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Mapping metastability of Lennard-Jones clusters by maximum vibrational frequency
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We study the structure-stability relationship of Lennard-Jones (LJ) clusters from a point of view of vibrations.
By assuming the size up to N = 1610, we demonstrate that the N dependence of the maximum vibrational
frequency reflects the geometry of the core (the interior of a cluster) that will determine the overall geometry
of the cluster. This allows us to identify the formation of nonicosahedral structures for N � 150, the vacancy
formation at the core for N � 752, and the transition from icosahedral to decahedral structures at N = 1034. We
apply the maximum frequency analysis to classify metastable clusters for 19 � N � 39, where transformation
pathways between different structures are visualized, and the energy barrier height is estimated simultaneously.
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I. INTRODUCTION

Assembly of atoms constitutes nanoclusters, and the
structure, thermodynamics, and growth process have been
extensively investigated for many elemental systems such as
Pb [1–3], Ni [4], Au [5,6], and transition metals [7,8] (see also
Ref. [9] for a review). The number of atoms N plays an im-
portant role in understanding the stability of clusters because
the total energy at a specific N is particularly low, compared
to that at N ± 1. In addition, the cluster geometry can be
highly symmetric. For example, the clusters at N = 13 and 55
can have relatively small energy, which is usually attributed
to the icosahedral geometry. On the other hand, for large N ,
the structure of clusters is determined by several factors (i.e.,
the volume, surface, edges, and vertices of clusters), and the
geometry changes from the icosahedral to decahedral to face-
centered cubic (fcc) structures as N increases [9]. Recently,
the clusters with the decahedral structure have been created
for several noble metals [10], which has attracted attention
due to their optical and catalytic properties that are different
from those with the icosahedral structure.

The stability and geometry of the Lennard-Jones (LJ) clus-
ters have been extensively studied for many years [11–27]. It
has been known that the N = 13 icosahedron serves as a seed
to generate the lowest energy atomic configurations [20], that
is, the LJ clusters for N � 13 have an icosahedron at the core
surrounded by the surface atoms. However, for the cases of
N = 38, 75–77, 98, and 102–104, the core of the LJ clus-
ters has octahedral, decahedral, tetrahedral, and decahedral
structures, respectively [15,16,20]. Even when the energetic
stability analyses are employed, no significant anomalies have
been found at these Ns. In general, the cluster geometry is
characterized by studying the local atomic environment in de-
tail, as done by Polak and Patrykiejew [21] and Yang and Tang
[27], where they used four structural motifs (fcc, hcp, icosa-
hedral, and decahedral) to understand the overall and core
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geometries. Alternatively, we expect that the lattice dynamics
calculations might be useful to understand the core geometry
because the normal modes at the maximum frequency will
involve the vibration of the most rigid part (i.e., the core) in the
system. For example, the sequence of the maximum frequency
as a function of N should identify the difference of the core
geometries in the LJ clusters.

In this paper, we study the energetic and vibrational prop-
erties of LJ clusters up to N = 1610. The N dependence of
the maximum frequency allows us to identify the core ge-
ometry that is different from the icosahedral structure. It also
enables us to identify the vacancy formation at the core and
the structural transition from icosahedra to decahedra for large
N . As another application, we construct a metastability map,
where the maximum frequency is plotted as the total energy
for many metastable structures. For the cases of 19 � N � 39,
we distinguish the clusters with decahedra from those with
icosahedra. In addition, we identify transformation pathways
between different structures, and estimate the energy barrier
height. The present work will pave the way to understand
the structural stability and geometry based on the vibrational
frequency.

The vibrational frequency analysis has been recently ap-
plied to study the magic numbers in N charges on a sphere
[28], while finding the lowest energy configurations on a
sphere is known as the Thomson problem. The maximum
frequency showed relatively small values at N = 12, 32, 72,
132, 192, 212, 272, 282, and 372. The presence of these
magic numbers reflects both the charge configurations on a
sphere and the strong degeneracy of the one-particle energies.
In contrast, the LJ particles that we study in the present
work are free from the boundary condition, and therefore
the core geometry of the system influences the vibrational
properties. Doye and Calvo have calculated the geometric
mean vibrational frequency of the LJ clusters to distinguish
the nonicosahedral structures from the icosahedral structure
at the selected sizes of N = 38, 75, 98, and 102 [19]. Calvo
et al. have estimated the Debye temperature of the LJ clusters
by fitting the heat capacity, where nonmonotonic behavior in
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the Debye temperature for small N < 100 was suggested [18].
The maximum frequency that we use in the present work is
directly related to the vibration of the core around which the
interatomic bonding is the strongest in the cluster.

Our approach can provide a useful insight of the structure-
stability relationship among metastable structures as well,
only by performing the maximum frequency and total energy
calculations. The metastability of nanoclusters has been stud-
ied by calculating the potential energy surface (PES) and/or
constructing the disconnectivity graph [29]. These approaches
are useful to understand the relationship between the energetic
stability and the structure of nanoclusters, which has been ap-
plied to predict the synthesizability of nanostructures [30,31].
However, visualizing the PES is not straightforward [32]:
among 3N degrees of freedom one must find a few parameters
describing the transformation between different structures. To
construct the disconnectivity graph, one must find the transi-
tion states having one imaginary frequency mode.

II. THEORY

We study the dynamics of the LJ clusters having N atoms
within the harmonic approximation. The equations of motion
can be written as [33,34]

m
d2uiα

dt2
= −

∑
jβ

Di j
αβu jβ, (1)

where uiα is the displacement along α direction for the particle
i with a mass of m. The force constant matrix Di j

αβ is defined
as

Di j
αβ = D ji

βα = ∂2E

∂Riα∂Rjβ

∣∣∣∣
0

, (2)

where the derivative is taken at the equilibrium configurations.
E is the total potential energy

E =
N∑

i=1

εi (3)

with the one-particle energy

εi = 1

2

∑
j �=i

4A

[(
σ

ri j

)12

−
(

σ

ri j

)6]
, (4)

where 1/2 accounts for the double counting of the interaction
energy, A and σ are parameters of the LJ potential, and ri j

is the interparticle distance between the LJ particles i and j,
which can be expressed by

r2
i j =

∑
α=x,y,z

(Riα − Rjα )2, (5)

where Riα is the α component of the position of the particle i.
Assuming a stationary solution uiα (t ) = εiαeiωt with the fre-
quency ω and the polarization εiα , one obtains the eigenvalue
equation

mω2εiα =
∑

jβ

Di j
αβε jβ. (6)

The stable structure with N particles has 3N − 6 vibrational
modes, where the degrees of freedom for translation and

rotation are subtracted. The maximum eigenvalue gives the
maximum frequency ωmax. The units of energy and frequency
are A and A1/2σ−1m−1/2, respectively. Throughout the paper,
we set A = σ = m = 1.

To find the lowest energy structures, we referred to two
databases. For 3 � N � 150, we referred to the Cambridge
Cluster Database (CCD) [35], and for large N up to 1610, we
referred to the database provided by Shao et al. [36] (310 to
561 atoms [22], 562 to 1000 atoms [23], and 1001 to 1610
atoms [25]). We used the Broyden-Fletcher-Goldfarb-Shanno
algorithm [37] to find the local minimum structures for the
cases of N = 19-39, where the initial positions of N atoms
were given by random numbers. For each N , we generated
more than 3 × 104 initial configurations and optimized their
structures, from which the 2000 lowest energy structures were
extracted. In particular, for N = 31, 33, and 35, 6 × 104 initial
configurations were needed to obtain the lowest energy struc-
tures stored at the CCD [35]. However, we failed to find the
lowest energy structure at N = 38.

To compare the optimized E/N and ωmax with the bulk
values (i.e., the case of N → ∞), we calculated the total
energy and the phonon dispersions of the LJ crystal in the
fcc structure. The computational details are the same as those
described in Ref. [38], while A and σ were set to be unity in
the present work. We obtained E fcc

min/N = −8.609 and ωfcc
max =

28.18 that corresponds to the longitudinal phonon frequency
at the X point in the Brillouin zone.

III. RESULTS AND DISCUSSION

A. Lowest energy structures

Figure 1(a) shows the N dependence of the lowest en-
ergy per particle Emin/N . The Emin decreases with N , while
some dips can be observed at N = 13 and 55. At these Ns
complete icosahedral structure can be formed [14,20]. To em-
phasize the magic numbers, at which the N cluster is relatively
stable compared to N ± 1 clusters, we define the first and
second differences in the total energy as [9]

	E = Emin(N − 1) − Emin(N ), (7)

	2E = Emin(N − 1) + Emin(N + 1) − 2Emin(N ). (8)

Figures 1(b) and 1(c) show the N dependence of 	E and
	2E , respectively. Peaks in 	2E are observed at several Ns.
For example, N = 13, 55, and 144 are clearly identified as
the magic numbers, where N = 144 cluster has also complete
icosahedral structure. The relative stability between different
Ns can thus be identified by studying 	E and/or 	2E .

To shed light on another aspect on the LJ cluster properties,
we show the N dependence of ωmax in Fig. 1(d). The value
of ωmax increases with N . However, an anomalous decrease
in ωmax is observed at N = 38,75–77, 98, and 102–104. It
should be noted that the lowest energy structures at these Ns
do not have icosahedra at the core [15,16,20,35]. This shows
that the atomic displacement of the maximum frequency mode
reflects the core geometry. For the N = 55 cluster having
an icosahedron at the core, the displacement localizes to
the core atom. On the other hand, N = 38 and 75 clusters
has an octahedron and a decahedron at the core, and the
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FIG. 1. The N dependence of (a) Emin/N , (b) 	E , (c) 	2E , (d) ωmax, and (e) δε. The vertical dashed lines indicate N = 13, 55, and
147 (complete icosahedral structure). The vertical dotted lines indicate N = 38, 75, 77, 98, 102, and 104 (nonicosahedral structure). The
horizontal dot-dashed lines in (a) and (d) indicate the values for the fcc structure.

displacement pattern is a breathing of the octahedron for
N = 38 and asymmetric displacements along the five-fold
symmetric axis for N = 75, as shown in Fig. 2. The maximum
frequency mode for the N = 76, 77, and 102–104 clusters
is similar to that for the N = 75 cluster: the core at N =
102–104 has 19 atoms forming a one-dimensional tube of
three decahedra with the five-fold rotational symmetry, and
the displacement pattern shows the expansion, contraction,
and expansion of the three decahedra. The N = 98 cluster has
a large core with tetrahedral shape [16], and the displacement
localizes to this core in a complicated manner. In this way, the
analysis of the N dependence of ωmax allows us to distinguish
the core geometry from icosahedra.

The difference of the core geometry as well as the decrease
in ωmax are related to the distribution of εi in Eq. (4). In
general, the εi of the core atom i is lower than that of the
surface atoms because the interatomic bonding strength as
well as the coordination number will be large around the

core, unless the vacancy formation occurs at the core for
relatively large N [24]. The values of εi are thus scattered as
N increases because the core and surface regions are clearly
separated for large N . The distribution of εi will be mod-
ified when the geometry of the core changes. Figure 1(e)
shows the standard deviation δε of εi as a function of N .
The peaks in δε are well correlated to the decrease in ωmax in
Fig. 1(d).

The increase in δε can be visualized by the density-of-
states (DOS) for εi shown in Fig. 3, where the DOS of the
lowest energy (nonicosahedral) structure and the local min-
imum (icosahedral) structure (extracted from the CCD [35])
are shown for N = 38, 75–77, 98, and 102–104. The gaus-
sian broadening method is applied, and the DOS is shifted
depending on the N . The DOS peaks observed for the lowest
energy structure are smeared out or split when the icosahedral
structure (a local minima) is considered. The value of εi and
the degeneracy for the N = 38 are listed in Table I.

TABLE I. The values of εi with i = 1 to 7 for several Ns. The figure in parenthesis indicates the degeneracy. The “38g” and “38i” indicate
the global minimum and the icosahedral structure at N = 38, respectively.

N ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9

38g −7.146 (6) −5.338 (8) −3.681 (24) - - - - -
38i −7.208 (1) −6.900 (5) −6.003 (1) −4.795 (5) −4.713 (5) −4.274 (5) −3.584 (10) −3.540 (1) −3.450 (5)
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FIG. 2. The structure of the lowest energy atomic configurations
(left) and the displacement vectors of the maximum frequency mode
(right) for N = 38, 55, and 75. The atoms at the core region are
colored brown. The core at N = 55 and 75 has the five-fold rotational
symmetry. One out of three degenerated modes is shown for N = 55.

As shown in Fig. 1(a), the Emin/N approaches the E fcc
min/N

as N increases. However, the energy difference is still large:
Emin/N = −5.955 for N = 150, and the relative error is more
than 30%. When N is increased up to 1610, Emin/N = −7.338
[25], and the error is reduced to 15%. It is interesting to study
how the ωmax approaches the bulk value of ωfcc

max because the
N dependence of ωmax is nonmonotonic for small N , as shown
in Fig. 1(d). In addition, Shao et al. have proposed the vacancy
formation at the core for N � 752 [24] and the structural tran-
sition from icosahedra to decahedra at N = 1034 [25], which
will influence the N dependence of ωmax. Figure 4 shows the
ωmax as a function of N up to 1610: (i) The ωmax increases
from 37 to 43 for 151 � N � 600, except for 188 � N � 192
and 236 � N � 238; (ii) the value of ωmax decreases to 35
around N � 600, deviates around 35 for 600 � N � 800, and
increases from 35 to 36 for 800 � N � 1034; and (iii) the
ωmax shows a sudden drop to 29 at N = 1035, and almost
keeps the constant value of 29 up to N = 1610, while the jump
within 1367 � N � 1422 is observed.

The property (i), an increase in ωmax with N , indicates the
hardening of the core in the cluster, which is also observed
in small N [see Fig. 1(d)]. The property (ii), an significant
decrease in ωmax from 43 to 35, reflects the vacancy formation
at the core: for N � 752, the icosahedral structures with the
central vacancy are more stable except for N = 923 [24].
We consider that some of the peaks around 600 � N � 800
and N = 923 will be a reminiscence of the behavior for
N � 600. The property (iii) indicates the transition from the
icosahedral to decahedral structures [25]. The jump of ωmax

within 1367 � N � 1422 is also consistent with the forma-
tion of the icosahedral structure with the central vacancy

FIG. 3. The one-particle DOS for N = 38, 75, 76, 77, 98, 102,
103, and 104 clusters in the lowest energy structure (solid) and in the
icosahedral structure (dashed).

at N = 1402 [25]. In this sense, the anomalous decreases
around 188 � N � 192, 236 � N � 238, 650 � N � 664,
682 � N � 689, 755 � N � 762, and 815 � N � 823 can
be attributed to the formation of the decahedral structure. The
decahedral and icosahedral structures for the selected Ns are
shown in Fig. 4.

It should be noted that the N dependence of ωmax is
strongly correlated with that of the fcc motif concentration.
Yang and Tang studied how many structural motifs are there
in the LJ cluster for each N by considering four types of
motifs in the fcc, hcp, icosahedral, and decahedral structures
with 13 atoms, and showed that the fcc motif concentration
is relatively large when N = 38, 75–78, 102–104, 188–192,
236–238, and N � 1030 [27]. They attributed such an en-
hancement to the formation of the Marks decahedron rather
than the Mackay icosahedron, which is consistent with our
characterization in geometry.

B. Metastable structures

We next apply the ωmax-based analysis to a classification
of the metastable structures with N fixed. Figure 5 shows
the distribution of ωmax as a function of E for the case of
N = 19, where the 2000 lowest energy structures are plotted.
Data points form an island in the E -ωmax plane, which enables
us to classify metastable structures into some groups. The
lowest energy structure (group 1) is a barrel-shaped double
icosahedron, where four atoms form the symmetry axis along
which three pentagons are stacked with twisted angle of π/5.
The structures of other groups are basically derived from the
group 1 structure (see Fig. 5): in the second lowest energy
structure (group 2), the vertex located on the symmetry axis
moves to another facet; in the group 3 and 4 structures, the
vertex on the first (or third) and second layer of the pentagon
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FIG. 4. The N dependence of ωmax for the lowest energy structures: 151 � N � 1610. The dot-dashed line indicates the ωfcc
max. The four

clusters with the decahedral structure (colored red) are shown. The N = 1402 cluster with the icosahedral structure is also shown, where the
central vacancy is colored blue and the interatomic bonding is illustrated for ri j � 1.05σ .

moves to another facet, respectively; and in the group 5 struc-
tures, two vertices moves to other facets. As one approaches
the continent (i.e., densely plotted region for E � −69), the
structures with more complex geometry are observed.

One can find three anomalous structures, which are apart
from the continent, with −70 � E � −69 and relatively
small values of ωmax (�20.8). As depicted in Fig. 5, those
metastable structures (group 6) have a decahedron at the core.
This result also confirms that the clusters with nonicosahedra
can have relatively small ωmax.

We also found that some of the structures have a dec-
ahedron: For example, those structures have (E , ωmax) =
(−68.9578, 20.81) and (−68.6245, 20.92). Among the 2000
structures generated in the present calculations, the 142th

structure (E = −68.8976) has the lowest maximum frequency
of ωmax = 19.77, but has neither a decahedron nor an icosa-
hedron at the core region (see group 7 in Fig. 5).

We assume that a structural transformation of clusters may
occur between similar geometries, and completely different
geometry will be obtained through transformations several
times. In this sense, the E -ωmax map gives a rough estimation
of the energy barrier height between different structures. For
example, the transformation from the group 1 to group 2 can
be possible when the energy about 2A is added. On the other
hand, to obtain the clusters with the decahedral structures,
the structure in the group 1 must first move to the continent
around E � −68 (containing geometries that are potentially
transformed into a decahedron), and next moves to the island

FIG. 5. (Left) The distribution of ωmax versus the total energy of E for the 2000 lowest energy structures with N = 19. The plotted points
are classed into seven groups, where the group 6 includes three points. (Right) The illustration of metastable structures of groups 1–7, where
the group 6 structures have a decahedron (colored red). The arrows indicate the atomic movements from the group 1 structure. The dashed
arrows (left) indicate a potential pathway of the structural transformation from the group 1 to group 6.
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FIG. 6. The distribution of ωmax versus the total energy of E for the 2000 lowest energy structures with N = 20–39. The data of the lowest
energy structure are indicated by a large circle (colored red). The dashed line indicates the ωfcc

max.

of the group 6, implying that more than 5A (rather than 3A)
is needed, as indicated by dashed arrows in Fig. 5. However,
the exact determination of the barrier height requires a com-
prehensive search for the transition states and a construction
of the disconnectivity graph [17], which is beyond the scope
of the present work.

It is interesting that when the metastable structures differ
strongly in geometry, those are located at different region in
the E -ωmax plane, as shown in Fig. 5. This allows us to study
the evolution of the cluster geometry with the size N . Figure 6
shows how the distribution of ωmax evolves within the range of
20 � N � 39. When 20 � N � 30, the distribution of ωmax

is similar to that for the case of N = 19: the lowest energy
structure has a relatively high value of ωmax, while some
metastable structures have relatively small values of ωmax �
22. The former structures are constructed by adding atoms to
the surface region of the lowest energy structure of N = 19,
i.e., a double icosahedron, whereas the latter structures consist
of decahedra. When N is increased to 31, the ωmax of the
lowest energy structure becomes small (ωmax � 28), implying
that the number of decahedra overcomes that of icosahe-
dra. For N � 32, a strong distribution around ωmax = 32 is
smeared out, and the distribution of ωmax tends to be sym-
metric around ωmax = 30. In the E -ωmax plane, islands evolve
for low ωmax when N is increased, producing the octahedral
structure at N = 38. For N = 39, the lowest energy structure
(ωmax = 28.8) is constructed from a decahedron surrounded
by five decahedra, whereas the second lowest energy structure
(ωmax = 23.5) is constructed by adding an atom to the N = 38

octahedral structure. The energy barrier hight between them
is estimated to be more than 5A rather than 2A, by assuming
that there are relevant transition states in the continent of high
energy states. In this way, the construction of the E -ωmax map
is a useful method to understand the transformation between
metastable structures.

The structural transition from the icosahedral to decahe-
dral structures has been discussed in the literature. Deaven
et al. identified a significant change in the one-particle energy
distribution [14]: The peak of the lowest one-particle energy
shifts dramatically from εi � −6.5 at N = 30 to εi � −7 at
N = 31. On the other hand, Raoult et al. [12] and Shao et al.
[25] showed that the structural transition to the decahedral
structure occurs at N > 1000 by performing the total energy
calculations. The present calculations suggest that the profile
of the ωmax distribution is quite different across N = 31. We
expect that the systematic calculations of the ωmax distribution
for large N enable us to understand the structural transitions
(from the icosahedral to decahedral, and from the decahedral
to fcc structures as well).

IV. CONCLUSION

In conclusion, we studied the N dependence of the total
energy E and the maximum frequency ωmax of the LJ clusters
with the size up to N = 1610. The ωmax reflects the atomic
vibrations localized at the core region, and the magnitude of
ωmax is significantly small when the core geometry is different
from an icosahedron (e.g., N = 38, 75–77, 98, and 102–104).
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The ωmax also reflects the vacancy formation at the core and
the structural transition from icosahedra to decahedra for large
N . Based on the relationship between the E and ωmax for the
cases of 19 � N � 39, we created the metastability map that
can provide both transformation pathways between different
structures and an estimation of the energy barrier height. For a
clarity, the strategy for creating the metastability map is sum-
marized as follows: (1) Visualize the geometry of all clusters
forming an island in Fig. 5, where the VESTA software [39] was
used in the present work; (2) partition into several groups with
similar geometries; and (3) analyze the trend of metastability
map. Note that the strategy (2) may be done more efficiently
by using machine learning approaches. The strategy (3) will
include a rough estimation of the energy barriers between dif-
ferent structures (as discussed in Fig. 6) and a detailed analysis
of the structural transformation. Note also that a construction
of the disconnectivity graph is necessary to estimate the exact
value of the barrier height [29,30].

We believe that the combination of the maximum fre-
quency and the total energy would provide an interesting
aspect for understanding the metastability of clusters. We
hope that the ωmax-based approach is applied to study the
metastability of more realistic systems including metallic and
semiconducting clusters by using accurate potentials. On the
other hand, the allotropes of fullerene molecules will show
different N dependence of ωmax because of the hollow spheri-
cal structures.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI (Grant No.
21K04628). The computation was carried out using the fa-
cilities of the Supercomputer Center, the Institute for Solid
State Physics, the University of Tokyo, and using the super-
computer “Flow” at Information Technology Center, Nagoya
University.

[1] B. Wang, J. Zhao, X. Chen, D. Shi, and G. Wang, Atomic
structures and covalent-to-metallic transition of lead clusters
Pbn (n = 2–22), Phys. Rev. A 71, 033201 (2005).

[2] J. P. K. Doye, Lead clusters: Different potentials, different struc-
tures, Comput. Mater. Sci. 35, 227 (2006).

[3] H. Li, Y. Ji, F. Wang, S. F. Li, Q. Sun, and Y. Jia, Abinitio
study of larger Pbn clusters stabilized by Pb7 units possess-
ing significant covalent bonding, Phys. Rev. B 83, 075429
(2011).

[4] Q. L. Lu, Q. Q. Luo, L. L. Chen, and J. G. Wan, Structural and
magnetic properties of Nin (n = 2–21) clusters, Eur. Phys. J. D
61, 389 (2011).

[5] D. Jiang and M. Walter, Au40: A large tetrahedral magic cluster,
Phys. Rev. B 84, 193402 (2011).

[6] A. H. Larsen, J. Kleis, K. S. Thygesen, J. K. Nørskov, and K. W.
Jacobsen, Electronic shell structure and chemisorption on gold
nanoparticles, Phys. Rev. B 84, 245429 (2011).

[7] M. J. Piotrowski, P. Piquini, and J. L. F. Da Silva, Density
functional theory investigation of 3d , 4d , and 5d 13-atom metal
clusters, Phys. Rev. B 81, 155446 (2010).

[8] X. Wu and Y. Sun, Stable structures and potential energy surface
of the metallic clusters: Ni, Cu, Ag, Au, Pd, and Pt, J. Nanopart.
Res. 19, 201 (2017).

[9] F. Baletto and R. Ferrando, Structural properties of nanoclus-
ters: Energetic, thermodynamic, and kinetic effects, Rev. Mod.
Phys. 77, 371 (2005).

[10] S. Zhou, M. Zhao, T.-H. Yang, and Y. Xia, Decahedral
nanocrystals of noble metals: Synthesis, characterization, and
applications, Mater. Today 22, 108 (2019).

[11] J. A. Northby, Structure and binding of Lennard-Jones clusters:
13 � N � 147, J. Chem. Phys. 87, 6166 (1987).

[12] B. Raoult, J. Farges, M. F. De Feraudy, and G. Torchet,
Comparison between icosahedral, decahedral and crystalline
Lennard-Jones models containing 500 to 6000 atoms, Phil.
Mag. B 60, 881 (1989).

[13] G. L. Xue, Improvement on the Northby algorithm for molec-
ular conformation: Better solutions, J. Global Optimization 4,
425 (1994).

[14] D. M. Deaven, N. Tit, J. R. Morris, and K. M. Ho, Structural
optimization of Lennard-Jones clusters by a genetic algorithm,
Chem. Phys. Lett. 256, 195 (1996).

[15] D. J. Wales and J. P. K. Doye, Global optimization by basin-
hopping and the lowest energy structures of Lennard-Jones
clusters containing up to 110 atoms, J. Phys. Chem. A 101, 5111
(1997).

[16] R. H. Leary and J. P. K. Doye, Tetrahedral global minimum for
the 98-atom Lennard-Jones cluster, Phys. Rev. E 60, R6320(R)
(1999).

[17] J. P. K. Doye, M. A. Miller, and D. J. Wales, Evolution of the
potential energy surface with size for Lennard-Jones clusters,
J. Chem. Phys. 111, 8417 (1999).

[18] F. Calvo, J. P. K. Doye, and D. J. Wales, Quantum partition
functions from classical distributions: Application to rare-gas
clusters, J. Chem. Phys. 114, 7312 (2001).

[19] J. P. K. Doye and F. Calvo, Entropic effects on the struc-
ture of Lennard-Jones clusters, J. Chem. Phys. 116, 8307
(2002).

[20] I. A. Solov’yov, A. V. Solov’yov, W. Greiner, A. Koshelev,
and A. Shutovich, Cluster Growing Process and a Sequence of
Magic Numbers, Phys. Rev. Lett. 90, 053401 (2003).

[21] W. Polak and A. Patrykiejew, Local structures in medium-sized
Lennard-Jones clusters: Monte Carlo simulations, Phys. Rev. B
67, 115402 (2003).

[22] Y. Xiang, H. Jiang, W. Cai and X. Shao, An efficient method
based on lattice construction and the genetic algorithm for opti-
mization of large Lennard-Jones clusters, J. Phys. Chem. A 108,
3586 (2004).

[23] Y. Xiang, L. Cheng, W. Cai, and X. Shao, Structural distribution
of Lennard-Jones clusters containing 562 to 1000 atoms, J.
Phys. Chem. A 108, 9516 (2004).

[24] X. Shao, Y. Xiang, and W. Cai, Formation of the central vacancy
in icosahedral Lennard-Jones clusters, Chem. Phys. 305, 69
(2004).

[25] X. Shao, Y. Xiang, and W. Cai, Structural transition from icosa-
hedra to decahedra of large Lennard-Jones clusters, J. Phys.
Chem. A 109, 5193 (2005).

134104-7

https://doi.org/10.1103/PhysRevA.71.033201
https://doi.org/10.1016/j.commatsci.2004.07.009
https://doi.org/10.1103/PhysRevB.83.075429
https://doi.org/10.1140/epjd/e2010-10129-8
https://doi.org/10.1103/PhysRevB.84.193402
https://doi.org/10.1103/PhysRevB.84.245429
https://doi.org/10.1103/PhysRevB.81.155446
https://doi.org/10.1007/s11051-017-3907-6
https://doi.org/10.1103/RevModPhys.77.371
https://doi.org/10.1016/j.mattod.2018.04.003
https://doi.org/10.1063/1.453492
https://doi.org/10.1080/13642818908209749
https://doi.org/10.1007/BF01099267
https://doi.org/10.1016/0009-2614(96)00406-X
https://doi.org/10.1021/jp970984n
https://doi.org/10.1103/PhysRevE.60.R6320
https://doi.org/10.1063/1.480217
https://doi.org/10.1063/1.1359768
https://doi.org/10.1063/1.1469616
https://doi.org/10.1103/PhysRevLett.90.053401
https://doi.org/10.1103/PhysRevB.67.115402
https://doi.org/10.1021/jp037780t
https://doi.org/10.1021/jp047807o
https://doi.org/10.1016/j.chemphys.2004.06.032
https://doi.org/10.1021/jp051541j


SHOTA ONO PHYSICAL REVIEW B 105, 134104 (2022)

[26] E. G. Noya and J. P. K. Doye, Structural transitions in the
309-atom magic number Lennard-Jones cluster, J. Chem. Phys.
124, 104503 (2006).

[27] Z. Yang and L.-H. Tang, Coordination motifs and large-scale
structural organization in atomic clusters, Phys. Rev. B 79,
045402 (2009).

[28] S. Ono, Magic numbers for vibrational frequency of
charged particles on a sphere, Phys. Rev. B 104, 094105
(2021).

[29] O. M. Becker and M. Karplus, The topology of multidi-
mensional potential energy surfaces: Theory and application
to peptide structure and kinetics, J. Chem. Phys. 106, 1495
(1997).

[30] D. J. Wales, M. A. Miller, and T. R. Walsh, Archetypal energy
landscapes, Nature (London) 394, 758 (1998).

[31] D. S. De, B. Schaefer, B. von Issendorff, and S.
Goedecker, Nonexistence of the decahedral Si20H20 cage:
Levinthal’s paradox revisited, Phys. Rev. B 101, 214303
(2020).

[32] B. W. B. Shires and C. J. Pickard, Visualizing Energy Land-
scapes Through Manifold Learning, Phys. Rev. X 11, 041026
(2021).

[33] J. M. Ziman, Electrons and Phonons (Oxford University Press,
New York, 1960).

[34] N. W. Ashcroft, N. D. Mermin, and D. Wei, Solid State Physics
(Cengage, Boston, 2016).

[35] http://www-wales.ch.cam.ac.uk/CCD.html.
[36] https://chinfo.nankai.edu.cn/labintro_e.html.
[37] W. M. Press, B. P. Flannery, S. A. Teukolsky, and W. T.

Vetterling, Numerical Recipes in Fortran 90: The Art of Parallel
Scientific Computing (Cambridge University Press, Cambridge,
1996).

[38] S. Ono and T. Ito, Theory of dynamical stability for two- and
three-dimensional Lennard-Jones crystals, Phys. Rev. B 103,
075406 (2021).

[39] K. Momma and F. Izumi, VESTA 3 for three-dimensional visu-
alization of crystal, volumetric and morphology data, J. Appl.
Crystallogr. 44, 1272 (2011).

134104-8

https://doi.org/10.1063/1.2173260
https://doi.org/10.1103/PhysRevB.79.045402
https://doi.org/10.1103/PhysRevB.104.094105
https://doi.org/10.1063/1.473299
https://doi.org/10.1038/29487
https://doi.org/10.1103/PhysRevB.101.214303
https://doi.org/10.1103/PhysRevX.11.041026
http://www-wales.ch.cam.ac.uk/CCD.html
https://chinfo.nankai.edu.cn/labintro_e.html
https://doi.org/10.1103/PhysRevB.103.075406
https://doi.org/10.1107/S0021889811038970

