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Generation of nonreciprocity in gapless spin waves by chirality injection
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It is known that in chiral magnets with intrinsic inversion symmetry breaking, two spin waves moving
in opposite directions can propagate at different velocities, exhibiting a phenomenon called magnetochiral
nonreciprocity, which allows for realizations of certain spin logic devices such as a spin-wave diode. Here,
we theoretically demonstrate that the spin-wave nonreciprocity can occur without intrinsic bulk chirality in
easy-cone ferromagnets and easy-cone antiferromagnets. Specifically, we show that nonlocal injection of a spin
current from proximate normal metals to easy-cone magnets engenders a nonequilibrium chiral spin texture,
on top of which spin waves exhibit nonreciprocity proportional to the injected spin current. In particular, the
easy-cone ferromagnet is shown to support the spin-wave nonreciprocity without an external field, in contrast to
the previously known easy-plane ferromagnetic counterpart that requires an external field, thereby providing a
field-free means to manipulate the spin-wave nonreciprocity. One notable feature of the nonreciprocal spin waves
is their gapless nature, which can lead to a large thermal rectification effect at sufficiently low temperatures.
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I. INTRODUCTION

It is known that in certain materials with broken inversion
symmetry, direction-dependent propagation of particles can
occur [1]. In particular, chiral magnetic materials, in which
both the inversion symmetry and the time-reversal symmetry
are broken, are known to harbor such a nonreciprocal transport
of spin waves [2,3]. Because spin waves carry energy and
angular momentum without accompanying the Joule heating,
the nonreciprocal spin-wave phenomenon can be exploited to
realize energy-efficient spin devices such as spin-wave logic
gates [4] and spin-wave diodes [5]. The nonreciprocal propa-
gation of spin waves is attributed to the asymmetric dispersion
ω(k) �= ω(−k), which, for long-wavelength modes, can often
be written as

ω(k) = ω0(k) + Ck, (1)

where ω0(k) represents the symmetric component and the
k-linear term is responsible for the spin-wave nonreciprocity.
The latter has been interpreted as the spin-wave Doppler shift
that can be induced by the spin-polarized current [6–9], the
magnetostatic interactions [10], the Dzyaloshinskii-Moriya
interaction [11–20], and the phonon and magnon drags
[21,22]. We note that the aforementioned nonreciprocal spin
waves possess a finite energy gap.

Recently, it was recognized that it is possible to electri-
cally inject chirality into nonchiral magnetic materials with
easy-plane or easy-cone anisotropy, whose order parameter
is characterized by a U(1) azimuthal angle which we denote
by φ, in the context of superfluid spin transport [23–29].
Experimental schemes for superfluid spin transport have been
proposed by using the nonlocal spin injection from proxi-
mate normal metals via the spin Hall effect [30,31]; their
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realizations have been reported for Cr2O3 [32] and quantum-
Hall graphene [33]. In superfluid spin transport, the spin
supercurrent is proportional to the gradient of the U(1) pa-
rameter φ′, which manifests as a chiral spin texture [23].
Long-wavelength spin waves in easy-plane and easy-cone
magnets in equilibrium have a symmetric linear dispersion:
ω(k) = c|k|, which is gapless since it is the Goldstone mode
associated with spontaneous breaking of the U(1) symmetry.

FIG. 1. (a) Schematic illustrations of ground states of easy-cone
ferromagnets. The ground state manifolds are shown as solid gray
lines, which form two cones with the cone angle θc from the z
axis. The azimuthal angle φ is arbitrarily chosen in a ground state,
breaking the U(1) spin-rotational symmetry spontaneously. (b) Ge-
ometrical setup of the circuit configuration for the spin current
injection. The spin configuration is shown for the symmetric case
where the left and right currents are identical ( jL = jR). The chiral
spin texture (z component: red circled dots; xy component: solid
blue arrows) is induced by nonlocal spin injection from the two
boundaries. The spin waves on top of the chiral spin texture (dotted
black arrows) show a direction-dependent propagation characterized
by the group-velocity difference between +k and −k (wavy arrows).

2469-9950/2022/105(13)/134401(11) 134401-1 ©2022 American Physical Society

https://orcid.org/0000-0002-2849-9718
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.134401&domain=pdf&date_stamp=2022-04-01
https://doi.org/10.1103/PhysRevB.105.134401


GO, LEE, AND KIM PHYSICAL REVIEW B 105, 134401 (2022)

The ability to maintain a chiral spin texture in easy-plane
and easy-cone magnets through a nonlocal spin injection
leads us to wonder whether the injected chirality can induce
nonreciprocity in an otherwise reciprocal gapless spin-wave
spectrum.

Indeed, it was shown that the spin-wave nonreciprocity can
be induced by a spin-current injection in easy-plane ferro-
magnets subjected to an external field [34–38] as well as in
easy-plane antiferromagnets [38]. However, the necessity of
an external field is detrimental for scaling spintronics devices
[39–43]. Therefore, for practical applications, the ability to
generate nonreciprocal spin waves without an external field,
for which we consider easy-cone magnets in this work, is
highly desired.

In this paper, we theoretically investigate spin waves in
easy-cone magnets subjected to a nonlocal injection of the
spin current. See Fig. 1 for an illustration of the system. First,
we show that the chiral spin texture induced by the spin-
current injection leads to the asymmetric dispersion of gapless
spin waves in an easy-cone ferromagnet in the absence of an
external field, which is in contrast to the easy-plane ferromag-
netic case, where the external field is required [34–38]. The
induced spin-wave nonreciprocity is proportional to the spin
supercurrent ∝ φ′ carried by the chiral spin texture, which is
analogous to the Doppler shift of the Bogoliubov quasiparticle
by the superfluid velocity in superfluids [44]. We then expand
our result to easy-cone antiferromagnets, which harbor two
spin-wave modes, one gapless and the other gapful, unlike the
ferromagnetic case, which possesses only a gapless mode. We
show that the dispersions of both spin-wave modes become
nonreciprocal in the presence of a chiral spin texture when
a magnetic field is applied along the high-symmetry axis.
For both ferromagnets and antiferromagnets, nonreciprocal
spin waves are shown to give rise to nonreciprocal thermal
transport within the Boltzmann transport theory. The obtained
nonreciprocal spin waves are characterized by two features.
First, the nonreciprocity in spin waves is induced nonlocally
in nonchiral magnets by the injection of the spin current
through the boundaries. Second, the obtained nonreciprocal
spin waves are gapless, which can lead to a stronger thermal
rectification effect at sufficiently low temperatures compared
to gapped counterparts. Our results show that the nonlocal
induction of chirality via interfacial spin-current injection can
engender magnetochiral phenomena in easy-cone magnetic
materials with no intrinsic chirality and with no external field
under certain conditions, which can be exploited to realize
strongly nonreciprocal thermal transport.

II. SPIN-WAVE DYNAMICS IN EASY-CONE
FERROMAGNETS

We begin by considering the following Hamiltonian den-
sity for a quasi-one-dimensional uniaxial ferromagnet:

H = A

2
[∇n(x)]2 − K1

2
nz(x)2 + K2

2
nz(x)4, (2)

where n(x) = s(x)/s is a unit vector along the local spin
density s(x), A is the exchange coefficient, K1 is the first-order
effective anisotropy, and K2 is the second-order anisotropy. It
is convenient to parametrize n in the spherical coordinates:

n = (sin θ cos φ, sin θ sin φ, cos θ ). Depending on the relative
magnitude of K1 and K2, an equilibrium state is chosen among
perpendicular magnetic anisotropy (n0 = ±ẑ), in-plane mag-
netic anisotropy (n0 ⊥ ẑ), and easy-cone magnetic anisotropy
[see Fig. 1(a)]. In this work, we are interested in easy-cone
phases, which are stabilized for K1 > 0 and K2 > K1/2 [45].
Exemplary materials for easy-cone phases are Co/Pt mul-
tilayers, Ta/CoFeB/MgO, and NdFeB compounds [46–49].
The ground-state manifolds are two cones characterized by
polar angles (referred to as cone angles): θc = [cos−1(K1 −
K2)/K2]/2 and π − θc. The Hamiltonian [Eq. (2)] is invariant
under the azimuthal-angle translation φ → φ + �φ, possess-
ing U(1) spin-rotational symmetry [28]. A ground state breaks
the U(1) symmetry, which enables superfluid spin transport
[23], as the spontaneous breaking of the U(1) phase symmetry
allows for superfluid mass transport in superfluid helium.

Now, let us consider the setup shown in Fig. 1(b), where
two heavy metals sandwich the easy-cone ferromagnet. The
charge currents through the heavy metals inject a spin current
into the magnet via the spin Hall effect. Throughout this paper,
we consider situations where the two charge currents are the
same ( jL = jR = j), so that the realization of a static spin
texture is allowed by the symmetry [31]. The dynamics is
described by the Landau-Lifshitz-Gilbert (LLG) equation:

sṅ + αsn × ṅ = n × (
An′′ + K1nzẑ − 2K2n3

z ẑ
)
, (3)

where s is the spin density, α is the Gilbert damping constant,
and ′′ represents the second-order derivative with respect to
x. The boundary conditions are given by equating the spin
current Jz = −Aẑ · (n × n′) with the spin torque subtracted
from the spin pumping:

−A sin2 θφ′ = sin2 θ ( jϑ ∓ γ φ̇), (4)

where the upper and the lower signs correspond to the left
(x = 0) and right (x = L) interfaces, respectively [31,50].
Here, ϑ is related to the effective interfacial spin Hall angle
θ via ϑ ≡ h̄ tan θ/2etN (e is the charge of an electron, tN is
the normal metal thickness), γ = h̄g↑↓/4π , and g↑↓ is the
effective interfacial spin-mixing conductance. By solving the
LLG equation in conjunction with the boundary conditions,
one can show that the spin-current injection from the bound-
aries induces a static chiral spin texture characterized by the
uniform spatial rotation of the azimuthal angle φ → φ0 +
φ′x, with φ′ = −ϑ j/A, and a cone-angle deformation θc →
{cos−1[K1 − K2 + A(φ′)2]/K2}/2 (see Appendixes A and B
for the calculation details of the steady-state solution for chiral
spin textures and the spin waves on top of it). Here, note that
the spin chirality φ′ ∝ j can be dynamically controlled by
varying the charge current j in heavy metals.

To investigate spin waves on top of the static spin tex-
ture, we divide n(x, t ) into the static profile n0(x) and small
fluctuations δn(x, t ), the latter of which can be written as
δn = nθ θ̂ + nφφ̂, where θ̂ = [∂θn]|n0 and φ̂ = n0 × θ̂. By ex-
panding the LLG equation to linear order in nθ and nφ with
α = 0, we obtain the equations of motion for spin waves:

sṅθ = −An′′
φ − 2Aneq

z φ′n′
θ ,

sṅφ = An′′
θ − Kφ′nθ − 2Aneq

z φ′n′
φ, (5)
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FIG. 2. Spin-wave dispersions [Eq. (6)] (a) for several spin chi-
ralities φ′ with fixed neq

z = 0.9 and (b) for several values of neq
z with

fixed φ′a = 0.08, where a is the lattice constant. The asymmetry of
the band between k > 0 and k < 0 increases as φ′ and neq

z increase.

where neq
z = cos θc, Kφ′ = K̄1(2K2 − K̄1)/K2, and K̄1 = K1 +

A(φ′)2 is a renormalized first-order anisotropy. We note that
the last terms in Eqs. (5) are proportional to the product of
neq

z and the spin-chirality parameter φ′, which give rise to
the spin-wave nonreciprocity, as shown below. Inserting a
plane-wave ansatz nθ , nφ ∝ ei(kx−ωt ) into Eqs. (5) yields the
following spin-wave dispersion:

ω(k) = 1

s

√
Ak2[Ak2 + Kφ′ ] + 2A

s
neq

z φ′k. (6)

When φ′ = 0, the first term in Eq. (6) describes a recip-
rocal spin-wave mode without the spin-current injection:
ω ≈ v0|k|, where v0 = √

AK0/s for sufficiently small k. It
is the second term that creates the difference between right-
moving spin waves (k > 0) and left-moving spin waves (k <

0), which propagate at velocities v+ = v0 + δv and v− =
v0 − δv, respectively, with δv = (2Aneq

z φ′)/s for sufficiently
small k. Note that the velocity difference is proportional
to the spin chirality φ′, which was originally injected
nonlocally from proximate metals via spin-current injec-
tion. This is our first main result: the injection of the
spin current into easy-cone ferromagnets gives rise to the
nonreciprocity in otherwise reciprocal spin waves in the
absence of an external field, which differs from the pre-
viously known easy-plane ferromagnetic case, where an
external field is indispensable [34–38]. The spin-wave non-
reciprocity increases as φ′ and neq

z increase, although there
is an upper limit on the induced chirality φ′ for the sta-
bility of the spin texture (Landau criterion) [23,24,51–54].
In our case, the maximum value of φ′ for the stable spin
wave is given by φ′

max = √
(2K2 − K1)/(3A). To confirm our

continuum theory for the spin-wave nonreciprocity by using
the discrete spin model, we provide its Holstein-Primakoff
magnon description in Appendix C.

To plot the spin-wave dispersion numerically, we adopt
material parameters of yttrium iron garnet films: A = 3.7 ×
10−7 erg/cm [55], a = 1.23 nm, and s/h̄ = 0.65 × 1022 cm−3

[56], where a and s are a lattice constant and spin angu-
lar momentum density, respectively. By using a spin Hall
angle of a β-W thin film (θ = 0.3) [57], we estimate φ′ ≈
0.08/a for j = 2.4 × 108 A/cm2. For the effective magnetic
anisotropy, we use K1 = 2.9 × 106 erg/cm3 [56,58–60]. The
second-order anisotropy constant is chosen to be K2 > K1/2.
Figures 2(a) and 2(b) show the spin-wave dispersion for
different spin-chirality parameters φ′ and out-of-plane spin
components neq

z .

III. SPIN-WAVE DYNAMICS IN EASY-CONE
ANTIFERROMAGNETS

Let us now investigate an analogous phenomenon in easy-
cone antiferromagnets. We consider a quasi-one-dimensional
uniaxial bipartite antiferromagnet which can be described by
the following Lagrangian density:

L = sm · (n × ṅ) − A

2
(∂in)2

− m2

2χ
+ K1

2
n2

z − K2

2
n4

z − b · m, (7)

where n = (m1 − m2)/2 and m = m1 + m2 are, respectively,
the staggered (Néel) order parameter and the uniform compo-
nent of the two sublattice spin directions m1 and m2 [30,61],
s is the saturated spin density, A is the exchange coefficient,
χ is the spin susceptibility, K1(> 0) and K2(> K1/2) are the
first- and second-order anisotropy coefficients, respectively,
and b represents the external magnetic field. The equations of
motion for n and m are obtained by minimizing the action
with constraints |n| = 1 and n · m = 0:

sṅ = 1

χ
(m × n) + b × n, (8)

sṁ = n × [
A∇2n + (

K1nz − 2K2n3
z

)
ẑ
] + b × m. (9)

In terms of the spherical coordinate fields, we write n =
(sin θ cos φ, sin θ sin φ, cos θ ) and m = mθ θ̂ + mφφ̂. In a way
similar to the ferromagnetic case, we read a quasiequilibrium
solution when the two charge currents in the adjacent heavy
metals are the same ( jL = jR = j) [31]:

φ′ = −ϑ j

A
, θc = 1

2
cos−1

(
K̄1 − K2 − b2

0χ

K2

)
,

mφ = 0, mθ = −χb0 sin θc, (10)

where b0 is the magnitude of the perpendicular mag-
netic field (b = −b0ẑ) and K̄1 = K1 + A(φ′)2. To obtain the
spin-wave solution, we consider small deviations ψ (x, t ) =
(δθ, ξφ, δφ, ξθ ) from the equilibrium state defined by

φ → φ′x + δφ

sin θc
, θ → θc + δθ,

mφ → ξφ, mθ → −χb0 sin θc + ξθ . (11)

Then, the linearized equations of motion for ψ ∝ exp(ikx −
iωt ) yield the eigenvalue problem (sω)ψ = ĥψ with

ĥ = i

⎛
⎜⎜⎝

0 χ−1 0 0
−Ak2 − κφ′ 0 −2ikAneq

z φ′ −2b0neq
z

−b0neq
z 0 0 −χ−1

−2ikAneq
z φ′ b0neq

z Ak2 0

⎞
⎟⎟⎠,

(12)

where κφ′ = (K̄1 − χb2
0)[2(K2 + χb2

0) − K̄1]/K2. When the
staggered order parameter lies on the film plane (neq

z =
0), the effective Hamiltonian [Eq. (12)] is divided by
two block-diagonal matrices for two basis functions, ψ1 =
(δθ, ξφ ) and ψ2 = (δφ, ξθ ), which have eigenvalues ε1(k) =√

[Ak2 + κφ′]/χ and ε2(k) =
√

Ak2/χ , respectively [30]. The
former and the latter describe the gapful spin wave and the
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FIG. 3. Spin-wave dispersion of easy-cone antiferromagnets ob-
tained from Eq. (12) (a) for several spin chiralities φ′ and (b) for
several magnetic fields b0. Both gapless and gapful spin waves ex-
hibit nonreciprocity. For (a), K2 = 1.71 × 106 erg/cm3 and b0 = K1

are used. For (b), K2 = 1.71 × 106 and φ′a = 0.1 are used.

gapless spin wave, respectively, of easy-plane antiferromag-
nets. By turning on φ′ and neq

z , these basis functions hybridize,
and the eigenvalues are disturbed. In our model, the spin-wave
nonreciprocity is generated when φ′, neq

z , and b0 are all finite,
as discussed below.

To obtain the spin-wave dispersion numerically, we
adopt the same parameters as in the easy-cone ferromag-
net case: A = 3.7 × 10−7 erg/cm, a = 1.23 nm, s/h̄ =
0.65 × 1022 cm−3, θ = 0.3, and K1 = 2.9 × 106 erg/cm3. In
Figs. 3(a) and 3(b), we show the spin-wave dispersion for
different spin chiralities φ′ and magnetic fields b0 when neq

z

is finite. When φ′, b0, and neq
z are all finite, both the upper

and lower bands are asymmetric, and the spin-wave nonre-
ciprocity increases with φ′ and b0. This is our second main
result: the nonlocal spin-current injection into an easy-cone
antiferromagnet generates the nonreciprocity in both gapless
and gapful spin waves when the magnet is subjected to an
external field.

IV. THERMAL RECTIFICATION

The asymmetric spin-wave dispersion can give rise to
the nonreciprocal heat transport, i.e., thermal rectification,
as a nonlinear effect of the temperature gradient [62,63].
Within the framework of the Boltzmann transport, the thermal
conductivities are obtained for nonreciprocal spin waves in
easy-cone ferromagnets and easy-cone antiferromagnets. Al-
though the two-fluid description [38,64] can be invoked for the
complete characterization of thermal transport, we consider
heat transport only by thermal magnons. To this end, we
consider the Boltzmann transport equation in the relaxation
time approximation

∂g

∂t
+ v

∂g

∂x
+ k̇

∂g

∂k
= −g − g0

τ
, (13)

where τ is the relaxation time and g and g0(ε, T ) = (eε/kBT −
1)−1 are nonequilibrium and equilibrium distribution func-
tions, respectively. Because we are interested in a stationary
g (i.e., ∂t g = 0) when only the temperature gradient is given
for the sample, the Boltzmann equation reduces to

v
∂g

∂x
= −g − g0

τ
. (14)

FIG. 4. The second-order thermal conductivities [Eq. (18)] as
a function of the chirality φ′a. (a) and (b) show the second-order
thermal conductivities κ2 and κ̃2 in the ferromagnetic model, respec-
tively. (c) and (d) show the second-order thermal conductivities κ2

and κ̃2 in the antiferromagnetic model, respectively.

Up to second order in the derivatives of the temperature T , the
nonequilibrium distribution function can be written as

g
(
ε, T, ∂xT, ∂2

x T
) = g0(ε, T ) + g1(ε, ∂xT )

+ g2(ε, (∂xT )2) + g̃2
(
ε, ∂2

x T
)
. (15)

By substituting the distribution function (15) into the Boltz-
mann equation (14), we obtain

g1 = −vτ
∂g0

∂T

∂T

∂x
,

g2 = v2τ 2 ∂2g0

∂T 2

(
∂T

∂x

)2

,

g̃2 = v2τ 2 ∂g0

∂T

∂2T

∂x2
. (16)

The heat flux through the sample is

jheat =
∫

dkε(k)v(k)g
(
ε, T, ∂xT, ∂2

x T
)
, (17)

where the k integral is over the first Brillouin zone. Substitut-
ing Eqs. (16) into Eq. (17), we have jheat = −κ1(∂xT /T ) +
κ2(∂xT/T )2 + κ̃2(∂2

x T /T ), where

κ1 =
∫

dkε(k)v(k)2τ

(
T

∂g0

∂T

)
,

κ2 =
∫

dkε(k)v(k)3τ 2

(
T 2 ∂2g0

∂T 2

)
,

κ̃2 =
∫

dkε(k)v(k)3τ 2

(
T

∂g0

∂T

)
.

(18)

Here, κ2 and κ̃2 are the second-order thermal conductivities
that result in the thermal rectification. For a quantitative esti-
mation, we use the following parameters: sample length L =
1 μm, the temperature difference across the sample δT /T =
10−2, and the spin-wave relaxation time 1/τ = 105 s−1 [65].
In Fig. 4, we show the second-order thermal conductivities (κ2

and κ̃2) as functions of the spin chirality. The second-order
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FIG. 5. (a) Schematic illustration of the nonreciprocal ther-
mal transport. The thermal rectification ratio of the magnons rmag

[Eq. (19)] (b) in the ferromagnetic model (FM) and (c) in the antifer-
romagnetic model (AFM). For (b), K2 = 1.9 × 106 erg/cm3 is used.
For (c), K2 = 1.71 × 106 erg/cm3 and b0 = K1 are used.

thermal conductivities increase with the spin chirality and
result in the nonreciprocal thermal transport.

For the nonreciprocal thermal transport, we define the ther-
mal rectification ratio:

rmag = jheat (∂xT > 0) − jheat (∂xT < 0)

jheat (∂xT > 0) + jheat (∂xT < 0)
. (19)

Figure 5 shows the thermal rectification ratio for easy-cone
ferromagnets and antiferromagnets for the linear temperature
gradient, which increases as the chirality φ′a increases and is
higher in antiferromagnets than in ferromagnets.

V. DISCUSSION

We have shown that the injected spin current generates
a chiral spin texture inside easy-cone ferromagnets and an-
tiferromagnets and spin waves on top of it exhibit finite
nonreciprocity. We note three features of the obtained non-
reciprocal spin waves. First, the spin-wave nonreciprocity can
be induced without an external field in easy-cone ferromag-
nets, in contrast to the previously known case of easy-plane
ferromagnets where an external field is required [34–38].
Second, the nonreciprocity in spin waves is generated by
electrically injecting chirality into nonchiral magnets and thus
allows for dynamical manipulation. Last, due to the gapless
nature of the nonreciprocal spin waves, the nonreciprocal ther-
mal transport can be large at sufficiently low temperatures. We
remark that the nonreciprocal spin-wave transport can also be
examined by other methods such as spin-wave spectroscopy
[6,7,18] and Brillouin light scattering [14,15].

We would like to discuss two issues related to the material
realization. First, although the magnetic anisotropy parame-
ters of the insulating easy-cone magnets are not characterized
well, recent studies have shown that magnetic anisotropy
is controllable using epitaxial strain in magnetic insulators
[60,66,67], suggesting large tunability of material parameters
for insulating magnets. Second, the spin-orbit coupling or
dipolar interaction can violate the U(1) symmetry and gen-
erate in-plane magnetic anisotropy, by which the ground state

would be modified to an array of domain walls carrying a spin
current [23,26,31,52,68,69]. It is expected that the spin-wave
nonreciprocity can be induced in the array of domain walls,
but the thermal-transport efficiency is suppressed exponen-
tially with temperature due to the magnon gap.

We would also like to mention that the need to maintain
the current in heavy metals (shown in Fig. 1 in our setup)
to sustain the spin-wave nonreciprocity in our model can be
obviated by replacing the heavy metals with metallic fer-
romagnets exhibiting a finite spin Hall effect [70–75] with
easy-axis anisotropy along the y axis, wherein the exchange
field from the metallic magnet can fix the boundary magne-
tizations and thereby prevent the injected chiral texture from
unwinding under favorable conditions.
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APPENDIX A: STEADY-STATE SOLUTION
OF THE FERROMAGNET

Here, we discuss the dynamic steady state that carries a
finite spin supercurrent. The classical dynamics of the unit
vector is described by the Landau-Lifshitz-Gilbert equation

ṅ + αn × ṅ = 1

s
n × (

A∂2
x n + K1nzẑ − 2K2n3

z ẑ
)
. (A1)

In the spherical coordinate, we have

s sin θφ̇ + αsθ̇ = Aθ ′′ + [K1 − K2(1 + cos 2θ )

+ A(φ′)2] cos θ sin θ,

s sin θ θ̇ − αs sin2 θφ̇ = −A[(sin2 θ )φ′]′. (A2)

For the zero Gilbert damping case (α = 0), the last line of
Eq. (A2) is the continuity equation of the spin current density
Js

z = −A sin2 θφ′ and the spin density snz = s cos θ [30,54].
We are interested in the nonequilibrium steady state close to
the ground state θ = θc and φ′ = 0. A steady-state solution
can be obtained by taking an ansatz such that θ (x, t ) = θc.
Then, from Eq. (A2), we have

φ̇ = cos θc

s
[K1 − K2(1 + cos 2θc) + A(φ′)2] ≡ �,

φ′(x) = αs

A
�x + φ′(0), (A3)
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which leads to φ(x, t ) = φ(x) + �t . The effects of the spin
current injection from sandwiching the magnet with heavy
metals is captured by the boundary conditions [31,54]

(Js
L )z = sin2 θc( jLϑ − γL�),

(Js
R)z = sin2 θc( jRϑ + γR�), (A4)

where ϑ is the coefficient for the dampinglike torque, which
is related to the effective interfacial spin Hall angle θ via
ϑ ≡ h̄ tan θ/2etN [50], and γ (≡ h̄g↑↓/4π ) is the renormalized
spin-mixing conductance.

The loss of the spin supercurrent by spin dissipation in a
ferromagnet of length L is given by

�Js
z = (

Js
L

)
z
− (

Js
R

)
z

= sin2 θc[( jL − jR)ϑ − (γL + γR)�]. (A5)

This is equivalent to

�Jz
s = −A sin2 θc

[
αs

A
�x

]0

L

= αs�L sin2 θc. (A6)

By using Eqs. (A5) and (A6), we have

� = ( jL − jR)ϑ

2γ + γα

, (A7)

where γα = αsL. The rotation frequency depends on the elec-
trical circuit configuration. For a series configuration, jR =
− jL; then

�series = jϑ

γ + γα/2
. (A8)

For a parallel configuration, jR = jL = j; then

�parallel = 0. (A9)

In the parallel configuration (� = 0), from the last line of
Eq. (A2) and the first line of Eq. (A4), we have

(Js
L )z = −A sin2 θcφ

′ = sin2 θc jϑ, (A10)

which leads to φ′(x) = − jϑ
A ≡ φ′. Also, from Eq. (A3), we

obtain the quasiequilibrium angle

θc = 1

2
cos−1

(
K1 − K2 + A(φ′)2

K2

)
. (A11)

Note that the effect of φ′ renormalizes K1 to K1 + A(φ′)2.

APPENDIX B: SPIN-WAVE DISPERSION CONTINUUM MODEL DESCRIPTION

1. Easy-cone ferromagnet

We start from the continuum model Hamiltonian of the easy-cone ferromagnet

H =
∫

d3x{A[∇n(x)]2 − K1nz(x)2 + K2nz(x)2}/2, (B1)

where K1(> 0) is the easy-axis anisotropy and K2(> 0) is the second-order anisotropy. The static spin texture is n0(x) =
s( sin θc cos φ(x), sin θc sin φ(x), cos θc), where φ(x) = φ0 + φ′x. To investigate the spin-wave dynamics on the static spin
texture, we divide n into the static profile n0(x) and the small spin fluctuations δn. Then we have following equation of motion:

δṅ = −1

s
(n0 + δn) × [−A∂2

x (n0 + δn) − K1(n0,z + δnz )ẑ + 2K2(n0,z + δnz )3ẑ
]
. (B2)

In the spherical coordinates, we have

δn = nθ θ̂ + nφφ̂, δnz = − sin θcnθ , ẑ = cos θcn̂ − sin θcθ̂. (B3)

Applying the steady-state solution θ ′ = θ ′′ = 0, φ′′ = 0, we have

−A(φ′)2 − K1 + 2K2 cos2 θc = 0 (B4)

and

sṅθ = −An′′
φ − 2A cos θcφ

′n′
θ + A cos2 θc(φ′)2nφ + K1 cos2 θcnφ − 2K2 cos4 θcnφ,

sṅφ = An′′
θ − 2A cos θcφ

′n′
φ − A cos(2θc)(φ′)2nθ − K1 cos 2θcnθ + 2K2 cos4 θcnθ − 6K2 sin2 θc cos2 θc. (B5)

The zeroth-order equation [Eq. (B4)] describes the quasiequilibrium profile

θc = 1

2
cos−1

[
K̄1 − K2

K2

]
, (B6)

where K̄1 = K1 + A(φ′)2 is the renormalized easy-axis anisotropy. Inserting Eq. (B6) into Eq. (B5), we have

sṅθ = −An′′
φ − A

√
2K̄1

K2
φ′n′

θ ,

sṅφ = An′′
θ − Kφ′nθ − A

√
2K̄1

K2
φ′n′

φ, (B7)
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where Kφ′ = K̄1(2K2 − K̄1)/K2. Inserting n ∝ ei(kx−ωt ), we have

−isωnθ = Ak2nφ − ik

⎛
⎝A

√
2K̄1

K2
φ′

⎞
⎠nθ

−isωnφ = −(
Ak2 + Kφ′

)
nθ − ik

⎛
⎝A

√
2K̄1

K2
φ′

⎞
⎠nφ. (B8)

In a simplified form, we write

−isω′nθ = Cnφ, −isω′nφ = −Dnθ , (B9)

where sω′ = sω − k(A
√

2K̄1
K2

φ′) and

C = Ak2, D = Ak2 + Kφ′ . (B10)

Thus, we obtain

sω′ =
√

CD → sω =
√

Ak2[Ak2 + Kφ′] + k

⎛
⎝A

√
2K̄1

K2
φ′

⎞
⎠. (B11)

2. Easy-cone antiferromagnet

The effective Lagrangian density of the easy-cone antiferromagnet is [30]

LAFM = sm · (n × ṅ) − A

2
(∂in)2 − m2

2χ
+ K1

2
n2

z − K2

2
n4

z − b · m, (B12)

where n and m are the two slow continuum fields, which parametrize the staggered (Néel) and smooth (magnetic) components
of the spins, respectively. χ = a2

A is the spin susceptibility, A is the exchange stiffness of the Néel order, K1 > 0 and K2 > 0 are
the first- and second-order anisotropy energy densities, and b is the external magnetic field. By minimizing the action with two
constraints, |n| = 1 and n · m = 0, we obtain the equations of motion

sṅ = 1

χ
(m × n) + b × n,

sṁ = An × ∇2n + K1nz(n × ẑ) − 2K2n3
z (n × ẑ) + b × m. (B13)

Since |n| = 1 and n · m = 0, we can choose n = n̂, m = mθ θ̂ + mφφ̂. In Cartesian coordinates, we have n =
(sin θ cos φ, sin θ sin φ, cos θ ) and m = (mθ cos θ cos φ − mφ sin φ, mφ cos φ + mθ cos θ sin φ,−mθ sin θ ).

For b = −b0ẑ, we have the equilibrium solution of the uniform state:

mθ = −χb0 sin θ, mφ = 0, θc = 1

2
cos−1

(
K1 − K2 − b2

0χ

K2

)
. (B14)

When the spin currents are injected from the left and right leads (parallel configuration), we have the static texture of the
Néel vector: n0(x) = s( sin θc cos φ(x), sin θc sin φ(x), cos θc), where φ(x) = φ0 + φ′x. In this case, the equilibrium solution is
modified as

mθ = −χb0 sin θ, mφ = 0, θc = 1

2
cos−1

(
K1 + A(φ′

0)2 − K2 − b2
0χ

K2

)
. (B15)

Note that φ′ renormalizes K1 to K̄1 = K1 + A(φ′)2. To obtain the spin-wave solution, we consider small deviations from the
equilibrium solution:

mθ = −χb0 sin θ + ξθ , mφ = ξφ, θ = θc + δθ, φ = φ0(x) + δφ. (B16)
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Expanding Eq. (B13) up to linear order in ξθ , ξφ , δθ , and δφ, we have

sδθ̇ = χ−1ξφ, sδφ̇ = − ξθ

χ sin θc
− b0 cot θcδθ,

sξ̇θ = −A sin θc∇2δφ − 2A cos θcφ
′∂x(δθ ) + b0 cos θcξφ,

sξ̇φ = A∇2δθ − A sin(2θc)φ′∂x(δφ) − 2b0 cos θcξθ − κφ′δθ, (B17)

where

κφ′ = (K̄1 − χb2
0)[2(K2 + χb2

0) − K̄1]

K2
. (B18)

Replacing δφ with δφ/sin θc, we have

sδθ̇ = χ−1ξφ, sδφ̇ = −χ−1ξθ − b0neq
z δθ,

sξ̇θ = −A∇2δφ − 2Aneq
z φ′∂x(δθ ) + b0neq

z ξφ,

sξ̇φ = A∇2δθ − 2Aneq
z φ′∂x(δφ) − 2b0neq

z ξθ − κφ′δθ, (B19)

where neq
z = cos θc. Applying ψ ∼ ψei(kx−ωt ), we obtain

−isωδθ = χ−1ξφ, −isωδφ = −χ−1ξθ − b0neq
z δθ,

−isωξθ = Ak2δφ − 2ikAneq
z φ′δθ + b0neq

z ξφ,

−isωξφ = −Ak2δθ − 2ikAneq
z φ′δφ − 2b0neq

z ξθ − κφ′δθ. (B20)

Then,

ω

⎛
⎜⎝

δθ

ξφ

δφ

ξθ

⎞
⎟⎠ = i

s

⎛
⎜⎜⎝

0 χ−1 0 0
−Ak2 − κφ′ 0 −2ikAneq

z φ′ −2b0neq
z

−b0neq
z 0 0 −χ−1

−2ikAneq
z φ′ b0neq

z Ak2 0

⎞
⎟⎟⎠

⎛
⎜⎝

δθ

ξφ

δφ

ξθ

⎞
⎟⎠. (B21)

APPENDIX C: HOLSTEIN-PRIMAKOFF MAGNON DESCRIPTION

1. Easy-cone ferromagnet

The lattice model Hamiltonian for the easy-cone ferromagnet under the magnetic field is

H = −J
∑

i

Si · Si+1 − K1

2

∑
i

(
Sz

i

)2 + K2

2

∑
i

(
Sz

i

)4 − b
∑

i

Sz
i . (C1)

Let a be a lattice constant. When the spin texture is given by S0,i = S(sin θ0 cos φi, sin θ0 sin φi, cos θ0), with φi = (φ′a)i + φ0,
the quasiequilibrium polar angle θ0 can be obtained by minimizing

H

N
= − JS2[sin2 θ0 cos(φ′a) + cos2 θ0] − K1

2
S2 cos2 θ0 + K2

2
S4 cos4 θ0 − bS cos θ0, (C2)

where N is the total number of spins.
To examine a small spin fluctuation in the quasiequilibrium spins, it is convenient to introduce local primed coordinate

systems for each spin in which the spins are along the z′ axis. That is, S′
0,i = RiS0,i = S(0, 0, 1)T , where

Ri = Ry(−θ0)Rz(−φi ) =
⎛
⎝cos θ0 cos φi cos θ0 sin φi − sin θ0

− sin φi cos φi 0
sin θ0 cos φi sin θ0 sin φi cos θ0

⎞
⎠. (C3)

We can get the Hamiltonian in the new coordinate system by substituting S0,i = R−1
i S′

0,i into H . We neglect the S′
x, S′

y, S′
xS′

z, and
S′

yS′
z terms, which do not contribute to the spin-wave dynamics.
We can apply the Holstein-Primakoff transformation with the large-S limit to examine the low-energy physics:

S′A
i,x =

√
S

2
(a†

i + ai ), S′A
i,y = i

√
S

2
(a†

i − ai ), S′A
i,z = S − a†

i ai, (C4)
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where a and b are bosonic operators. After employing the Holstein-Primakoff transformation and the Fourier transformation
ai = 1√

N

∑
k akeik·ri , we get

H =
∑

k

{
Aka†

kak + 1

2
Bka†

ka†
−k + 1

2
B∗

kaka−k

}
, (C5)

where

Ak = cos θ0(b + 2JS sin kxa sin φ′a) − JS cos kxa [cos φ′a (1 + cos2 θ0) + sin2 θ0]

+ 1
8 S{8J + 2K1 − 3K2S2 + (8J + 6K1 − 8K2S2) cos 2θ0 − 5K2S2 cos 4θ0 + 16J cos φ′a sin2 θ0}

Bk = 1
2 S sin2 θ0{−K1 + 3K2S2 + 2eikxaJ (cos φ′a − 1) + 3K2S2 cos 2θ0}. (C6)

We now have to perform the Bogoliubov transformation. First, let us introduce ψk = (ak, a†
−k )T and rewrite Hk in matrix

form: H = 1
2

∑
k ψ

†
kHkψk, where Hk = (

Ak Bk
B∗

k A−k
). Let J = (

1 0
0 −1). It is known that when Hk is positive definite, if we

denote the two eigenvalues of JHk by εk,1 and εk,2, then εk,1 = −εk,2 > 0, and the eigenvalues of Hk are given by εk,1 −
ε−k,2. Since εk,1/2 = 1

2 (Ak − A−k ±
√

(Ak + A−k )2 − 4|Bk|2), the magnon dispersion relation is given by h̄ω = 1
2 (Ak − A−k +√

(Ak + A−k )2 − 4|Bk|2).

2. Easy-cone antiferromagnet

The lattice model Hamiltonian for the easy-cone antiferromagnet is

H = J
∑

i

Si · Si+1 − K1

2

∑
i

(
Sz

i

)2 + K2

2

∑
i

(
Sz

i

)4 − b
∑

i

Sz
i . (C7)

Here, we assume that the lattice is bipartite, i.e., has two sublattices, A and B. When a spin texture is given by S0,i =
S(sin θ0 cos φi, sin θ0 sin φi, cos θ0), with φi = (φ′a)i + φ0, the quasiequilibrium polar angles θA and θB on each sublattice can be
obtained by minimizing

H

N
= 2JS2(sin θA sin θB cos �φ + cos θA cos θB) − K1

2
S2(cos2 θA + cos2 θB)

+ K2

2
S4(cos4 θA + cos4 θB) − bS(cos θA + cos θB), (C8)

where N is the total number of spins in each sublattice.
We introduce the local coordinate systems in which the spins are along the z′ axis. Here, we have to rotate separately the spins

of each sublattice A and B by the polar angles θA and θB, respectively. Next, we apply the Holstein-Primakoff transformation
with two independent bosonic species, ai for i ∈ A and bi for i ∈ B:

S′A
i,x =

√
S

2
(a†

i + ai ), S′A
i,y = i

√
S

2
(a†

i − ai ), S′A
i,z = S − a†

i ai,

S′B
i,x =

√
S

2
(b†

i + bi ), S′B
i,y = i

√
S

2
(b†

i − bi ), S′B
i,z = S − b†

i bi. (C9)

After employing the Holstein-Primakoff transformation and the Fourier transformation ai = 1√
N

∑
k akeik·ri and bi =

1√
N

∑
k bkeik·ri , we obtain

H =
∑

k

{Aa†
kak + Bb†

kbk + Ck(akb−k + a†
kb†

−k ) + Dk(a†
kbk + akb†

k ) + E (aka−k + a†
ka†

−k ) + F (bkb−k + b†
kb†

−k )}, (C10)

where

A = −2K2S3 cos4 θA + (b − 2JS cos θB) cos θA + S(K1 + 3K2S2 sin2 θA) cos2 θA

− 1
2 S sin θA(K1 sin θA + 4J cos �φ sin θB),

B = −2K2S3 cos4 θB + (b − 2JS cos θA) cos θB + S(K1 + 3K2S2 sin2 θB) cos2 θB

− 1
2 S sin θB(K1 sin θB + 4J cos �φ sin θA),

Ck = JS{(cos θA − cos θB) sin kxa sin �φ + cos kxa [cos �φ(cos θA cos θB − 1) + sin θA sin θB]},
Dk = JS{−(cos θA + cos θB) sin kxa sin �φ + cos kxa [cos �φ(cos θA cos θB + 1) + sin θA sin θB]},
E = 1

4 S(−K1 + 6K2S2 cos2 θA) sin2 θA,

F = 1
4 S(−K1 + 6K2S2 cos2 θB) sin2 θB. (C11)
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Let us introduce ψk = (ak, bk, a†
−k, b†

−k )T . The Hamiltonian then can be written in matrix form: H = 1
2

∑
k ψ

†
kHkψk, where

Hk =

⎛
⎜⎝

A Dk 2E Ck
Dk B C−k 2F
2E C−k A D−k
Ck 2F D−k B

⎞
⎟⎠. (C12)

When Hk is positive definite, we can use the same J matrix that we used for the easy-cone ferromagnet. In this case, J =
(
I2×2 0

0 −I2×2
). If we denote the eigenvalues of JHk by εk,1, εk,2, εk,3, and εk,4 in descending order, the two magnon bands are

then given by 1
2 (εk,1 − ε−k,4) and 1

2 (εk,2 − ε−k,3).
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