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Dephasing-enhanced performance in quasiperiodic thermal machines
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Understanding and controlling quantum transport in low-dimensional systems is pivotal for heat management
at the nanoscale. One promising strategy to obtain the desired transport properties is to engineer particular
spectral structures. In this work we are interested in quasiperiodic disorder—incommensurate with the under-
lying periodicity of the lattice—which induces fractality in the energy spectrum. A well known example is the
Fibonacci model which, despite being noninteracting, yields anomalous diffusion with a continuously varying
dynamical exponent smoothly crossing over from superdiffusive to subdiffusive regime as a function of potential
strength. We study the finite-temperature electric and heat transport of this model in linear response in the
absence and in the presence of dephasing noise due to inelastic scattering. The dephasing causes both thermal
and electric transport to become diffusive, thereby making thermal and electrical conductivities finite in the
thermodynamic limit. Thus, in the subdiffusive regime it leads to enhancement of transport. We find that the
thermal and electric conductivities have multiple peaks as a function of dephasing strength. Remarkably we
observe that the thermal and electrical conductivities are not proportional to each other, a clear violation of the
Wiedemann-Franz law, and the position of their maxima can differ. We argue that this feature can be utilized
to enhance performance of quantum thermal machines. In particular, we show that by tuning the strength of
the dephasing noise we can enhance the performance of the device in regimes where it acts as an autonomous
refrigerator.
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I. INTRODUCTION

The progressive miniaturization of technology has boosted
the search for quantum devices beyond semiconductors that
would improve the micromanagement of heat in solid state
devices [1]. The premise on which most solid state physics
is based is the notion of periodicity. This gives rise to a band
structure and, due to translational symmetry, extended single
particle states known as Bloch waves. This picture is modified
due to the inevitable presence of disorder. In mesoscopic
physics the interplay between transport and disorder is well
studied and in particular this interplay has been shown to
enhance the thermoelectric performances of disordered low-
dimensional systems [2–15].

A special type of disorder is represented by quasiperiodic
potentials, incommensurate with the underlying periodicity of
the lattice [16–18]. These systems, often called quasicrystals,
are known to possess highly nontrivial singular continuous
spectra with fractal structure [19], which leads to the appear-
ance of critical states [20,21] which are neither extended nor
localized. These unique spectral features can in fact induce
localization and anomalous transport without the presence
of interactions [22–28]. Perhaps the most celebrated exam-
ple is the Aubry-André-Harper (AAH) model [29,30] which
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displays a transition from a completely delocalized to a com-
pletely localized phase at a finite potential strength. At the
critical point the transport is known to be anomalous [31].
The AAH model has a wide range of generalizations [32–36],
where the localization transition can become energy depen-
dent due to a mobility edge. A closely related model, which
is topologically connected to the AAH model [37,38], is the
Fibonacci model where the lattice energies are generated by
a substitution rule. The Fibonacci quasicrystal has unusual
properties such as a critical energy spectrum across all en-
ergy scales [22,39–41], without a localization transition. This
spectral criticality gives rise to anomalous transport exponents
varying continuously with the potential strength, so that it is
possible to tune the transport regime from superdiffusive to
subdiffusive [26,40,42–44].

Quasiperiodic quantum systems and their spectra have
been intensely studied in pure mathematics [16,45], but are
also relevant for a strikingly diverse range of physical sys-
tems. Quasiperiodic models have also been shown to offer
potential applications in quantum heat management, e.g.,
as rectifiers [46–48] or as highly efficient working media
for thermoelectric engines [15]. Beside being recently iden-
tified in compounds found in meteors [49,50], they arise
in experiments with ultracold atomic gases [51–54], and
photonics [37,55–58], where the effective potential is mod-
ulated to be quasiperiodic by tuning respectively the wave
vectors of overlapping optical lattices and the refraction in-
dices of coupled waveguide arrays. Moreover, quasiperiodic
arrangements of nucleotides in synthetic DNA molecules
have been proposed to realize nanoelectric devices [59,60].
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In single DNA molecules, transport is characterized by a
concurrence of coherent and incoherent mechanisms, deter-
mined by the interaction between conducting electrons and
“environmental” degrees of freedom such as the other elec-
trons, nuclei, or the solvent [61–64]. These many-body effects
collectively introduce noise that might consist of loss of
phase coherence, and momentum and energy exchange. It
has been demonstrated in various contexts that this noise
from the environment can assist transport. The examples of
such environmental assisted or dephasing-enhanced transport
include natural photosynthetic complexes [65–71], molec-
ular junctions [72–74], photonic crystals [75–77], trapped
ions [78,79], and also boundary-driven spin chains at infinite
temperature [44,80,81]. However, the implications of this ef-
fect for thermoelectricity—an intrinsically finite-temperature
phenomenon—have received comparatively little attention.
Here we ask if the inevitable presence of dephasing noise due
to inelastic scattering can be used to enhance thermoelectric
performance of quasicrystals.

In particular, we investigate steady-state thermoelectric
transport in the Fibonacci model in the presence of both
temperature and chemical potential bias. We find that the
anomalous transport behavior observed previously at infi-
nite temperature survives at finite temperatures in both the
electric and thermal transport. However, noise in the form
of incoherent inelastic scattering, leading to dephasing and
energy relaxation, causes the system to lose the anomalous
behavior by making transport diffusive. We study the electric
and thermal conductivities, well-defined and finite only for
diffusive transport, as a function of the dephasing strength.
We demonstrate that the conductivities can be enhanced by
bulk incoherent effects including phase loss and energy ex-
change in the subdiffusive regime of the Fibonacci model
at finite temperature. Interestingly we find that the optimal
dephasing strength may be markedly different for the electric
and thermal conductivities. This constitutes a clear violation
of the Wiedemann-Franz law, which says the thermal and the
electric conductivities at a given temperature are proportional
to each other. In fact, we find that the Wiedemann-Franz law
is violated for a wide range of dephasing strengths, despite
the transport being diffusive. We argue that this dephasing-
induced discrepancy between electric and heat transport can
be exploited to improve the performance of autonomous heat
engines and refrigerators. In particular, we demonstrate that,
in certain parameter regimes, the dephasing noise from inelas-
tic scattering can simultaneously enhance both the cooling
rate and the coefficient of performance of an autonomous
refrigerator with the Fibonacci quasicrystal as a working
medium.

The outline of the paper is as follows. In Sec. II we intro-
duce the Fibonacci model. In Sec. III we discuss how electric
and thermal transport can be classified in the presence of
both temperature and chemical potential biases. In Sec. IV
we investigate the anomalous transport properties of the Fi-
bonacci model in the coherent regime, i.e., in the absence of
inelastic scattering. In Sec. V we explore the effect of inco-
herent inelastic scattering on electric and thermal transport
properties in the framework of Büttiker probes. In Sec. VI
we discuss how the highly nontrivial transport properties
of the Fibonacci model in the presence of dephasing noise

from inelastic scattering can be used to enhance refrigeration
in the device in certain favorable thermodynamic configura-
tions. Finally, we summarize and draw our conclusions in
Sec. VII.

II. FIBONACCI MODEL

In this work we focus on a specific example from the family
of quasiperiodic systems, the Fibonacci model [22,40]. We
take a one-dimensional (1D) tight-binding chain of noninter-
acting fermions, described by the following Hamiltonian:

ĤF =
N−1∑
n=1

t (â†
nân+1 + H.c.) +

N∑
n=1

unâ†
nân, (1)

with t the tunneling constant and ân the fermionic an-
nihilation operator of site n. The on-site energies un are
alternatively chosen between two values (uA, uB) according to
a Fibonacci substitution rule. The total collection of values
Ck = [u1, u2, . . . , uk] for a chain of size Fk is obtained by
iterating k times the transformation

uA → uAuB, (2)

uB → uA. (3)

Equivalently, it can be generated by concatenation of
two smaller chains Ck = [Ck−1,Ck−2], starting from C0 =
[uB], C1 = [uA]. As a consequence, the length of every
chain Ck is a number from the Fibonacci sequence Fk ∈
{1, 1, 2, 3, 5, 8, . . . }. Particles in the model are subject to
quasiperiodic disorder, which is deterministic and not ran-
dom, but represents the closest example to periodicity [21,27].
Quasiperiodic systems cannot be generated by repeating a
smaller unit cell, yet in the indefinitely extended limit the
frequency at which the same values of the potential occurs has
a definite limit: in this example, the frequency of uB relative to
uA becomes τ in the limit k → ∞, with τ = (1 + √

5)/2 the
golden ratio [82]. For this reason, quasiperiodic lattices are
often considered as periodic systems with an infinite period
[17].

Results for quasiperiodic systems are dependent on the
choice of system sizes [25,31,83]. For the Fibonacci poten-
tial in particular, they depend on how different N is from
a Fibonacci number. To reduce this dependence on choice
of system sizes, we use the averaging procedure adopted in
Refs. [39,42,43]. In order to treat arbitrary lengths N which
do not belong to the Fibonacci sequence, we cut finite sam-
ples of length N out of a long Fibonacci potential sequence
Ck , with k such that Fk � N . After discarding the exam-
ples which are reflection-symmetric around the center of the
chain and their symmetric partners, there exist N/2 [or (N −
1)/2 if N is odd] samples with nonequivalent energy spectra
available to average over. This averaging procedure also re-
stores effective translational invariance in the thermodynamic
limit.
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III. CLASSIFICATION OF TRANSPORT IN THE
PRESENCE OF BOTH TEMPERATURE AND

VOLTAGE BIASES

In the linear response regime, electric and heat currents Je

and Jq, respectively, can be rewritten as linear combination of
the driving biases [84–87],

Je = G�μ/e + GS�T, (4)

Jq = G ��μ/e + (K + GS �)�T, (5)

with G and K , respectively, the electric and the heat con-
ductances, S the thermopower or Seebeck coefficient, and �

the Peltier coefficient, which in the presence of time-reversal
symmetry differs from S only by a factor of 1/T . The electric
and the thermal conductivities are given by

σ = lim
N→∞

σ (N ), σ (N ) = NG, (6)

κ = lim
N→∞

κ (N ), κ (N ) = NK. (7)

If the system-size scaling of the conductances is

G ∼ N−αG , K ∼ N−αK , (8)

we immediately see that the conductivities are well defined
and finite only if αG = αK = 1. This corresponds to normal
diffusive transport. Ballistic transport corresponds to the case
αG, αK = 0, whereas, if αG, αK < 1, the transport is called
anomalous superdiffusive. In both these cases, σ (N ) and κ (N )
diverge with N , so the conductivities are ill-defined. On the
other hand, if αG, αK > 1, the conductivities are zero, and
this corresponds to anomalous subdiffusive transport. If G, K
decay exponentially with system size, instead of a power law,
it signifies complete lack of transport. Thus, finite-size scaling
of the conductances G and K can be used to characterize the
nature of electric and heat transport.

IV. ANOMALOUS COHERENT TRANSPORT

We first reproduce this regime of anomalous transport in
the absence of dephasing within Landauer’s framework for a
two-terminal device. In the Fibonacci model, the quasiperi-
odicity of the potential induces a multifractal spectrum at
every uA and uB [20,39], meaning that a self-similar struc-
ture emerges at different energy scales. Therefore, one may
assume control over a single parameter uA = −uB = u with-
out loss of generality. It is known that multifractality yields
anomalous behavior in the Fibonacci model when transport
is coherent: currents scale with system size as power laws
J ∼ 1/Nα , where the exponent α varies continuously with u,
from superdiffusive (α < 1) to subdiffusive (α > 1) behavior
through normal diffusion (α = 1) [24,25,40]. However, exist-
ing calculations focus on the infinite temperature case, and
surprisingly, to our knowledge, the survival of this feature
has not been demonstrated at finite temperatures. Moreover,
the thermoelectric response of the Fibonacci model in the
presence of both temperature and chemical potential biases
has also not been explored before.

We consider a region of elastic scattering governed by the
Fibonacci Hamiltonian, which is connected at its boundaries
to metallic leads that are initially in thermal equilibrium at

temperatures TL, TR, and chemical potentials μL, μR. The total
Hamiltonian is

Ĥ = ĤF +
∑

ν

(Ĥν + ĤFν ), (9)

where ĤF is given in Eq. (1), and

Ĥν =
∑

λ

Eλν d̂†
λν d̂λν, (10)

with Eλν the single-particle eigenenergies of lead ν = L, R
and d̂λν the annihilation operators for the corresponding eigen-
modes λ. We connect the first site of the chain to the left lead,
and the last site to the right lead, assuming a bilinear coupling
of the form

ĤFL + ĤFR =
∑

λ

(tλLâ†
1d̂λL + tλRâ†

N d̂λR + H.c.), (11)

with tλL, tλR describing, respectively, the amplitude for elec-
trons to tunnel from left and right lead onto the wire. Each
bath is described by a spectral function

Jν (E ) = 2π
∑

λ

|tλν |2δ(E − Eλν ). (12)

We make use of the wide-band limit (WBL) approximation,
taking spectral functions that are identical and independent of
energy: Jν (E ) = γ , for ν = L, R. The nonequilibrium steady-
state electric Je and heat Jq currents can be obtained via the
Landauer-Büttiker integrals

Je = 2e

h

∫
dEτLR(E )[ fL(E ) − fR(E )], (13)

Jq = 2

h

∫
dE (E − μL )τLR(E )

× [ fL(E ) − fR(E )], (14)

where τLR(E ) gives the transmission probability from left
to right, the factor 2 indicates the spin degeneracy, fν (E ) =
{1 + exp[(E − μν )/kBTν]}−1 is the Fermi-Dirac distribution
of bath ν = L, R, with h and kB the Planck and Boltzmann
constants, and e is the elementary charge. The above results
give the electric and heat currents in the left lead. Similar
expressions hold for electric and heat currents in the right lead.
In general, the heat current in the left and in the right lead may
differ. However, in this work, we are interested in the linear re-
sponse regime where the chemical potential difference �μ =
μL − μR and the temperature difference �T = TL − TR are
small compared to the average T and μ. In this case, the two
heat currents can be considered to be approximately the same.

The details of the Hamiltonian are encoded in the transmis-
sion function τLR(E ), describing the probability for a particle
at energy E to be transferred from reservoir L to reservoir
R via the central system. We compute the transmission via
the retarded single particle nonequilibrium Green’s function
(NEGF), which is defined as

G(E ) =
[

E 1̂ − H −
∑

ν

�ν (E )

]−1

, (15)

where 1̂ is the N × N identity matrix, H is the N × N tridi-
agonal matrix defined by writing the system Hamiltonian as
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FIG. 1. Example of a zero-dephasing transmission function
τLR(E ) of a single Fibonacci chain realization of size N = 200, at
u = 2.0. In the inset we explicitly show the self-similarity of the
structure by zooming in on a portion of the energy axis.

ĤF = ∑N
n,m=1 Hnmâ†

nâm, and �ν (E ) is the N × N self-energy
matrix for the νth reservoir attached to the system. Af-
ter introducing the level-width functions �ν (E ) = i[�†

ν (E ) −
�ν (E )], the transmission function is computed from τLR(E ) =
Tr{�L(E )G†(E )�R(E )G(E )} [88–90]. In WBL approxima-
tion, self-energies are independent of energy. For our setup,
their representation on the lattice basis has only one nonzero
element each, given by [�L(E )]11 = [�R(E )]NN = −iγ /2. In
the following we work in a regime of intermediate system-
bath coupling, γ = t = 1. However, the choice of γ is largely
immaterial. It has previously been shown that within linear
response and WBL approximation, modifying γ in this setup
rescales the currents without qualitatively affecting the trans-
port behavior [15].

The Fibonacci model has a fractal spectrum, with criti-
cal single-particle eigenfunctions [22,39–41]. This fractality
of the spectrum is reflected on the transmission function
τLR(E ). An example of the transmission function for a chosen
value of Fibonacci potential strength is shown in Fig. 1. The
calculation of currents requires an integration over energy
of the transmission function multiplied by the Fermi-Dirac
distributions. Due to the near-discontinuous nature of the
transmission, this integration becomes challenging for large
system sizes. Nevertheless, the system sizes we have been able
to access are large enough to extract the asymptotic transport
exponents αG and αK . In Figs. 2(a) and 2(b) we show Je and
Jq as a function of system size N at different Fibonacci poten-
tial strengths u = 0.5, 1.0, 1.5, 2.0, 4.0. The thermodynamic
parameters are T = 1.0, �μ = 0.1, and �T = 0.1. We select
different chemical potentials for every value of u, since the
choice of μ along the energy axis affects only a prefactor in
the currents and not their scaling exponent, leaving the plots
qualitatively equivalent. We observe in Fig. 2(c) that the trans-
port exponents αG (blue dots) and αK (red stars) collapse onto
the same trend. In Fig. 2(d) we show that this data collapse
occurs independently of temperature. The Landauer-Büttiker
formalism has not only the advantage to allow the study of
charge and heat currents at finite temperature but in what
follows it will also allow us to study the effect of dephasing in
a systematic way by introducing Büttiker probes [91].
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FIG. 2. (a) and (b) Scaling of coherent heat and electric cur-
rents in the Fibonacci model with hopping parameter t = 1 and
coupling to the baths γ = 1 at different potential strengths u, indi-
cated in the color legend. The thermodynamic parameters are T = 1,
�T = 0.1, �μ = 0.1. The chemical potentials are, respectively, μ =
−2, −2.4, −2.8, −3.3, −5.2. (c) Scaling exponent extracted from
the electric G ∼ N−αG (blue dots) and thermal conductance K ∼
N−αK (red stars) associated with the currents in (a) and (b), at the
same parameters. The dashed line indicates the value of α at which
transport is diffusive. The error bars are given by the asymptotic error
in the fits. (d) Scaling exponents for G (dots) and K (stars) computed
in different thermodynamic configurations given by the colors in the
legend. We notice that they do not depend on the thermodynamic
configurations.

V. DEPHASING

A. Büttiker probes

The idea of introducing additional electron reservoirs as
probes to mimic dephasing noise was first described by
Büttiker [91], and then applied to extended conductors by
D’Amato and Pastawski [92,93]. The additional reservoirs
are treated as conventional baths, which receive particles and
reintroduce them into the central system after scrambling
their phase. The probes are “fictitious” in the sense that
their particle distributions are self-consistently determined in
such a way to mimic different types of incoherent scattering
processes, depending on the conditions implemented on the
currents. Incoherent elastic scattering, where the electrons
lose memory of their phase but conserve their energy, is recre-
ated by canceling the contribution to the electric current at
each energy with the so-called “dephasing probe” [72]. When
a chemical potential bias is applied to the system, incoherent
inelastic scattering is introduced by setting the net electric
currents towards each probe to zero, using a “voltage probe”
[62,94,95]. If a temperature bias is also present, we encode
nondissipative inelastic scattering by further canceling the
heat currents going in to the probes. In this case, the average
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transfer of charge and heat from and towards the probes is
zero, but single electrons exchange energy and momentum
besides losing phase coherence. In this work, we implement
this so-called “voltage-temperature probe” [61]. It should be
noted that this is fundamentally different from local pure
dephasing Lindblad dissipators, most often used in the context
of quantum information, which allow energy transfer even on
average.

The configuration to study incoherent transport can be then
described again by Eq. (9). However, the index ν covers now
both “real” left (L) and right (R) baths, and the N probes,
ν = L, R, 1, . . . , N . Each probe n = 1, . . . , N is a fermionic
bath with Hamiltonian analogous to Eq. (10) and a spectral
function analogous to Eq. (12), and is coupled to the nth site
of the chain through

ĤFn =
∑

λ

(tλnâ†
nd̂λn + H.c.), (16)

with tλn the amplitude for electrons to tunnel from the nth lead
onto the wire. The electric and heat currents flowing through
the system are given by the Landauer-Büttiker integrals in
Eqs. (13) and (14) extended to multiple terminals

Je = 2e

h

∑
ν

∫
dEτLν (E )[ fL(E ) − fν (E )], (17)

Jq = 2

h

∑
ν

∫
dE (E − μL )τLν (E )

× [ fL(E ) − fν (E )]. (18)

The collection of transmission functions τν ′ν (E ) is found via a
generalization of the NEGF approach to a multiterminal setup.
They are given by the following generalized formula [88–90]:

τνν ′ (E ) = Tr{�ν (E )G†(E )�ν ′ (E )G(E )}, (19)

where the retarded single particle nonequilibrium Green’s
function (NEGF) G(E ) was defined in Eq. (15). The indices
ν, ν ′ = L, R, 1, . . . , N here run over the real left (L) and
right (R) baths, and the Büttiker probes (1, . . . , N). The self-
energies of Eq. (15) associated with the probes (ν = 1, . . . , N)
are given in WBL approximation by one constant nonzero
element matrices when in lattice basis [�n(E )]nn = −iγd/2.
In the following we will refer to the system-probe coupling
parameter γd as “dephasing strength.” However, as mentioned
at the beginning of this section, the conditions implemented
on the currents mimic incoherent inelastic scattering events,
leading to energy relaxation (at single electron level, but not
on average) beside the loss of phase coherence. Given the
WBL approximation and the structure of the bilinear coupling
with the central system in Eqs. (16) and (11), the generalized
transmission functions can be simplified as

τLR(E ) = γ 2 |[G(E )]1N |2, (20)

τnL(E ) = γ γd |[G(E )]n1|2, (21)

τnR(E ) = γ γd |[G(E )]nN |2, (22)

τnn′ (E ) = γ 2
d |[G(E )]nn′ |2. (23)

We assign τνν (E ) = 0, since these terms do not contribute
to the currents, and τνν ′ (E ) = τν ′ν (E ), since the tunneling
process is symmetric. However, the number of transmissions
to compute at every energy E grows as N2, limiting our
study to N ∼ 200. Despite this we find that our numerics are
well converged at this system size and allow for an accurate
extraction of transport exponents.

The only formal difference between real baths and the
probes is that temperature Tn and chemical potential μn of the
latter are not free parameters, but self-consistently determined
by imposing charge conservation and the absence of heat
dissipation on each probe, as follows:

Je,n = 2e

h

∑
ν

∫
dEτnν (E )[ fn(E ) − fν (E )] = 0, (24)

Jq,n = 2

h

∑
ν

∫
dE (E − μn)τnν (E )

× [ fn(E ) − fν (E )] = 0. (25)

However, these 2N nonlinear equations do not posses a proof
of existence and uniqueness of the solution, contrary to the
case of the voltage probe [73,96]. We restrict then the study to
the linear response regime, as suggested by the algorithm in
Ref. [97], which instead gives 2N linear equations that can be
solved relatively easily. To extract the transport coefficients
defined in Eqs. (4) and (5) we first calculate electric and
heat currents setting �T = 0, �μ 	= 0, and then calculate the
same, setting �T 	= 0, �μ = 0. From Eqs. (4) and (5) we see
that the first calculation allows extraction of G and �. Know-
ing G and �, the second calculation allows extraction of S and
K . For each of these calculations, we solve the correspond-
ing linear system of equations and plug the set of solutions
{Tn, μn} into Eqs. (17) and (18). In the next subsection we
investigate the possibility of dephasing-enhanced transport in
the Fibonacci model in the presence of the Buttiker probes.

B. Dephasing-enhanced transport

A heuristic argument to understand the behavior of the
infinite-temperature conductivity after adding dephasing was
introduced in Ref. [81] for spin transport with dephasing
and dissipation modeled via Lindblad equations. Here we
revisit the argument considering electric current under a volt-
age bias. The electric current induced by the voltage bias
�μ is defined as Je = σ (N )�μ/N ∼ N−αG , where αG is the
transport exponent related to the conductance G in the ab-
sence of dephasing. It is known that sufficient dephasing
changes anomalous transport behavior to normal diffusive
behavior. For a given dephasing strength γd , one can associate
a characteristic length Nd , beyond which coherence is quickly
destroyed, so that the transport becomes diffusive with well-
defined σ (γd ). This argument gives

σ (N, γd ) ∼
{

N1−αG , N < Nd ,

σ (γd ), N > Nd .
(26)

The behavior should be continuous across Nd , so that at N =
Nd it must hold that σ (γd ) ∼ N1−αG

d . Considering τd ∼ 1/γd

to be the time between incoherent scattering events, Nd can
be heuristically estimated by the spatial spread of a small
perturbation in the system within this time in the absence
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of coupling to baths [81]. This gives Nd ∼ γ
−1/(αG+1)
d . As

a result, for small dephasing strength, we get the following
dependence of conductivity on the dephasing strength:

σ (γd ) ∼ N1−αG
d ∼ γ

(αG−1)/(αG+1)
d . (27)

Thus, the dependence of conductance on the dephasing
strength is dictated by the nature of transport in the absence
of dephasing. If the transport in the absence of dephas-
ing is either ballistic (αG = 0) or superdiffusive (αG < 1),
in the regime of small γd , the conductivity decays to zero
as γd increases. But in the case of subdiffusion (αG > 1),
the conductivity increases and consequently reaches a max-
imum at intermediate γd before decaying for large γd . Thus,
dephasing-enhanced transport is expected in the regime where
the transport was subdiffusive in the absence of dephasing.

Behavior consistent with above heuristic description has
already been observed in various systems within the frame-
work of local Lindblad equations, which can be thought to
model the infinite temperature limit, and local pure dephasing
Lindblad dissipators [44,80,81,98,99]. This includes a recent
study on the Fibonacci model [44]. We stress again that our
setup is fundamentally different from this class of descrip-
tions. In the setup of these previous works, energy exchange
with the sources of dephasing is allowed, even on average.
However, in our setup with the voltage-temperature Büttiker
probes, both electric and heat currents into the probes are zero
on average. Therefore, neither particle exchange nor energy
exchange with the sources of dephasing are allowed on av-
erage. Despite this, we expect the heuristic phenomenology
of dephasing-enhanced transport given above to hold in our
setup. Moreover, although the above phenomenology has been
discussed in terms of electric conductivity, we expect to see
enhancement of thermal conductivity also as a function of
dephasing strength, before it eventually decays to zero for
large dephasing strength.

We now numerically explore the possibility of dephasing-
enhanced transport in the our setup. To this end, in Fig. 3 we
show the diffusive scaling of electric Je (left panels) and heat
Jq (right panels) currents at different γd for potential strength
u = 0.5 (top panels) and u = 4.0 (bottom panels). In the same
figures, the dashed line indicates the value of currents in the
coherent case. We verify, as evident in the bottom panels, that
dephasing enhances heat and electric transport at the potential
strength which would otherwise determine subdiffusion, u =
4.0. The plots are realized for specific μ, T = 1.0, and �μ =
�T = 0.1, but changing the thermodynamic variables of the
leads does not alter the results in any qualitative way.

Next, we look at the electric and thermal conductivities.
We extract the conductivities σ and κ from the linear fits of,
respectively, log G and log K versus − log N up to N = 200,
for different values of γd . While scanning the thermodynamic
parameter space, we notice a remarkably sensitive behavior of
the conductivities to temperature T and chemical potential μ,
which is more evident as we increase the potential strength u
in the subdiffusive regime. In Fig. 4 we show σ (in blue) and
κ (in red) as a function of γd for u = 4.0 at different choices
of T and μ. In all plots we see that both the electrical and the
thermal conductivities initially increase with γd , while they go
to zero for large γd , as expected from the heuristic argument
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FIG. 3. Electric [(a) and (c)] and heat [(b) and (d)] currents in
Fibonacci chains of length N at various dephasing strengths γd ,
indicated in the legends. The dashed line shows the corresponding
currents at zero dephasing. Currents become diffusive at any γd 	= 0,
so that transport slows down in the superdiffusive regime for u = 0.5
(top panel), while is enhanced in the subdiffusive regime for u = 4.0
(bottom panel). The thermodynamic parameters are T = 1.0, �T =
0.1, and �μ = 0.1.

above. We highlight the position of the highest values of σ

and κ with continuous vertical lines of the same color. In
Figs. 4(a) and 4(b) we set the temperature to T = 0.1, and take
two different values of μ, respectively, corresponding to the
lower and top end of the spectrum. Surprisingly, we observe
the presence of multiple local maxima, whose heights and
positions depend on the choice of μ. The same kind of variety
in the local peaks arises also at intermediate temperatures
and for other choices of chemical potentials. On the other
hand, at high temperatures, a single peak appears for each
conductivity, with position and height independent of μ, as
shown in Fig. 4(c) for T = 10. The presence of a single peak
is consistent with previous findings using Lindblad dephasing
in Ref. [44].

Linear response transport properties of a fermionic sys-
tem at chemical potential μ and temperature T are usually
governed by the spectrum of the system in the range of the
energies μ ± kBT , which is approximately the width of the
derivative of the Fermi-Dirac distribution with respect to μ.
Thus, if kBT is much larger than the bandwidth of the sys-
tem, transport coefficients become independent of μ. This
explains the observed μ independence of high temperature
conductivities. On the other hand, this picture suggests that the
presence of multiple μ dependent peaks at low temperatures is
related to the structure of the effective spectrum given by the
collection of transmission functions within the energy window
μ ± kBT . We therefore deduce that the fractal spectrum of the
Fibonacci model, which gives the peculiar near-discontinuous
transmission function in the coherent case (see Fig. 1), is also
the reason for the surprising multiple peaks in the conductiv-
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FIG. 4. The electric (blue) and thermal (red) conductivities extracted from the scaling of the conductances up to a length of N = 200, with
u = 4.0. The continuous lines highlight the dephasing strength γd that maximizes the corresponding conductivity. The plots are at different
thermodynamic configurations: in (a) and (b), T = 0.1 and μ is taken at two different points in the energy spectrum, respectively, μ = −5.2
and μ = 4.3, while in (c), T = 10 and the choice of μ becomes irrelevant (for the specific plot we show μ = −5.2). The error bars on each
data point, given from the asymptotic error in the linear fit, are smaller than dot size and not visible in the plots.

ities as a function of γd . A more microscopic understanding,
however, is difficult at finite temperatures. Instead, in the next
subsection we discuss another surprising observation from the
results, the violation of the Wiedemann-Franz law.

C. Violation of Wiedemann-Franz law

The Wiedemann-Franz law states that in normal conduc-
tors at low temperatures the ratio of thermal conductivity over
the product of electrical conductivity and temperature is a
universal constant,

κ

σT
= K

GT
= L, L0 = 1

3

(
πkB

e

)2

. (28)

The universal constant L0 is called the Lorenz number. This
law shows that at a fixed temperature, electrical and thermal
conductivities are proportional to each other. If transport is
anomalous, this law need not hold, because the conductiv-
ities may not be well defined in that case. Indeed, in the
Fibonacci model in the absence of dephasing, we find that the
Wiedemann-Franz law, written in terms of the conductances,
is violated.

However, surprisingly, even in the presence of dephasing,
when the transport becomes diffusive and both the conduc-
tivities are well defined, we see that the Wiedemann-Franz
law is still violated over a wide range. This remarkable fact
is completely clear from Fig. 4, which shows that even at
relatively low temperature T = 0.1, the thermal and the elec-
trical conductivities are not proportional to each other. In
fact, we find that the maxima in the thermal and the elec-
trical conductivities arise at different positions in parameter
space, at both low and high temperatures. The violation of
the Wiedemann-Franz law as a function of γd at T = 0.1
is explicitly shown in Figs. 5(a) and 5(b), respectively, for
u = 2.0 and u = 4.0. The L ratio is smaller than the Lorenz
number for a wide range of γd , and it is restored to L0 only
at γd � u. At high temperatures, instead, as in Figs. 5(c) and
5(d), the law is violated as expected for the entire range of
γd we have considered. We further analyze the deviation by
visualizing L/L0 at different γd as a function of temperature
with any other parameter fixed, for u = 2.0 in Fig. 6(b) and
u = 4.0 in Fig. 6(a). The violation for small and zero γd can be

interpreted considering again the structure of the transmission
functions from the collection of real baths and probes in the
energy window included into transport at each temperature. At
small and zero dephasing, the sharp features of the transmis-
sion would prevent the Sommerfeld expansion necessary to
directly derive the Wiedemann-Franz law from Eqs. (17) and
(18) at low temperatures. As dephasing increases, however,
these features are progressively broadened and the energy
windows over which the transmissions are continuous gets
larger, so the ratio L/L0 is restored to 1.
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FIG. 5. Ratio L = K/GT normalized to the Lorenz number
L0 = (πkB )2/3e2 for (a) u = 4.0, μ = −5.2, (b) u = 2.0, μ = −3.3,
at low temperature T = 0.1, with �T = 0.01, �μ = −0.01. The
dashed line indicates the value at zero dephasing. The blue and
red vertical continuous lines highlight, respectively, the position of
the maxima of electric and heat current. In (c) and (d) we use the
same parameters of the refrigerator configurations in (b) and (c) of
Fig. 7: (c) u = 4.0, μ = −5.2, T = 10, �T = 0.5, �μ = −1.0, (d)
u = 4.0, μ = −3.3, T = 10, �T = 1.0, �μ = −1.0.
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FIG. 6. Ratio L/L0 for different choices of γd as a function of
temperature at (a) u = 2.0, μ = −3.3, (b) u = 4.0, μ = −5.2 with
constant applied biases �μ = 0.01, �T = 0.01.

The fact that thermal and electrical conductivities can have
maxima at different values of dephasing strength, translates to
values of γd where the magnitude of heat current is maximized
at low corresponding magnitude of electric current or vice
versa. In the next section we argue and demonstrate that this
effect can be exploited in the context of steady-state thermal
machines.

VI. DEPHASING-ENHANCED
QUASIPERIODIC MACHINES

The setup we study functions naturally as a thermoelec-
tric device, with the Fibonacci chain acting as the working
medium. We are free to regulate the thermodynamic parame-
ters of the real baths T , μ and biases �T , �μ. We set �T > 0
and �μ < 0. The electric and heat currents flowing from left
to right is assumed to be the positive direction. By standard
convention, the power

P = Je�μ (29)

is negative if it is extracted from a thermoelectric device,
while it is positive if it is input into the thermoelectric device.
If the temperature bias drives the electric current against the
chemical potential difference, the electrons from the baths
perform a certain amount of work per unit of time inside the
central region, generating power. In this case we have

P < 0, Jq > 0 (heat engine regime). (30)

The efficiency of the heat-to-work conversion is the same as
for a standard cyclic thermal engine, given by

η(h) = −P

Jq
� η

(h)
C = 1 − T

T + �T
, (31)

and it is bounded from above by the corresponding Carnot
efficiency η

(h)
C . When, instead, the heat current is negative, as

a consequence of the applied chemical potential difference,
the machine acts as a refrigerator,

Jq < 0, P > 0 (refrigerator regime). (32)

In this case, heat is transported from the right (colder) to
the left (hotter) bath, while power is supplied to the system
(P > 0). The efficiency of the refrigeration is quantified by
the coefficient of performance

η(r) = −Jq

P
� η

(r)
C = T

�T
. (33)

It is clear from the expressions for η(h) and η(r) that situations
where the magnitude of heat current and the magnitude of
electric current are maximized at different values of γd will
be advantageous if either of the currents is negative.

There can be a third working regime of a two-terminal
device, where both heat current and power are positive, Jq >

0, P > 0. In this so called accelerator regime, the electrical
power input into the system heats up the two reservoirs. This
is usually the most easily obtained regime, without much fine
tuning of parameters. Here we will not be interested in this
regime.

In linear response, the efficiency or performance of a
two-terminal device maximized over the driving forces can
be analytically expressed through a single dimensionless fig-
ure of merit ZT [87,100],

η
(h/r)
max

η
(h/r)
C

=
√

ZT + 1 − 1√
ZT + 1 + 1

, (34)

with

ZT = GS2T

K
= σS2T

κ
. (35)

Larger values of ZT correspond to higher efficiency or perfor-
mance, giving the maximum theoretical limits for ZT → ∞.
It is also intuitive from the above result that if the Wiedemann-
Franz law is violated such that K/(GT ) < L0, as we see in
our case, it may aid the performance of the heat engine or the
refrigerator.

Thermoelectric response in nanoscale devices is linked
to their energy-filtering properties [1,87,101]. If transport is
blocked within a certain energy window, the Seebeck coef-
ficient S increases dramatically. This is generally achieved
by tuning the thermodynamic variables of the reservoirs
[102,103] or by choosing samples that would exhibit strongly
energy dependent transmission properties, for example in the
presence of a mobility edge [2,13,15].

To make a two-terminal device act as either a heat engine
or a refrigerator, in the absence of dephasing, it can be shown
that a key ingredient is asymmetry of the transmission func-
tion around the chosen chemical potential [87]. The peculiar
transmission function of the Fibonacci model in the absence
of dephasing, which reflects its fractal spectrum (see Fig. 1),
shows that it naturally has this property for various choices of
chemical potentials, and thus can serve as working medium
for a natural refrigerator or heat engine. Introducing inco-
herent inelastic scattering into the system makes it difficult
to extrapolate the energy-filtering properties of the effective
spectrum, since it is given by the collective transmissions of
the fictitious probes. However, we have already seen that the
nontrivial spectral properties of the original model make the
conductivities highly sensitive to the dephasing strength, sug-
gesting that particular thermodynamic configurations could
realize efficient thermoelectric devices.

A particularly interesting case occurs for parameters where
the Fibonacci model in the absence of dephasing is subdiffu-
sive and works as either a refrigerator or a heat engine. As
we have seen in previous sections, dephasing will increase
the currents in this case, making transport diffusive. If the
system still acts as a refrigerator (heat engine) it will therefore
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FIG. 7. Examples of configurations which will function as a
fridge, (a) and (b) for u = 4.0 and (c) and (d) u = 2.0, N =
200. The red (blue) dots indicate the magnitude of the heat
(electric) current, with its maximum highlighted by a vertical
continuous line in the same color. On the right axis, η(r) nor-
malized to the maximum theoretical limit η

(r)
C is shown in black,

and its value at zero dephasing is indicated as a reference with
a horizontal dashed line. Parameters: at u = 4.0 (a) μ = 0, T =
5, �T = 0.1, �μ = 0.5, (b) μ = −5.2, T = 10, �T = 0.5, �μ =
−1, at u = 2.0 (c) μ = −3.3, T = 10, �T = 1.0, �μ = −1.0, (d)
μ = 2.8, T = 1.0, �T = 0.01, �μ = 0.1.

enhance its cooling rate −Jq (power output −P). Moreover, if
the maxima of electrical and heat currents are different, it can
even increase the coefficient of performance (efficiency) of the
refrigerator (heat engine). In the following we demonstrate
such simultaneous dephasing-induced enhancement of both
cooling rate and coefficient of performance in the refrigerating
regime.

We first scan the parameter space and select configurations
which function as the refrigerator. The plots in Fig. 7 show the
absolute values of the electric (blue) and heat (red) currents
as a function of γd at different thermodynamic parameters.
On the right axis, we also show η(r)/η

(r)
C , whose value at

zero dephasing is indicated by a dashed horizontal line. We
observe explicitly in Fig. 7(a) that electrical and heat currents
have maxima at different values of dephasing strength. By
definition, the coefficient of performance η(r) is maximized
when the magnitude of the heat current is maximal, but the
electrical current is away from its maximum. However, η(r)

for this choice of chemical potentials, temperatures, and Fi-
bonacci potential strength (u = 4.0), is always below the value
obtained in the absence of dephasing. In Fig. 7(b), instead,
which shows a refrigerating regime for a different choice of
chemical potentials and temperatures at the same value of u,
we see η(r) enhanced by dephasing for a wide range of γd . For
u = 2.0 we can also find different configurations in Figs. 7(c)
and 7(d), where the performance is enhanced by the presence
of dephasing.

Since the chosen values of the potential u lie in the subdif-
fusive regime of the Fibonacci model at γd = 0 [see Fig. 2(d)],
the presence of inelastic scattering increases the currents by
several orders of magnitude [see, for example Figs. 3(c) and
3(d)] and, consequently, dramatically enhances the cooling
rate of these refrigerating regimes. Moreover, in Figs. 7(b)–
7(d) we see even the coefficient of performance enhanced by
the different sensitivity of the currents to dephasing strength.

VII. CONCLUSION

We have studied the linear-response transport and ther-
modynamics of the Fibonacci chain both in the absence and
the presence of dephasing noise from incoherent inelastic
scattering at finite temperature. Specifically, we describe bulk
inelastic scattering using the method of voltage-temperature
probes within the Landauer-Büttiker framework of quantum
transport. In the absence of dephasing, the Fibonacci model
shows anomalous transport which continuously varies from
superdiffusive to subdiffusive as a function of the Fibonacci
potential strength. This fact was previously known in the limit
of infinite temperature for particle or spin transport [42–44].
We demonstrate that this fact survives at finite temperatures,
and is observable in both electric and thermal transport, even
in the presence of both temperature and chemical potential
biases. We find that dephasing due to inelastic scattering
makes both electric and thermal transport diffusive for all
values of Fibonacci potential strength. This means that, in the
parameter regime where the coherent model is subdiffusive,
dephasing enhances both electrical and thermal transport. For
diffusive transport, electric and thermal conductivities are well
defined and finite, allowing us to study them as a function
of dephasing strength. We find that, in the regime where
the coherent model is subdiffusive, at finite temperatures,
the conductivities can show a nonmonotonic behavior with
an increase in dephasing strength. This is consistent with
observations in previous works investigating spin transport
by modeling dissipation and dephasing via Lindblad equa-
tions [44,81]. However, surprisingly, at low and intermediate
temperatures, we find occurrence of several chemical potential
dependent local maxima in the conductivities as a function of
the dephasing strength. Moreover, remarkably, we find a clear
violation of the Wiedemann-Franz law over a wide range of
dephasing strength even at low temperatures, even though the
transport becomes diffusive. Furthermore, the optimal dephas-
ing strength corresponding to the global maximum differs for
the thermal and electric conductivities and is highly sensitive
to the thermodynamic affinities.

One might expect that this highly nontrivial transport be-
havior is associated with the fractal structure of the Fibonacci
spectrum, and we conjecture that this is indeed the case. How-
ever, it is challenging to find a more microscopic explanation
in the presence of dephasing at finite temperature. In the case
of coherent transport, the transmission function for scattering
processes connects the microscopic details of the system to
the thermoelectric properties of the nonequilibrium steady
state. Conversely, when dephasing is introduced through the
probes, transport is determined by the entire collection of
transmission functions between reservoirs and probes. This
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complexity makes the interplay between spectral properties,
dephasing, and transport difficult to understand intuitively.

Nevertheless, our numerical results clearly indicate that
thermal and particle transport behave differently with respect
to dephasing. This opens the possibility of enhancing thermo-
electric effects by noise. In particular, we have demonstrated
a remarkable dephasing-induced enhancement of both cool-
ing rate and coefficient of performance simultaneously for
autonomous refrigeration using the Fibonacci quasicrystal as
a working medium. Although this finding is specific to certain
parameter regimes of the Fibonacci model, we hope that the
results might serve more generally as a conceptual guide for
the realization of new synthetic systems for nanoscale heat
management based on quasiperiodic potentials.
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for the useful comments on the manuscript. This work
was funded by the European Research Council Starting
Grant ODYSSEY (Grant Agreement No. 758403) and the
EPSRC-SFI joint project QuamNESS. J.G. is supported
by a SFI-Royal Society University Research Fellowship.
A.P. acknowledges funding from European Unions Horizon
2020 research and innovation program under the H2020
Marie Sklodowska Curie Actions Grant Agreement No.
890884. We acknowledge the Irish Centre for High End
Computing (ICHEC) for the provision of computational
facilities.

[1] R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014).
[2] U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986).
[3] L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727

(1993).
[4] L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631

(1993).
[5] R. Bosisio, G. Fleury, and J.-L. Pichard, New J. Phys. 16,

035004 (2014).
[6] R. Bosisio, C. Gorini, G. Fleury, and J.-L. Pichard, New J.

Phys. 16, 095005 (2014).
[7] R. Sánchez, B. Sothmann, A. N. Jordan, and M. Bttiker, New

J. Phys. 15, 125001 (2013).
[8] K. A. Muttalib and S. Hershfield, Phys. Rev. Applied 3,

054003 (2015).
[9] N. Nakpathomkun, H. Q. Xu, and H. Linke, Phys. Rev. B 82,

235428 (2010).
[10] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A.

Goddard III, and J. R. Heath, Nature (London) 451, 168
(2008).

[11] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C.
Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature
(London) 451, 163 (2008).

[12] B. M. Curtin and J. E. Bowers, J. Appl. Phys. 115, 143704
(2014).

[13] K. Yamamoto, A. Aharony, O. Entin-Wohlman, and N.
Hatano, Phys. Rev. B 96, 155201 (2017).

[14] F. Domínguez-Adame, M. Martín-González, D. Sánchez, and
A. Cantarero, Phys. E 113, 213 (2019).

[15] C. Chiaracane, M. T. Mitchison, A. Purkayastha, G.
Haack, and J. Goold, Phys. Rev. Research 2, 013093
(2020).

[16] B. Simon, Adv. Appl. Math. 3, 463 (1982).
[17] S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. D.

Siggia, Phys. Rev. Lett. 50, 1873 (1983).
[18] S. Ostlund and R. Pandit, Phys. Rev. B 29, 1394 (1984).
[19] J. Bellissard, B. Iochum, E. Scoppola, and D. Testard,

Commun. Math. Phys. 125, 527 (1989).
[20] M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35,

1020 (1987).
[21] H. Hiramoto and M. Kohmoto, Int. J. Mod. Phys. B 06, 281

(1992).
[22] A. Jagannathan, Rev. Mod. Phys. 93, 045001 (2021).

[23] V. K. Varma, S. Pilati, and V. E. Kravtsov, Phys. Rev. B 94,
214204 (2016).

[24] F. Piéchon, Phys. Rev. Lett. 76, 4372 (1996).
[25] V. K. Varma, C. de Mulatier, and M. Žnidarič, Phys. Rev. E
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[81] M. Žnidarič, J. J. Mendoza-Arenas, S. R. Clark, and J. Goold,

Annalen der Physik 529, 1600298 (2017).
[82] G. R. Goodson, Chaotic Dynamics: Fractals, Tilings and Sub-

stitutions (Cambridge University Press, Cambridge, 2017)
[83] J. Sutradhar, S. Mukerjee, R. Pandit, and S. Banerjee, Phys.

Rev. B 99, 224204 (2019).
[84] H. B. Callen, Thermodynamics and an Introduction to Ther-

mostatistics (Wiley, New York, 1985)
[85] H. van Houten, L. W. Molenkamp, C. W. J. Beenakker, and

C. T. Foxon, Semicond. Sci. Technol. 7, B215 (1992).
[86] S. R. De Groot and P. Mazur, Non-equilibrium Thermodynam-

ics (Courier, North Chelmsford, MA, 2013).
[87] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys. Rep.

694, 1 (2017).
[88] D. A. Ryndyk, Theory of Quantum Transport at Nanoscale

(Springer, Berlin, 2016), Vol. 184.
[89] S. Datta, Electronic Transport in Mesoscopic Systems (Cam-

bridge University Press, Cambridge, 1997).
[90] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
[91] M. Büttiker, Phys. Rev. B 33, 3020 (1986).
[92] C. J. Cattena, R. A. Bustos-Marún, and H. M. Pastawski, Phys.

Rev. B 82, 144201 (2010).
[93] J. L. D’Amato and H. M. Pastawski, Phys. Rev. B 41, 7411

(1990).
[94] M. Kilgour and D. Segal, J. Phys. Chem. C 119, 25291 (2015).
[95] H. Kim, M. Kilgour, and D. Segal, J. Phys. Chem. C 120,

23951 (2016).
[96] P. A. Jacquet and C.-A. Pillet, Phys. Rev. B 85, 125120 (2012).
[97] R. Korol, M. Kilgour, and D. Segal, Comput. Phys. Commun.

224, 396 (2018).
[98] J. J. Mendoza-Arenas, T. Grujic, D. Jaksch, and S. R. Clark,

Phys. Rev. B 87, 235130 (2013).
[99] M. Znidaric, Phys. Rev. B 105, 045140 (2022).

[100] H. J. Goldsmid, Introduction to Thermoelectricity (Springer,
Berlin, 2010), Vol. 121.

[101] G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. 93, 7436
(1996).

[102] G. Jaliel, R. K. Puddy, R. Sánchez, A. N. Jordan, B. Sothmann,
I. Farrer, J. P. Griffiths, D. A. Ritchie, and C. G. Smith, Phys.
Rev. Lett. 123, 117701 (2019).

[103] M. A. Popp, A. Erpenbeck, and H. B. Weber, Sci. Rep. 11,
2031 (2021).

134203-11

https://doi.org/10.1103/PhysRevLett.123.020603
https://doi.org/10.1088/1361-6463/ab3a0e
https://doi.org/10.1016/j.physe.2017.06.023
https://doi.org/10.1126/science.1170827
https://doi.org/10.1038/srep09111
https://doi.org/10.1103/PhysRevLett.120.160404
https://doi.org/10.1103/PhysRevLett.122.170403
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevLett.90.055501
https://doi.org/10.1038/nature03977
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevB.91.064201
https://doi.org/10.1103/PhysRevB.74.245105
https://doi.org/10.1103/PhysRevB.86.115441
https://doi.org/10.1063/1.4971167
https://doi.org/10.1063/1.4981022
https://doi.org/10.1038/nchem.2183
https://doi.org/10.1038/ncomms9032
https://doi.org/10.1088/1367-2630/10/11/113019
https://doi.org/10.1088/1367-2630/11/3/033003
https://doi.org/10.1063/1.3223548
https://doi.org/10.1098/rsta.2011.0224
https://doi.org/10.1039/c3cs35444j
https://doi.org/10.1063/1.4869329
https://doi.org/10.1021/acs.jpclett.7b03306
https://doi.org/10.1063/1.4926395
https://doi.org/10.1063/1.4944470
https://doi.org/10.1039/C7CP06237K
https://doi.org/10.1038/ncomms11282
https://doi.org/10.1038/srep37791
https://doi.org/10.1038/ncomms11682
https://doi.org/10.1103/PhysRevResearch.2.023294
https://doi.org/10.1103/PhysRevA.97.023606
https://doi.org/10.1140/epjb/e2012-30730-9
https://doi.org/10.1002/andp.201600298
https://doi.org/10.1103/PhysRevB.99.224204
https://doi.org/10.1088/0268-1242/7/3B/052
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevB.33.3020
https://doi.org/10.1103/PhysRevB.82.144201
https://doi.org/10.1103/PhysRevB.41.7411
https://doi.org/10.1021/acs.jpcc.5b08818
https://doi.org/10.1021/acs.jpcc.6b07602
https://doi.org/10.1103/PhysRevB.85.125120
https://doi.org/10.1016/j.cpc.2017.10.005
https://doi.org/10.1103/PhysRevB.87.235130
https://doi.org/10.1103/PhysRevB.105.045140
https://doi.org/10.1073/pnas.93.15.7436
https://doi.org/10.1103/PhysRevLett.123.117701
https://doi.org/10.1038/s41598-021-81466-3

