [3–5]. However, fi-
nite magnetocrystalline anisotropy at slightly above the Curie
temperature has been observed in recent experimental studies
[6,7].

The application of magnetocrystalline anisotropy is the
rotating magnetocaloric effect [8–14]. The temperature and
heat exchange of the anisotropic magnetic material can be
controlled by rotating the sample (or changing the relative
direction of the external magnetic field) at a fixed strength
of the applied magnetic field. The origin of this effect is
the modification of the magnetocrystalline anisotropy on the
magnetization when changing the relative direction of the
external magnetic field. The isothermal magnetic entropy
change has a peak at the critical temperature because the
derivative of magnetization diverges at the ferromagnetic-
paramagnetic transition [15,16]. If the magnetocrystalline
anisotropy disappears at the Curie temperature, the modifica-
tion of the magnetocrystalline anisotropy only appears on the
low-temperature side of the entropy change peak. However,
several experimental studies have found that the isothermal
magnetic entropy change is modified not only on the low-
temperature side but also on the high-temperature side of
the main peak when a magnetic field is applied in different
directions [8–14]. The magnetocrystalline anisotropy energy
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FIG. 1. The crystal structures of orthorhombic AlFe2B2. The
gray, orange, and blue spheres indicate the Al, Fe, and B atoms,
respectively.

affects the isothermal magnetic entropy change even above the
Curie temperature in the anisotropic magnetocaloric effect.

In recent years, AlFe2B2 has attracted much atten-
tion for future refrigeration with Earth-abundant elements,
room-temperature magnetic transitions, and strong magne-
tocrystalline anisotropy energy [17–21]. AlFe2B2 has an
orthorhombic layered crystal structure with a space group
Cmmm as depicted in Fig. 1. The Fe and B layers form a
zigzag chain in the ac plane. Furthermore, the Fe and B layers
are separated by the Al plane. The Curie temperature of the
material is varied in the range of 274–320 K, which depends
on the synthesis method [18]. AlFe2B2 has easy ([100]),
intermediate ([010]), and hard ([001]) magnetic axes [17].
The magnetocrystalline anisotropy constants (at 2 K) were
reported in a previous experimental study with K001 = 1.8
(MJ/m3) and K010 = 0.23 (MJ/m3) [17]. The dependence
of magnetocaloric properties on the direction of an applied
magnetic field has been reported in previous experimental
study [18]. However, to date, there has been no comprehensive
theoretical study on the rotating magnetocaloric properties of
the material.

In the present work, we first estimate the tempera-
ture dependence of the MAE in the uniaxial and cubic
anisotropy cases by considering the energy cost to magnetize
in some specific directions in the simple-cubic lattice model.
Moreover, as MAE is estimated as the area between two
magnetization curves when applying magnetic fields along
the hard and easy axes, the ordinary Monte Carlo method
is considered. The magnitude of the projected magnetiza-
tion can be saturated when the magnetic field is applied
along the hard axis by increasing the strength of the ex-
ternal magnetic field. The results are compared with the

well-known Callen-Callen theory for the uniaxial and cubic
anisotropy cases. In addition, the temperature dependence
of the magnetocrystalline anisotropy constant and magne-
tocaloric effect in orthorhombic AlFe2B2 is also considered.
This material has easy, intermediate, and hard axes, which
can exhibit different behavior in the temperature dependence
of magnetic anisotropy constants. In addition, the entropy
change at a magnetic field of 2 T is compared with an
experimental work [18].

II. METHODOLOGIES

The electronic structure calculations and structure opti-
mizations of orthorhombic AlFe2B2 were performed using
density functional theory (DFT) with the full-potential lin-
earized augmented plane wave method [22]. The lattice
constants (a = 2.9168 Å, b = 11.033 Å, and c = 2.8660 Å)
were used for AlFe2B2 [17]. The atomic position relaxation
was carried out by optimizing all atomic forces of less than
1 mRy/bohr. The generalized gradient approximation was
used for exchange and correlation [23]. Magnetocrystalline
anisotropy energy is evaluated as the energy necessary to
rotate the quantization axis with spin orbit coupling in the
second variation steps [24]. The convergence of magnetocrys-
talline anisotropy energy was achieved using a large number
of k-point meshes of 48 × 16 × 48.

The magnetic exchange constants (Ji j) of stoichiometric
AlFe2B2 were evaluated using the Liechtenstein formula in
the Korringa-Kohn-Rostoker method with coherent potential
approximation [25–27]:

Ji j = 1

4π
Im

∫ EF

dE Tr
{
�ti(E )T ↑

i j �t j (E )T ↓
i j

}
, (1)

where T ↑
i j and T ↓

i j are off-diagonal scattering path operators
for spin up and spin down between atomic sites i and j, re-
spectively, and �ti(E ) = t↑

i − t↓
i with the single site t matrix

tσ
i for spin σ at site i.

The Heisenberg model with uniaxial and cubic anisotropy
terms was used to obtain the magnetism and magnetocaloric
properties at a finite temperature [4]:

HHeis = −
∑
〈i j〉

Jm
i j
−→
Si · −→

S j −
∑

i

ku(−→eu · −→
Si )2

−
∑

i

kc
(
S4
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iy + S4
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) − gμB
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i

−→
Hext · −→
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where g is the g factor, μB is the Bohr magneton, ku is the
uniaxial anisotropy constant, and kc is the cubic anisotropy
constant. The first term expresses the exchange interactions
between spins at sites i and j. The spin tends to be parallel
to the neighboring site when the magnetic exchange coupling
constant Jm

i j is positive. The spin is antiparallel to the neigh-
boring spin for negative Jm

i j . The second term in Eq. (2) is
the interaction between the spin at site i and the uniaxial
anisotropy, and eu is the direction of the easy axis in the
case of a positive ku. The third term in Eq. (2) is the cubic
anisotropy term with Six as the x component of Si. The final
term in Eq. (2) is the interaction of the spin at site i with the
external magnetic field. At a finite external magnetic field, the
spin tends to be parallel to the direction of the magnetic field
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to minimize the energy. The size of the simple-cubic lattice
is assumed to be 80 × 80 × 80 unit cells, and the first nearest
neighbor of the exchange interaction is considered. However,
the size of the Monte Carlo simulation box in the AlFe2B2

compound is 30 × 30 × 30 unit cells with 270 000 atoms. The
number of Monte Carlo steps is 200 000, and the first 100 000
steps are discarded. The Metropolis algorithm was used to
achieve thermal equilibrium in the Heisenberg model.

The magnetocrystalline anisotropy energy was estimated
by integrating the magnetization versus the magnetic field
(M-H) curves:

MAE =
∫ Hext

0
{M(H ‖ easy axis) − M(H ‖ hard axis)}dH,

(3)
where the magnetic field is used to obtain the saturation of
magnetization. The temperature dependence of magnetocrys-
talline anisotropy energy can be estimated using integration
because the area between the two magnetization curves can
be measured as the energy cost to magnetize in a certain
direction.

The magnetic susceptibility is calculated as

χ = ∂M

∂H
= (〈M2〉 − 〈M〉2)

kBT
, (4)

where kB is the Boltzmann constant. The magnetic suscepti-
bility is the fluctuation of magnetization in the Monte Carlo
simulation.

The isothermal magnetic entropy changes (�SM) are esti-
mated by integrating the derivative of the magnetization (M)
based on the Maxwell relation [15,16]:

�SM(Hext, T ) =
∫ Hext

0

(∂M(H, T )

∂T

)
dH

∼=
N∑

j=0

M(Hj, T + �T ) − M(Hj, T − �T )

2�T
�H.

(5)

The isothermal magnetic entropy change is obtained by in-
tegrating with fine mesh in temperature and external magnetic
field. �T and �H are taken as 2 K and 0.2 T, respec-
tively. Owing to the magnetocrystalline anisotropy energy, the
isothermal magnetic entropy changes strongly depend on the
direction of the applied magnetic field.

III. RESULTS AND DISCUSSION

A. Uniaxial and cubic anisotropies
in simple-cubic lattice model

As magnetic materials usually exhibit uniaxial or cubic
anisotropy, a simple-cubic lattice with uniaxial and cubic
anisotropy interaction was considered in the first part to
provide a general characterization of uniaxial and cubic
anisotropy. The magnetic exchange coupling constant of the
first nearest neighbor, equal to 10 meV, was used in this sim-
ulation. The ku and kc were 0.25 meV, and the size of the
magnetic moment was 2.0 μB. The magnetization–magnetic
field (M-H) curves at several temperatures in the uniaxial
anisotropy case are shown in Fig. 2(a). At 0 K, increasing the
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FIG. 2. Magnetization–magnetic fields (M-H ) curve at several
temperatures when applying a magnetic field along the hard and
easy axes of uniaxial anisotropy (a) and cubic anisotropy (b) of a
simple-cubic lattice model. The magnetization was normalized to 1.

magnetic field along the hard axis leads to a linear enhance-
ment of magnetization before saturating at HA = 2Ku/MS

as the Stoner-Wohlfarth model for magnetic reversal. When
the temperature is increased, the saturation magnetization at
zero external magnetic field is decreased. Furthermore, the
anisotropy field, which is the required magnetic field to sat-
urate the magnetization along the hard axis, is also decreased.
This results in a high order of dependence of MAE on mag-
netization rather than linear dependence. At an intermediate
temperature, the magnetization curve when the magnetic field
is along the hard axis has a wing when the magnetic field
approaches the anisotropy field. This wing is related to the
finite temperature effect on the direction of magnetization,
and the direction of magnetization is difficult along the hard
axis. Furthermore, a high external magnetic field is required
to approach the saturation magnetization when a magnetic
field is applied along the hard axis at these temperatures. If
the magnetization curve of the hard axis is extrapolated to the
limit of zero, by applying an external magnetic field as the
saturation magnetization of the hard axis, there is a finite value
of the difference in saturation magnetization between the
easy and hard axes, the so-called magnetization anisotropy.
At a temperature slightly above the Curie temperature, the
magnetization curve indicates when the magnetic field along
the hard axis is not saturated. This means that magnetizing
along the hard axis in the uniaxial case is still harder than
the magnetization along the easy axis even above the Curie
temperature, which was also observed in the experimental
study [6]. This is due to the difference in the slope of the
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FIG. 3. Temperature dependence of magnetization (black line)
and anisotropy constant of uniaxial (red line) and cubic (blue line)
anisotropies of the Callen-Callen model as M3 and M10, respectively.
The integration of M-H curves for uniaxial (crossed purple points)
and cubic (square green points) anisotropies using the Monte Carlo
method.

M-H curves in the easy and hard axes at a finite magnetic
field applied, such as the anisotropic magnetic susceptibility.
The magnetic susceptibility is the fluctuation of the magneti-
zation curves at a fixed strength of the external magnetic field.
Therefore, the dependence of magnetic susceptibility on the
direction of the external magnetic field at these tempera-
tures implies that the external magnetic field leads to the
enhancement of the anisotropic magnetic susceptibility. When
the magnetization is enhanced by the applied field at a
temperature slightly higher than the Curie temperature, the
effect of magnetic anisotropy appears and enhances the first
derivative of magnetization in the field, as the magnetic
susceptibility.

The M-H curves at several temperatures in the cubic
anisotropy case are shown in Fig. 2(b). At 0 K, the magne-
tization along the hard axis at zero external magnetic fields
is nonzero because the hard and easy axes are not perpen-
dicular in the cubic case. Moreover, it is understood that the
anisotropy field is higher in this case than that in the case of
uniaxial anisotropy. However, the anisotropy field is the same
as 0.25 meV in both the cases. If the temperature increases, the
magnetization and anisotropy fields also decrease as the tem-
perature affects the order parameter and MAE. However, the
anisotropy field is decreased rapidly compared with the uniax-
ial case. The cubic anisotropy is a higher order of anisotropy
interaction than uniaxial anisotropy, as shown in Eq. (2). At
high temperatures, the area between the two magnetization
curves diminishes to almost zero, in contrast to the uniax-
ial case. This means that the magnetocrystalline anisotropy
energy above the Curie temperature is approximately equal
to zero, because the magnetocrystalline anisotropy energy is
related to the energy barrier in free energy, which contains the
energy and entropy terms of cubic and uniaxial anisotropy,
different at temperatures above the Curie temperature. The
high external magnetic field cannot enhance the anisotropic
magnetic susceptibility compared with the uniaxial case, as
discussed above. One possibility for this phenomenon is the

FIG. 4. (a) Magnetic exchange coupling constants of the Fe-Fe
pairs as a function of Fe-Fe distance (d/a) normalized with the lattice
constant a. (b) Magnetization (purple line) and magnetic susceptibil-
ity (green line) curves of the Monte Carlo simulation at zero external
magnetic field.

shape of the magnetic anisotropy energy surface of cubic
anisotropy, which depends on the direction of magnetization,
is isotropic, and does not depend on the strength of the exter-
nal magnetic field.

The temperature dependence of magnetization and normal-
ized anisotropy constant of uniaxial and cubic anisotropies
in a simple-cubic lattice model are shown in Fig. 3. The
magnetization curve at zero external magnetic fields was used
to determine the effective anisotropy constant of the Callen-
Callen theory. The results of the integration M-H curve of
cubic anisotropy are in good agreement with M10, whereas
the critical temperature of the uniaxial anisotropy constant
is higher than the Curie temperature defined by the Callen-
Callen theory. The uniaxial and cubic anisotropy constants of
the Callen-Callen theory are obtained from the power law of
magnetization. This means that when the magnetization be-
comes approximately equal to zero at the Curie temperature,
the effective anisotropy constants are also assumed to be zero.
The different behavior between uniaxial and cubic anisotropy
may be due to the shape of the magnetic anisotropic energy
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FIG. 5. (a)–(c) Magnetization–magnetic field (M-H ) curves of several temperatures of the Monte Carlo method when the magnetic field
is along the easy ([100]), intermediate ([010]), and hard ([001]) axes. The M-H curves at 2 K in the experimental study [17] are shown as
dashed lines. (d) Temperature dependence effective magnetocrystalline anisotropy energy of the Monte Carlo method and available data from
first-principles calculations (0 K) and experimental studies (2 K) [17].

surface, which is the energy that depends on the direction
of magnetization with a finite external magnetic field. In
uniaxial anisotropy, the external magnetic field enhances the
anisotropic magnetic susceptibility near the Curie tempera-
ture. It is preferred to magnetize along the easy axis compared
to the other axes. Therefore, the magnetization along the hard
axis, which is the integration of magnetic susceptibility, is
slightly smaller than that along the easy axis above the Curie
temperature. On the other hand, the anisotropic magnetic sus-
ceptibility of cubic anisotropy above the Curie temperature
becomes approximately zero. Moreover, the combination of
cubic anisotropy and the external magnetic field is almost
unchanged when magnetizing along the hard and easy axes.
This phenomenon leads to different behaviors in the magne-
tocaloric effect of uniaxial and cubic anisotropy because the
cubic anisotropy energy disappears above the Curie tempera-
ture, while the uniaxial anisotropy energy is not negligible at
these temperatures.

We derived the relation of magnetization anisotropy and
anisotropic magnetic susceptibility with MAE from the defi-
nition of MAE and the magnetic susceptibility of Eqs. (3) and
(4) as

∂EMAE

∂H
= ∂F (Hext ‖ easy, T )

∂H
− ∂F (Hext ‖ hard, T )

∂H
= M(Hext ‖ easy, T ) − M(Hext ‖ hard, T ), (6)

∂2EMAE

∂H2
= ∂2F (Hext ‖ easy, T )

∂H2
− ∂2F (Hext ‖ hard, T )

∂H2

= χ (Hext ‖ easy, T ) − χ (Hext ‖ hard, T ). (7)

From Eqs. (6) and (7), magnetization anisotropy is the first
derivative while the anisotropic magnetic susceptibility is the
second derivative of MAE on the magnetic field. This means
that their effects on MAE can be considered in our Monte
Carlo simulation as the integration of M-H curves. The mag-
netization anisotropy and anisotropic magnetic susceptibility
lead to finite MAE of the uniaxial case and negligible MAE
of the cubic case at a temperature slightly higher than the
Curie temperature. Because the magnetization anisotropy is
the integration of anisotropic magnetic susceptibility until the
anisotropy field is reached, it only appears below the Curie
temperature where the anisotropy field is finite. Moreover,
because the anisotropy field of the cubic anisotropy decreases
much faster than the uniaxial anisotropy, the magnetization
anisotropy may not appear in the cubic case.

B. Pristine AlFe2B2

The magnetic exchange coupling constants between Fe
atoms of orthorhombic AlFe2B2 are shown in Fig. 4(a).
The coupling constants exhibit a long-range behavior with
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FIG. 6. Isothermal magnetization curves as a function of temperature and external magnetic fields (Hext) along (a) easy ([100]), (b) inter-
mediate ([010]), and (c) hard ([001]) axes. The isothermal magnetic entropy change (�SM) curves as a function of temperature for Hext along
the (d) easy ([100]), (e) intermediate ([010]), and (f) hard ([001]) axes.

oscillation when the distance increases. The magnetic ex-
change coupling constants from the first to fourth nearest
neighbors are positive. Furthermore, the coupling constants
are increased when the distance is increased. This is not an
ordinary direct-exchange type of magnetic interaction. The
first, second, and third nearest neighbors are surrounded by B
atoms inside the Fe-B layer. Therefore, the p state of B affects
the coupling constants via a superexchange interaction, and
the coupling constants increase when the distance increases
in this case. On the other hand, the fourth nearest neighbor
is a pair of Fe atoms in different layers separated by the Al
plane. It leads to the highest value of the coupling constant
of the fourth nearest neighbor as direct exchange interaction.
The Curie temperature can be estimated from the magnetic
exchange coupling constants using the mean-field approxima-
tion (MFA) and Monte Carlo method. The Curie temperature

obtained by MFA is 365 K, while the value of the Monte Carlo
method is 199 K. The Curie temperature of the MFA is usually
overestimated, whereas the Monte Carlo method should be
more precise. The magnetization and magnetic susceptibility
of AlFe2B2 are shown in Fig. 4(b). The Curie temperature of
the Monte Carlo method is obtained as the divergence of the
magnetic susceptibility.

The magnetization–magnetic field M-H curves of AlFe2B2

at several temperatures are shown in Figs. 5(a)–5(c). The
magnetization curves obtained when applying a magnetic field
along the hard, intermediate, and easy axes at 2 K in the
Monte Carlo simulation (the solid line) are in good agree-
ment with the experimental results (the dashed line) [17]. The
magnetocrystalline anisotropy energy can be estimated as the
area between two magnetization curves: one for the easy axis
and the other for the hard or intermediate axis. Applying an
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external magnetic field along the hard axis requires a large
magnetic field to saturate the magnetization. The anisotropy
field in the case of the hard axis of the Monte Carlo method
is slightly larger than the experimental results, whereas the
anisotropy field of the intermediate axis is slightly smaller
than the experimental value. When the temperature is in-
creased, the magnetization and anisotropy field are decreased.
However, below the Curie temperature, the anisotropy field
of the hard axis is decreased much faster than that in the
intermediate case. At 200 K (slightly above the Curie temper-
ature of 199 K), the magnetization is approximately zero at
zero external magnetic fields. However, applying an external
magnetic field enhances the area between the magnetization
curves at this temperature. The area between the magnetiza-
tion curves of the easy and intermediate axes is approximately
equal to zero, whereas it is not negligible between the easy and
hard axes. This means that the magnetocrystalline anisotropy
constant of the intermediate axis is approximately equal
to zero, whereas the hard axis is not negligible at these
temperatures.

The magnetocrystalline anisotropy energy constants of
AlFe2B2 are shown in Fig. 5(d). The anisotropy energy ob-
tained using the present first-principles DFT calculations of
the hard axis is 1.5 MJ/m3, which is close to the experimental
result of 1.8 MJ/m3 at 2 K [17]. In addition, the value of
the intermediate case of DFT is 0.16 MJ/m3, which slightly
smaller than the value of experimental study 0.23 MJ/m3

[17]. By integrating the M-H curves in the Monte Carlo
method, we can consider the temperature dependence of the
magnetocrystalline anisotropy energy between the hard and
intermediate axes with the easy axis. The anisotropy constant
of the hard axis is decreased almost linearly as the temperature
is increased. Moreover, the uniaxial anisotropy in the previous
section is still finite above the Curie temperature. On the other
hand, the magnetocrystalline anisotropy constant of the inter-
mediate axis is decreased slowly below the Curie temperature.
Near the Curie temperature, the anisotropy constant decreased
rapidly. Furthermore, it became approximately equal to zero
at the Curie temperature. This means that the energy barrier
between the easy and intermediate axes disappears at the
Curie temperature.

The isothermal magnetization and entropy change curves
are shown in the Fig. 6. When a magnetic field is applied
along the easy axis ([100]), the magnetization decreases when
the temperature increases and becomes zero at the Curie
temperature as the limit of the magnetic field is zero. By
increasing the magnetic field, the magnetization is enhanced,
and the transition temperature is shifted. From the magneti-
zation curves, the isothermal magnetic entropy change can
be estimated using Maxwell’s relation [15,16]. The entropy
change curves have a peak at the Curie temperature, where the
derivative of the magnetization diverges. The value of the peak
is increased with increasing strength of the external magnetic
field. On the other hand, the magnetic anisotropy became
dominant in the low-magnetic-field and low-temperature re-
gion in the case of the intermediate ([010]) and hard ([001])
axes. However, the difference in magnetization with the easy
axis is decreased by increasing the temperature or magnetic
field. At a sufficient magnetic field at finite temperatures,
the magnetization looks similar to that in the easy axis case.

FIG. 7. Isothermal magnetic entropy change when magnetic field
equals 2 T and along different axes of (a) experimental study [18] and
(b) Monte Carlo simulations. �T is used as 80 K to shift the entropy
change peak for a simple comparison.

Therefore, the magnetocrystalline anisotropy energy leads
to an extensive modification of the entropy change at a
low external magnetic field. The difference in the entropy
change curves remains constant at a sufficient magnetic field.
There is noise in the magnetization in the temperature range
near the Curie temperature due to the competition between
magnetic anisotropy and the external magnetic field, which
tends to force the magnetization along its own direction.
This noise disappears at a sufficiently large magnetic field
and high temperature. As a result of this noise in magne-
tization, the �SM curves of the intermediate and hard axes
become noisy in the temperature range. Moreover, owing to
the effect of MAE, the entropy change of the hard axis was
the lowest at the magnetic field of 1 T. The difference in
entropy change remains at a higher external magnetic field
since the entropy change is the integration of magnetization
curves.

The isothermal magnetic entropy change when the mag-
netic field is 2 T in an experimental study [18] and Monte
Carlo simulation are shown in Fig. 7. �SM calculated with
the Monte Carlo method is in semiquantitatively good agree-
ment with the experimental results. The entropy change when
applying a magnetic field along the easy axis is the highest
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because the magnetization along the easy axis is assisted by
the magnetic anisotropy. The entropy change peak of the ex-
perimental results is wider than our result because the Curie
temperature by the Monte Carlo method is smaller than the
experimental value. In addition, the discrepancy between the
two entropy change curves is due to the modification of the
magnetic anisotropy on the magnetization curve. The gap
between the entropy change curves of the hard and easy axes
is decreased when the temperature is increased and disappears
slightly above the Curie temperature in both experimental and
theoretical studies. This means that the MAE is decreased
when the temperature is increased and finally disappears
slightly above the Curie temperature. Because the anisotropy
constant of the intermediate axis is negligible above the Curie
temperature, the difference in entropy change of the interme-
diate and the easy axis is minor. Therefore, there is a nearly
easy plane and hard axis at the Curie temperature owing to the
temperature dependence of the magnetic anisotropy.

IV. CONCLUSION

The temperature dependence of the uniaxial and cubic
anisotropy constants was considered using Monte Carlo sim-
ulations for the classical Heisenberg model. The temperature
dependence of the cubic anisotropy constant is found to be in

good agreement with the Callen-Callen theory, while the mag-
netocrystalline anisotropy energy of the uniaxial anisotropy is
still finite at the Curie temperature. The Callen-Callen the-
ory is not applicable for the magnetic anisotropy around the
critical temperature where the effect of anisotropic magnetic
susceptibility becomes an important factor. Our finding pro-
vides a more accurate behavior of the temperature dependence
of magnetic anisotropy energy, which is a useful guide for
experimental and also theoretical works on magnetism such
as magnetic recording and memory devices. In addition, the
magnetism and magnetocaloric properties of orthorhombic
AlFe2B2 were reasonably predicted. The temperature depen-
dence of the magnetocrystalline anisotropy energy of the hard
K001 and intermediate K010 cases demonstrates different be-
haviors. The good agreement in isothermal magnetic entropy
change emphasizes that the magnetic anisotropy affects the
magnetization curves even above the Curie temperature.
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