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Optical multipolar torque in structured electromagnetic fields: On helicity gradient torque,
quadrupolar torque, and spin of the field gradient
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Structured light mechanically interacts with matter via optical forces and torques. Optical torque is tradi-
tionally calculated via the flux of total angular momentum (AM) into a volume enclosing an object. In the
work published in [Phys. Rev. A 92, 043843 (2015)], a powerful method was suggested to calculate the optical
torque separately from the flux of the spin and the orbital parts of optical AM, rather than the total, providing
useful physical insight. However, the method predicted a new type of dipolar torque dependent on the gradient
of the helicity density of the optical beam, inconsistent with prior torque calculations. In this work, we first
intend to clarify this discrepancy and clear up the confusion. We rederive, from first principles and with detailed
derivations, both the traditional dipolar torque using total AM flux, and the spin and orbital torque components
based on the corresponding AM contributions, ensuring that their sum agrees with the total torque. We also test
our derived analytical expressions against numerical integration, with the exact agreement. We find that “helicity
gradient” torque terms indeed exist in the spin and orbital components separately, but we present corrected
prefactors, such that upon adding them, they cancel out, and the helicity gradient term vanishes from the total
dipolar torque, reconciling literature results. In the second part of the work, we derive the analytical expression
of the quadrupolar torque, showing that it is proportional to the spin of the EM field gradient, rather than the
local EM field spin, as sometimes wrongly assumed in the literature. We provide examples of counter-intuitive
situations where the spin of the EM field gradient behaves very differently from the local EM spin. Naively using
the local EM field spin leads to wrong predictions of the torque on large particles with strong contributions of
quadrupole and higher-order multipoles, especially in a structured incident field.

DOI: 10.1103/PhysRevB.105.125424

I. INTRODUCTION

The mechanical interaction between a structured optical
beam and structured photonic matter is a very important sub-
ject to study, in both fundamental and applied research. Such
interaction is often complex, and simple analytical models like
a multipole theory of optical force and torque in a general
(inhomogeneous) electromagnetic field can greatly help our
understanding of the physics involved.

Since the realization of orbital angular momentum in a
paraxial laser beam (related to a helical phase) in 1992, there
has been much confusion and debate on the separation of
angular momentum into its spin and orbital parts [1,2]. In the
strict sense, the spin and orbital parts of the angular momen-
tum are not separately meaningful physical quantities though
both of them have the unit of angular momentum. However,
it is still possible to separate the total angular momentum
into spin and orbital parts in a laboratory frame of reference
such that both satisfy the proper continuity relations and are
separately conserved quantities [1–3]. Both being conserved
quantities, their net flow into a volume can be associated with
a torque, it is Ref. [4] that first proposed the interesting con-
cept of deriving the optical torque from the separate spin and
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orbital parts of angular momentum. The analytical expression
given in Ref. [5] of optical torque acting on a dipolar particle
takes into account complex spatial structures of the incident
electromagnetic field. Such a treatment, if done properly,
should give more physical insights on the separation of spin
and orbital angular momentum involved in the interaction of
structured light and objects [6,7].

One of the most interesting results of Ref. [5] is the the-
oretical prediction of a torque dependent on the gradient of
helicity density. Studying early literature on optical torque
since Ashkin’s invention of optical tweezers [8,9], a few im-
portant works actually studied the optical torque on spherical
particles exerted by an inhomogenous electromagnetic field
based on generalized Mie theory [10–16]. In some of these
early works [11–13], the helicity density gradient is generally
nonzero in the incident optical beam. However, the dipolar
components of optical torque in these early results [11–13] do
not seem to contain the ‘gradient’ torque term as predicted in
Ref. [5], thus pointing to a contradiction.

In this work, we intend to clarify this discrepancy and clear
up the confusion. We rederive, from first principles and with
detailed derivations, both the traditional dipolar total torque
using total AM flux, and the spin and orbital torque compo-
nents based on the corresponding AM contributions, ensuring
that their sum agrees with the total torque. We also test our
derived analytical expressions against numerical integration,
with exact agreement. We find that “gradient” torque terms
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indeed exist in the spin and orbital components separately, but
we present corrected prefactors, such that upon adding them,
they cancel out, and the gradient term vanishes from the total
torque, reconciling literature results. The concept proposed
in Ref. [5] is still a very powerful tool to study the separate
SAM and OAM contributions of optical torque, providing
many advantages in understanding optical manipulations in
the interacting structured light and photonic nanostructures.

In the second part of the work, we derive the analyti-
cal expression of the optical torque acting on an isotropic
electromagnetic quadrupole in a general (inhomogeneous)
electromagnetic field. With the analytical result, we show
that the quadrupolar torque on an isotropic Mie particle is
still proportional to the absorption cross section, confirming
the transfer of the angular momentum to mechanical action
through absorption. However, the relevant physical property
of the incident beam that must be used to indicate the orienta-
tion of the optical torque is not the spin of the electromagnetic
field, but the spin of the EM field gradient. Using the two-
wave interference as an example, we show that there are
significant differences between the spin of the electromagnetic
field and the spin of the electromagnetic field gradient. As
a result, simply using the local EM field spin can give rise
to wrong predictions on the orientation of optical torque on
large particles with strong quadrupole resonance. We show
that an extraordinary transverse spin of the magnetic field
gradient appears in a field formed by purely TM-polarized
two wave interference, even though the magnetic field spin is
zero. Furthermore, some of the nonintuitive “negative” torque
that arises in the two-wave interference is often due to an
incorrect interpretation of the physical properties related to the
optical torque acting on a quadrupole and other higher-order
multipoles.

II. OPTICAL TORQUE AND ANGULAR MOMENTUM

It is well known that electromagnetic fields can carry linear
and angular momentum, and that angular momentum is a con-
served vector quantity. Consequently, if an electromagnetic
field shows a net flow of electromagnetic angular momentum
constantly flowing into a volume containing a material object,
we can conclude that the “missing” angular momentum is
being transferred to the object via a mechanical torque.

The flux density of the electromagnetic angular momentum

at every point in space is given by a tensor denoted as 〈←→M 〉.
This is a tensor because it contains information about the
flow of electromagnetic angular momentum (itself a vector
quantity) along each spatial direction. The time-averaged me-
chanical torque vector � can therefore be calculated as the
total flux integral of the time-averaged angular momentum

flux density 〈←→M 〉 over a closed surface surrounding the ob-
ject, as

� =
"

〈←→M 〉 · dS, (1)

In turn, the angular momentum flux is calculated as

〈←→M 〉 = r × 〈←→T 〉 where 〈←→T 〉 represents the time-averaged

flux density of electromagnetic linear momentum and is re-

ferred to as Maxwell’s stress tensor 〈←→T 〉 of the total field:

〈←→T 〉 = 1

2
�

{
ε0Etot ⊗ E∗

tot + μ0Htot ⊗ H∗
tot

− ε0|Etot|2 + μ0|Htot|2
2

←→
I

}
, (2)

where r = (r′ − r0), r0 is the location of the object, r′ denotes
a point on the surface S, and Etot = Einc + Esca and Htot =
Hinc + Hsca are the total electromagnetic fields.

In this report, we study the interaction between tiny ob-
jects and a time harmonic general (inhomogeneous) incident
electromagnetic field. A time dependence of e−iωt is assumed.
Since the integration of the angular momentum flux is done
relative to the center of the object, the mechanical action
on the object related to the optical torque corresponds to a
rotation about the object’s own center.

The time-averaged spin angular momentum flux 〈←→M s〉 and

orbital angular momentum flux 〈←→M o〉, which together make

up the total angular momentum flux density 〈←→M 〉 = 〈←→M s〉 +
〈←→M o〉, can be separately written as [2,5]

〈←→M s〉 = 1

2ω

{Etot ⊗ H∗

tot + H∗
tot ⊗ Etot − (Etot · H∗

tot )
←→

I },
(3)

〈←→M o〉 = 1

4ω

{E∗

tot ⊗ Htot + Htot ⊗ E∗
tot + [(r × ∇ ) ⊗ E∗

tot]

× Htot + [(r × ∇ ) ⊗ Htot] × E∗
tot}, (4)

The optical torque �s attributed to the spin angular momen-
tum flux can be calculated by

�s =
"

〈←→M s〉 · dS, (5)

while the optical torque �o attributed to the orbital angular
momentum flux can be calculated by

�o =
"

〈←→M o〉 · dS, (6)

such that they represent two physically distinct parts of the to-
tal torque � = �s + �o. Like the optical torque using the total
angular momentum flux, the torque �o arising from the orbital
angular momentum flux depends on a certain reference point

as 〈←→M o〉 has components that are dependent on the position
vector r. As before, this reference point is often considered at
the object’s own center when one only considers the optical
torque resulting in self-rotation of the object. However, the
optical torque �s attributed to the spin angular momentum flux
does not have this dependence and therefore this torque can be
calculated for any choice of coordinate origin.

III. PREDICTION OF A ‘GRADIENT’ TORQUE

We first follow the formulism in Ref. [17] and write down
the analytical expression (in SI units) of optical dipolar torque
�N derived from the total angular momentum flux,
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�N = 1

2
�{p∗ × Einc} + 1

2
�{m∗ × μ0Hinc} − k3

12πε0

{p∗ × p} − k3μ0

12π

{m∗ × m} + 3

4ω


{

1

ε0
(p · ∇ )H∗

inc − (m · ∇ )E∗
inc

}
.

(7)
We then follow the formulism in Ref. [5] and separate the total optical torque �N into a SAM related torque �s

N and OAM
related torque �o

N. �s
N and �o

N are derived following Eqs. (5) and (6), respectively, from the spin angular momentum flux and the
orbital angular momentum flux that satisfy separate conservation laws,

�s
N =1

2
�{p∗ × Einc} + 1

2
�{m∗ × μ0Hinc} − k3

24πε0

{p∗ × p} − k3μ0

24π

{m∗ × m}

+ 1

2ω


{

1

ε0
(p · ∇ )H∗

inc − (m · ∇ )E∗
inc

}
,

(8)

�o
N = − k3

24πε0

{p∗ × p} − k3μ0

24π

{m∗ × m} + 1

4ω


[

1

ε0
(p · ∇ )H∗

inc − (m · ∇ )E∗
inc

]
. (9)

For induced dipoles in an isotropic Mie particle as described in Appendix A, the total optical torque �N can further be
separated into an intrinsic part �int

N that is closely related to the local spin density and an extrinsic part �ext
N closely related to the

dipole moments and the local field gradient.

�int
N =1

2
�{p∗ × Einc} − k3

12πε0

{p∗ × p} + 1

2
�{m∗ × μ0Hinc} − k3μ0

12π

{m∗ × m}

=6π

k3
[�(a1) − |a1|2]se + 6π

k3
[�(b1) − |b1|2]sm,

se =1

2
ε0
{E∗

inc × Einc},

sm =1

2
μ0
{H∗

inc × Hinc},

(10)

where a1 is the Mie coefficient for an induced isotropic electric dipole and b1 is the Mie coefficient for an induced isotropic
magnetic dipole, whose relations with the induced dipolar polarizabilities are given in Appendix A.

The extrinsic torque �ext
N , as given in Ref. [5], can be reformulated using vector calculus identities,

�ext
N = 3

4ω


{

1

ε0
(p · ∇ )H∗

inc − (m · ∇ )E∗
inc

}

= 9π

2k4c0
�{a1(Einc · ∇ )H∗

inc − b1(Hinc · ∇ )E∗
inc}

= − 9π

2k4c0

�{a1} + �{b1}
2

∇ × �{Einc × H∗
inc} − 9π

2k4c0


{a1} + 
{b1}
2

∇
{Einc · H∗
inc}

+ 9π

2k4c0

�{a1} − �{b1}
2

{∇�{Einc · H∗
inc} + μ0
{H∗

inc × Hinc} − ε0
{E∗
inc × Einc}}

+ 9π

2k4c0


{a1} − 
{b1}
2

∇ × 
{Einc × H∗
inc}.

(11)

The total dipolar optical torque discussed in Ref. [5] should
correspond to the mechanical action of a particle rotating
about its own center. However, the extrinsic part in the total
dipolar torque expression implies that under certain condi-
tions, i.e., [
{a1} + 
{b1}] �= 0, the torque is dependent on the
gradient of the helicity density of the incident beam ∇
{Einc ·
H∗

inc}. Based on this, Ref. [5] predicted the existence of the
‘gradient’ torque. The gradient torque is said to exist as long
as the incident beam has a nonzero gradient of helicity density
∇
{Einc · H∗

inc}, and the nanoparticle has a nonzero imaginary

part of the dipolar Mie coefficients 
{a1} and 
{b1}. However,
unlike a spinning torque that introduces a rotation around the
particle’s own center, or a revolution torque that introduces a
rotation around a fixed reference point, it is difficult to inter-
pret what mechanical action the gradient torque introduces on
the dipolar particle.

In some of the early works [11–13] on optical torque,
the helicity density gradient is generally nonzero in the in-
cident optical beam. Therefore, according to the prediction
of Ref. [5], there should exist a gradient torque in these
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early results. However, the dipolar components of the optical
torque in [11–13] only show dependence on the absorption
cross section of the dipole coefficients, i.e., �{a1} − |a1|2 and
�{b1} − |b1|2. None of them has a dependence on 
{a1} and

{b1} which are linked to the existence of a gradient torque.
These early results seem to contradict the gradient torque
prediction in Ref. [5]. Reference [18] also presented a mul-
tipolar theory of optical torque on an isotropic Mie particle in
a general time-harmonic electromagnetic field. The analytical
expression of dipolar torque in [18] is exactly the same as the
intrinsic torque �int

N in Ref. [5]. Just as the intrinsic torque �int
N ,

the dipolar torque derived in Ref. [18] depends only on the ab-
sorption cross section and the local spin density, agreeing with
previous results [11–13]. However, the analytical expression
in Ref. [18] does not include extrinsic torque �ext

N , and thus no
torque that depends on the gradient of helicity density, again
pointing to a contradiction.

In this work, we try to clarify this discrepancy and confu-
sion on gradient torque. We rederive from first principles, with
detailed calculations in Appendices, the analytical expressions
of the dipolar torque both from the total angular momentum
flux but also from the separate spin and orbital AM fluxes,
ensuring that their sum exactly matches with the result ob-
tained from the total AM flux. We also test our analytical
expressions for the total torque against numerical integration
of the angular flux density, finding exact agreement. Our re-
sults on total dipolar torque agree with Ref. [18], and contain
only the intrinsic torque �int

N but not the extrinsic torque �ext
N

presented in Ref. [5]. However, in our derivation of optical
torques from the separate spin and orbital AM fluxes, we find
that both the spin AM part and the orbital AM part of the
dipolar torque contain components that are proportional to the
extrinsic torque �ext

N . To be specific, we obtained the same
analytical expression for SAM related torque as �s

N in Ref. [5].
However, we obtained a different coefficient for the extrinsic
part of the OAM related torque compared to the expression
�o

N given in Ref. [5]. In our derivation, the extrinsic parts in
the SAM and OAM related torques exactly cancel each other
out, and thus do not show in the total dipolar torque, which
allows their sum to match the torque calculated via the more
traditional conservation of total AM.

IV. ANALYTICAL EXPRESSION OF THE DIPOLAR
OPTICAL TORQUE

In this section, we study the interaction between a time
harmonic electromagnetic wave (described by its electric and
magnetic fields Einc and Hinc) and a tiny particle that can be
described by induced electromagnetic dipole moments. By
definition, the torque can be calculated by integrating the

total angular momentum flux 〈←→M 〉 = r × 〈←→T 〉 over a closed
surface centered at the origin,

� =
"

〈←→M 〉 · dS. (12)

Without loss of generality, we consider this enclosed sur-
face to be spherical. The time-averaged torque on the Mie

particle can then be expressed as

� =
"

〈←→M 〉 · dS

=
ˆ 2π

0

ˆ π

0
r × (〈←→T 〉 · n̂)r2 sin θdθdφ,

=�
ˆ 2π

0

ˆ π

0
(rn̂) ×

{
ε0

2
Etot (E∗

tot · n̂) + μ0

2
Htot (H∗

tot · n̂)

}

× r2 sin θdθdφ,

(13)
where r is the radius of the spherical surface and n̂ is the
outward radial unit vector normal to the surface.

Given the induced electric dipole moment p, the cor-
responding radiation field Ep and Hp can be analytically
calculated, as expressed in Appendix B. Knowing the total
electromagnetic field Etot = Einc + Ep and Htot = Hinc + Hp,
the analytical expression of optical torque on an induced
dipole by a general time-hamonic electromagnetic field can
be derived, as detailed in Appendix C based on the angular
momentum flux of the total field.

The dipolar torque �p, attributed to the interaction between
induced electric dipole and incident field, can be decomposed
into different parts,

�p = �inc + �p,mix + �p,recoil. (14)

From the derivation in Appendix C, the torque component
purely dependent on the incident field is

�inc = 0, (15)

the extinction torque component �p,mix, dependent on the
interference between incident and radiation fields, is analyt-
ically given

�p,mix = 1

2
�{p∗ × Einc}, (16)

and the recoil torque �p,recoil, as a result of self-interaction of
the induced electric dipole, is

�p,recoil = − k3

12πε0

{p∗ × p}. (17)

The total optical torque for an induced electric dipole in a
general optical field can therefore be written as

�p =1

2
�{p∗ × Einc} − k3

12πε0

{p∗ × p}, (18)

In the special case of an isotropic electric dipole as described
in Appendix A, one can easily relate the induced electric
dipole p to the incident electric field Einc, via the Mie polar-
izabilities, and therefore the optical torque can be written as a
function of polarizabilities and incident fields only, as

�p =6π

k3
[�(a1) − |a1|2]se,

se =ε0

2

{E∗

inc × Einc},
(19)

which indicates that the optical torque for an isotropic electric
dipole is proportional to the absorption cross section and the
local spin density of the incident electric field.
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The analytical expression of the optical torque for a mag-
netic dipole can be derived in a similar manner,

�m = 1

2
�{m∗ × μ0Hinc} − k3μ0

12π

{m∗ × m}, (20)

and in the case of an isotropic magnetic dipole,

�m =6π

k3
[�(b1) − |b1|2]sm,

sm =μ0

2

{H∗

inc × Hinc}.
(21)

As we can see from the above expressions, the total optical
torque on isotropic electric and magnetic dipoles derived from
the conservation of total AM does not contain the extrinsic
torque terms as in Refs. [5,17]. The transfer from spin to
torque is purely through absorption, and the only relevant
property of the incident field is its local spin angular momen-
tum even in the case of a complex incident optical field.

V. DIPOLAR TORQUE AND CONSERVATION LAWS FOR
SPIN AND ORBITAL PARTS OF THE ANGULAR

MOMENTUM

In this section, we follow the optical torque calculation
devised from the separate conservation laws for the spin
and orbital parts of angular momentum, first outlined in
Refs. [2,4], and we will see that after a careful derivation, their
sum will equal the total torque derived in the previous section.

The dipolar optical torque attributed to the spin angular
momentum flux �s and the torque attributed to the orbital
angular momentum flux �o can be calculated by integrating
the corresponding angular momentum flux as shown Eqs. (5)
and (6). Based on this method, the spin and orbital torques of
a general electromagnetic field acting on an induced electric
dipole can be analytically derived as detailed in Appendix D,

�s
p,mix = 1

2
�{p∗ × Einc} + 1

2ωε0

[(p · ∇ )H∗

inc],

�o
p,mix = − 1

2ωε0

[(p · ∇ )H∗

inc],

�s
p,recoil = − k3

24πε0

(p∗ × p),

�o
p,recoil = − k3

24πε0

(p∗ × p).

(22)

Similarly, the “spin” and “orbital” optical torque of a
general electromagnetic field acting on an induced magnetic
dipole can be analytically derived as,

�s
m,mix = μ0

2
�{m∗ × Hinc} − 1

2ω

{(m · ∇ )E∗

inc},

�o
m,mix = + 1

2ω

{(m · ∇ )E∗

inc},

�s
m,recoil = −k3μ0

24π

{m∗ × m},

�o
m,recoil = −k3μ0

24π

{m∗ × m}.

(23)

By adding up both the spin and orbital angular momentum
flux contributions, the optical torque on an electromagnetic

dipole, described by an electric dipole moment p and a mag-
netic dipole moment m, is given as

�p,mix = �s
p,mix + �o

p,mix = 1

2
�{p∗ × Einc},

�p,recoil = �s
p,recoil + �o

p,recoil = − k3

12πε0

{p∗ × p},

�m,mix = �s
m,mix + �o

m,mix = μ0

2
�{m∗ × Hinc},

�m,recoil = �s
m,recoil + �o

m,recoil = −k3μ0

12π

{m∗ × m}.

(24)

The resulting total dipolar torque

�d =�p,mix + �p,recoil + �m,mix + �m,recoil

=1

2
�{p∗ × Einc} − k3

12πε0

{p∗ × p} + μ0

2
�{m∗ × Hinc}

− k3μ0

12π

{m∗ × m}

(25)
agrees with the analytical expressions of dipolar torques
devised from total angular momentum flux. The “orbital”
optical torque on a source of combined electric and magnetic
dipole has the same structure as the extrinsic torque �ext

N in
Ref. [5], apart from a different coefficient. However, as it
can be seen, the difference means that this “extrinsic” type
of torque, which includes the “gradient torque,” is exactly
canceled when adding the spin and orbital angular momentum
contributions together.

VI. ON THE (NON) EXISTENCE OF “GRADIENT”
TORQUE

As discussed previously, Ref. [5] predicts the existence of
a gradient torque, i.e. an optical torque arises from a nonzero
gradient of helicity density and is depedent on the imaginary
part of the dipolar Mie coefficients 
(a1) and 
(b1). The
existence of a gradient torque challenges our understanding
of the nature of optical torque. Conventionally, we know that
optical torque introduces a mechanical action on an object be-
ing either rotation around its own center or revolution around
a fixed reference point. However, it is difficult to interpret
what mechanical action the gradient torque introduces on the
object. We try to examine this with an electromagnetic field
designed such that there are no torques except for the gradient
torque, if it exists at all.

We consider the special case of an electromagnetic field
built up by the coherent interference of multiple N circularly
polarized plane waves with constant radial wave vector kρ = k
and evenly distributed over the full 2π azimuthal directions
in the z = 0 plane. Each plane wave has an electric field
distribution Ev (φv ) = (êp + iês) E0

N exp{i(kêv ) · (ρêρ )}, where
ês(φv ) = −êφv

= sin φv êx − cos φv êy and êp(φv ) = −êz are
the unit vectors for transverse magnetic (TM or p-) and trans-
verse electric (TE or s-) polarization, and êv = − cos φv êx −
sin φv êy. In the limit of infinitely many beams as N → ∞, the
electromagnetic field built up can be analytically calculated as
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FIG. 1. (a) Gradient of helicity density of the designed optical field. (b) Total optical torque (unit N m) on a dipolar particle with Mie
coefficient b1 = 0.969 − 0.173i in the designed optical field (E0 = 1 V/m), based on the analytical results in Refs. [5,17]. (c) Optical torque
on the same particle calculated based on the numerical integration of total angular momentum flux; Analytical results of the optical torque
attributed to (d) the spin AM flux, (e) the orbital AM flux, and (f) the total AM flux.

Einc(ρ, φ, z) = 1

2π

ˆ 2π

0
[êp(φv ) + iês(φv )]E0exp{ikρ(êv · êρ )}dφv

= êxE0J1(kρ) sin φ − êyE0J1(kρ) cos φ − êzE0J0(kρ),

Hinc(ρ, φ, z) = −êxi
E0

Z0
J1(kρ) sin φ + êyi

E0

Z0
J1(kρ) cos φ + êzi

E0

Z0
J0(kρ), (26)

where Z0 = √
μ0/ε0 is the impedance of free space.

This electromagnetic field has the following properties:

Einc × H∗
inc = 0,


{E∗
inc × Einc} = 0, 
{H∗

inc × Hinc} = 0,

Einc · H∗
inc = i

E2
0

Z0

[
J2

1 (kρ) + J2
0 (kρ)

]
.

(27)

Based on the analytical results in Ref. [5] as given in
Eq. (11), placing an isotropic magnetic dipole in the designed
optical field would introduce an optical torque arising only
from the gradient torque:

�N = �s
N + �o

N

= �ext
N

= − 3

4ω

[(m · ∇ )E∗

inc]

= − 9π

4k4c0

(b1)∇
{Einc · H∗

inc}.

(28)

Figure 1(b) shows the optical torque distribution based
on this analytical result where a dipolar particle with b1 =

0.969 − 0.173i is placed in the z = 0 plane of the designed
beam. Since 
{H∗

inc × Hinc} = 0, the instrinsic parts of both
the mixed and recoil dipolar torque are zero. The optical
torque shown in Fig. 1(b), calculated according to the expres-
sions on Ref. [5], has only an extrinsic part and depends on

(b1) and on the gradient of helicity density 
{Einc · H∗

inc} as
shown in Fig. 1(a). As a result, the analytical results of Ref. [5]
give rise to a radially oriented torque across the incident beam
in the z = 0 plane.

In order to test the existence of the gradient torque, we
first calculate the optical torque numerically by integrating

the total angular momentum flux 〈←→M 〉 = r × 〈←→T 〉 over an
enclosed surface surrounding the particle. The numerically
calculated optical torque for the same dipole in the designed
beam is shown in Fig. 1(c), whose values are close to zero
(down to numerical errors) across the beam. On the other
hand, Figs. 1(d)–1(f) show the torque distributions attributed
to the spin, orbital and total AM fluxes based on our analytical
results given in Secs. V and IV. The numerically calculated
torque based on total angular momentum flux in Fig. 1(c)
does not show the radially oriented gradient torque across
the incident beam as predicted by by Ref. [5]. Instead, it
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agrees well with the intrinsic torque in Fig. 1(f) which is null
and dependent on local spin density μ0

2 
{H∗ × H} = 0. This
gradient torque structure does show up in the spin and orbital
parts of the torque as in Figs. 1(d)–1(f). However, as discussed
previously, the spin and orbital parts of the torque exactly
cancel each other, leading to a null total optical torque.

VII. ANALYTICAL EXPRESSION OF THE ISOTROPIC
QUADRUPOLAR OPTICAL TORQUE

Given the electric quadrupole moment
←→
Q e, the corre-

sponding radiation field EQe and HQe can be analytically
calculated, as expressed in Appendix B. Knowing the to-
tal electromagnetic field Etot = Einc + EQe and Htot = Hinc +
HQe, the analytical expression of optical torque on an induced
quadrupole by a general time-hamonic electromagnetic field
can be derived, as detailed in Appendix E based on the angular
momentum flux of the total field.

The quadrupolar torque �Qe and �Qm, attributed to
the interaction between an induced electric and magnetic
quadrupole in an isotropic Mie particle and a general elec-
tromagnetic field, can be analytically expressed as

�Qe = 120π

k5
[�{a2} − |a2|2]sQe,

�Qm = 120π

k5
[�{b2} − |b2|2]sQm,

(29)

where

sQe =
∑

u=x,y,z

ε0

6

{

De∗
u × De

u

}
,

sQm =
∑

u=x,y,z

μ0

6

{

Dm∗
u × Dm

u

}
,

De
u =

∑
v=x,y,z

êv[
←→De ]uv, Dm

u =
∑

v=x,y,z

êv[
←→Dm]uv,

[
←→De ]uv = ∂uEv + ∂vEu

2
, [

←→Dm]uv = ∂uHv + ∂vHu

2
.

(30)

In previous literature, the local EM field spin densities se

and sm are often used to indicate the orientation of the optical
torque [5,17,19,20]. Just like the dipolar case, the optical
torque acting on a quadrupole is proportional to the corre-
sponding quadrupolar absorption cross sections �{a2} − |a2|2
and �{b2} − |b2|2. However, the relevant physical properties
of the incident beam is not the spin densities of the EM field
se and sm, but rather the spin densities of the EM field gradient
sQe and sQm. As a result, simply using the local EM field spin
densities can give rise to wrong predictions on the orientation
and magnitude of optical torque.

The EM field spin vectors {se, sm} and the EM field gra-
dient spin vectors {sQe, sQm} can, perhaps unintuitively, show
very different behaviours, including having opposite orienta-
tions. This can be shown through examples. In the remaining
of this section, we will illustrate the differences in the very
simple case of two-wave interference [21], but differences will
appear in any general structured EM field.

The EM field, built up by two free-propagating plane waves
along the wave vectors k1 = kx êx + kzêz and k2 = −kx êx +
kzêz, can be described in the transverse magnetic (p−) and
transverse electric (s−) polarization basis,

E1 = (
E p

1 êp
1 + Es

1 ês
1

)
exp(ikxx + ikzz),

E2 = (
E p

2 êp
2 + Es

2 ês
2

)
exp(iϕ0 − ikxx + ikzz),

H1 = k1

Z0k
× E1, H2 = k2

Z0k
× E2,

where

ês
1 = êy, ês

2 = −êy, êp
1 = ês

1 × k1

k
, êp

2 = ês
2 × k2

k
,

(31)

Here we focus on the field properties that are related to the
optical torque in dipoles and quadrupoles. The field spin sm

[as given in Eq. (21)] and the field gradient spin sQm [as given
in Eq. (30)] are evaluated on the z = 0 plane:

sm
x =kxε0

k

{

E p∗
1 Es

1 − E p∗
2 Es

2

} + kxε0

k

{(

E p∗
1 Es

2 + Es∗
1 E p

2

)
exp(iϕ0 − 2ikxx)

}
,

sm
y =2kxkzε0

k2

{

Es∗
1 Es

2exp(iϕ0 − 2ikxx)
}
,

sm
z =kzε0

k

{

E p∗
1 Es

1 + E p∗
2 Es

2

} + kzε0

k

{(

Es∗
1 E p

2 − E p∗
1 Es

2

)
exp(iϕ0 − 2ikxx)

}
,

sQm
x =kxkε0

12

{

E p∗
1 Es

1 − E p∗
2 Es

2

} + kx
(
3k2

z − k2
x

)
ε0

12k

{(

E p∗
1 Es

2 + Es∗
1 E p

2

)
exp(iϕ0 − 2ikxx)

}
,

sQm
y =2kxkz

(
k2

z − k2
x

)
ε0

3k2

{

Es∗
1 Es

2exp(iϕ0 − 2ikxx)
} + kxkzε0

6

{

E p∗
1 E p

2 exp(iϕ0 − 2ikxx)
}
,

sQm
z =kzkε0

12

{

E p∗
1 Es

1 + E p∗
2 Es

2

} + kz
(
k2

z − 3k2
x

)
ε0

12k

{(

Es∗
1 E p

2 − E p∗
1 Es

2

)
exp(iϕ0 − 2ikxx)

}
.

(32)

For an induced magnetic dipole with Mie coefficient b1

in such a field, an optical torque �m = 6π
k3 [�(b1) − |b1|2]sm

will be exerted on the Mie particle. For an induced magnetic
quadrupole with Mie coefficient b2 in such a field, an optical
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FIG. 2. Optical torques on an induced magnetic dipole and magnetic quadrupole (with equal Mie coeffcients b1 = b2 = 0.802 − 0.047i)
in an electromagnetic field formed by two-wave interference, at varying x and incident angles θin. The y component of the optical torque 
m,y

(N m) on a pure magnetic dipole in the EM field formed by (a) two s-polarized plane waves (E p
1 = E p

2 = 1 V/m) and (b) two p-polarized plane
waves (Es

1 = Es
2 = 1 V/m); The y component of the optical torque on a pure magnetic quadrupole 
Qm,y in the EM field formed by (c) two

s-polarized plane waves and (d) two p-polarized plane waves; Illustrations of two-wave interference by (e) purely s-polarized plane waves and
(f) purely p-polarized plane waves.

torque �Qm = 120π
k5 [�{b2} − |b2|2]sQm is exerted on the Mie

particle.
In Figs. 2 and 3, we show a magnetic dipole and a magnetic

quadrupole with equal Mie coefficients b1 = b2 = 0.802 −
0.047i in three types of EM field built up by two-wave

interference: purely p-polarized plane waves (E p
1 = E p

2 = 1
V/m, corresponding to an intensity of 1.3 × 10−3 W/m2 in a
single beam), purely s-polarized plane waves (Es

1 = Es
2 = 1

V/m), and circularly polarized plane waves with the same
helicity (E p

1 = E p
2 = 1 V/m, Es

1 = Es
2 = i V/m).

FIG. 3. Nonzero components of optical torque on an induced magnetic dipole and magnetic quadrupole (with equal Mie coeffcients b1 =
b2 = 0.802 − 0.047i), at varying x and incident angles θin, in an electromagnetic field formed by two circularly polarized plane waves (E p

1 =
E p

2 = 1 V/m, Es
1 = Es

2 = i V/m). (a) y component of the optical torque 
m,y on a pure magnetic dipole; (b) z component of the optical torque

m,z on a pure magnetic dipole; (c) y component of the optical torque 
Qm,y on a pure magnetic quadrupole; (d) z component of the optical
torque 
Qm,z on a pure magnetic quadrupole.
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The differences between the field spin vector sm and the
field gradient spin vector sQm are shown in Eq. (32) and clearly
illustrated in Fig. 2. From Eq. (32), we can clearly see that the
electromagnetic field, built up by two purely TE (s-) polarized
plane waves, introduces both a transverse spin in the magnetic
field sm

y and a transverse spin in the magnetic field gradient
sQm

y . As can be seen from Eq. (32), both the transverse spins of
the magnetic field sm

y and magnetic field gradient sQm
y are gen-

erated via the interference effect 
{Es∗
1 Es

2exp(iϕ0 − 2ikxx)}.
However, the transverse spins of the magnetic field and field
gradient are strongly dependent on how the interfering elec-
tromagnetic field is structured. In the two-wave interference
cases, the structure of the resulting electromagnetic field is
dependent on the incidence angle θin (following the rela-
tions that kx = k sin θin and kz = k cos θin). We can see from
Eq. (32) that the transverse spin of the magnetic field has a
dependence of kxkz, while the transverse spin of the magnetic
field gradient has a dependence of kxkz(k2

z − k2
x ). kxkz does not

change sign with incidence angle θin varying from 0◦ to 90◦,
but kxkz(k2

z − k2
x ) will change sign around θin = 45◦. Exactly

at 45◦ when (k2
z − k2

x ) = 0, the transverse spin of the mag-
netic field gradient sQm

y is zero everywhere, regardless of the
interference effect. As a result, the interfering electromagnetic
field will exert a transverse optical torque (proportional to the
field spin sm

y ) on an isotropic magnetic dipole, as well as a
transverse torque (proportional to the field gradient spin sQm

y )
on an isotropic magnetic quadrupole. However, as shown in
Figs. 2(a) and 2(c), the optical torque acting on a magnetic
quadrupole 
Qm,y has a different dependence on incidence
angle θin from its dipolar counterpart 
m,y. The different
torques can be expressed analytically, together with their
ratio, as


m,y = 6π

k3
[�(b1) − |b1|2]

2kxkzε0

k2



× {
Es∗

1 Es
2exp(iϕ0 − 2ikxx)

}
,


Qm,y = 120π

k5
[�{b2} − |b2|2]

2kxkz
(
k2

z − k2
x

)
ε0

3k2



× {
Es∗

1 Es
2exp(iϕ0 − 2ikxx)

}
,


Qm,y


m,y
= 20

3

[�(b2) − |b2|2]

[�(b1) − |b1|2]

(
k2

z − k2
x

)
k2

. (33)

When θin is below 45◦, the torque on a magnetic
quadrupole 
Qm,y and the dipolar torque 
m,y are in phase,
as (k2

z − k2
x )/(k2) > 0. Above 45◦, the torque on a mag-

netic quadrupole 
Qm,y and the dipolar torque 
m,y are out
of phase, as (k2

z − k2
x )/(k2) < 0. In other words, the optical

torque acting on a magnetic quadrupole points along the
opposite orientation of the local magnetic field spin vector
sm. If one uses the local field spin vector sm to indicate
the orientation of the optical torque, this result might seem
counter-intuitive and be interpreted as a “negative” torque
[5,17,19,20]. However, as we demonstrated, this counter-
intuitive impression is due to the fact that the field spin
vector should not be used to predict the orientation of a
quadrupolar torque in the first place. Instead, the quadrupolar
torque is always aligned with the field gradient spin vector

as the absorption cross section is always a positive value for
an absorbing isotropic Mie particle, and thus a “positive”
torque.

The difference between dipolar and quadrupolar torque is
even starker in the case of an electromagnetic field built up
by two purely TM (p-) polarized plane waves. This type of
electromagnetic field does not have any magnetic field spin
as indicated in Eq. (32). As a result, it does not introduce
optical torque on an isotropic magnetic dipole as shown in
Fig. 2(b). However, a transverse spin of magnetic field gradi-
ent exists in the same electromagnetic field, and can introduce
a strong optical torque to a magnetic quadrupole as shown
in Fig. 2(d). Again this result argues against the use of local
field spin vector to indicate optical torque on an object beyond
the dipolar approximation, especially in a general structured
electromagnetic field. It is also very interesting to notice from
Figs. 2(a) and 2(d) the remarkable similarity between the
dipolar torque 
m,y for s-polarized two-wave interference and
the quadrupolar torque 
Qm,y for p-polarized two-wave inter-
ference, as they have the same incidence angle dependence of
(kxkz ).

In Fig. 3, we study an electromagnetic field set up by the
interference of two circularly polarized plane waves (E p

1 =
E p

2 = 1 V/m, Es
1 = Es

2 = i V/m). For this specific interfering
electromagnetic field, the spin properties can also be described
from Eq. (32). We can see that the x components of both the
field and field gradient spin are zero. The transverse spin of the
magnetic field is only dependent on the s-polarization compo-
nents of each wave, while the transverse spin of the magnetic
field gradient is dependent on both polarization components.
As discussed earlier, the transverse spin of the magnetic field
gradient in p polarized two-wave interference has the inci-
dence angle dependence of (kxkz ), while the transverse spin
of the magnetic field gradient in s polarized two-wave in-
terference has a dependence of kxkz(k2

z − k2
x ). Adding these

two together will lead to an overall weaker transverse spin
sQm

y for incidence angles above 45◦ and a shift of zero sQm
y

angle to around 52◦ in this specific case, as can been seen
in Fig. 3(c). The two types of EM field based on purely
p-polarized or purely s-polarized two-wave interference don’t
exhibit net spin densities when integrating the spin densities in
either x = 0, y = 0 or z = 0 plane. This can be easily derived
from Eq. (32) for these two cases and clearly shown in Fig. 2.
However, for the circularly polarized two wave interference,
there is a net nonzero spin density along the z direction when
integrating the spin of the EM field or field gradient in the
z = 0 plane. The z component of the optical torque on a
magnetic dipole 
m,z shows the interference fringe pattern
along x, but none of its values is negative. Only positive values
of torque are seen, aligned with the net magnetic field spin
density of the incident waves along the z direction, as shown
in Fig. 3(b). Meanwhile, the z component of the optical torque

Qm,z on a magnetic quadrupole shows locally negative values
compared to the net magnetic field spin density along z direc-
tion as shown in Fig. 3(d). They might be rightly interpreted
as ‘negative’ torques, with reference to the net spin densities
of the magnetic field gradient integrated across the entire
z = 0 plane. Yet when referred to the magnetic field gradient
spin vector, they are still positive torques for any absorbing
isotropic Mie particle.
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The results in Figs. 2 and 3 have also been verified
using numerical integration of the total angular momen-
tum flux, and agree with the results of our analytical
expressions.

VIII. CONCLUSIONS

In this report, we study the optical torque acting on
an induced multipole in an isotropic Mie particle and
a time harmonic general (inhomogeneous) electromagnetic
field.

We first try to address the confusion on the ‘extrinsic’
part of the dipolar torque present in Refs. [4,5], including the
prediction of a torque that is dependent on the gradient of
helicity density. With detailed calculations in the appendices,
we rederive the analytical expressions of the dipolar torque
in a general electromagnetic field by exploring the separate
conservation laws of the total, spin and orbital angular mo-
menta, a method proposed by Refs. [4,5]. We prove that the
‘gradient’ torque does not exist in an isotropic dipole. Though
the “extrinsic” type of terms exist in the analytical expressions
of dipolar torque attributed separately to the spin and orbital
parts of the angular momentum, they cancel exactly with each
other in the total dipolar torque.

In the second part of the work, we derive the analyti-
cal expression of the optical torque acting on an isotropic
electromagnetic quadrupole in a general (inhomogeneous)
electromagnetic field. With the analytical result, we show
that the quadrupolar torque on an isotropic Mie particle is
still proportional to the absorption cross section, confirming
the transfer of the angular momentum to mechanical action
through absorption. However, the relevant physical property
of the incident beam that must be used to indicate the orienta-
tion of the optical torque is not the spin of the electromagnetic
field, but the spin of the EM field gradient. Using the two-
wave interference as an example, we show that there are
significant differences between the spin of the electromagnetic
field and the spin of the electromagnetic field gradient. As
a result, simply using the local EM field spin can give rise
to wrong predictions on the orientation of optical torque on
large particles with strong quadrupole resonance. We show
that an extraordinary transverse spin of the magnetic field
gradient appears in a field formed by purely TM-polarized
two wave interference, even though the magnetic field spin is
zero. Furthermore, some of the nonintuitive negative torque
that arises in the two-wave interference is often due to an
incorrect interpretation of the physical properties related to the
optical torque acting on a quadrupole and other higher-order
multipoles.

Considering the growing interest from the nanophotonics
community on studying and understanding the mechanical
interaction between structured light and structured materials,
we felt the need to address some discrepancies in the lit-
erature. By using consistency checks, double-checking our
results using different methods, and scrutinizing our ex-
pressions via examples, we have produced what we feel
are trusty analytical expressions, which we hope serve the
community as much as it served us to clear up some
confusions and improve our understanding of the role of

angular momentum in the mechanical interaction of light
with matter.
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APPENDIX A: INDUCED DIPOLE AND QUADRUPOLE
MOMENTS IN ISOTROPIC MIE PARTICLES

For an isotropic Mie particle, the polarizabilities for elec-
tric dipole αe, magnetic dipole αm, electric quadrupole αQe

and magnetic quadrupole αQm are defined by the correspond-
ing Mie coefficients as follows:

αe = i
6π

k3
ε0a1, αm = i

6π

k3
b1,

αQe = i
120π

k5
ε0a2, αQm = i

120π

k5
b2.

The induced electric and magnetic dipole moments are vectors
determined by the EM dipole polarizabilities and the incident
EM field:

p = αeEinc, m = αmHinc. (A1)

The induced electric and magnetic quadrupole moments are
tensors determined by the EM quadrupole polarizabilities and
the incident EM field and the field gradients [22–24]:

←→
Q e = αQe

←→D e,
←→
Q m = αQm

←→D m, (A2)

where

←→D e = ∇ ⊗ Einc + Einc ⊗ ∇
2

,

←→D m = ∇ ⊗ Hinc + Hinc ⊗ ∇
2

.

(A3)

APPENDIX B: RADIATION FIELDS OF
ELECTROMAGNETIC DIPOLE AND QUADRUPOLE

Knowing the electromagnetic dipole and quadrupole mo-
ments, the corresponding radiation fields can be analytically
expressed [25]. The radiation fields of the dipoles are ex-
pressed as

Ep = k2

ε0
(
←→
G d · p),

Hp = −ikc0∇ × (
←→
G d · p) = −ikc0(gd × p),

Em = ik

c0ε0
∇ × (

←→
G d · m) = ik

c0ε0

(
gd × m

)
,

Hm = k2(
←→
G d · m),

(B1)
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where

←→
G d =

{(
1 + i

kr
− 1

(kr)2

)←→
I −

(
1 + 3i

kr
− 3

(kr)2

)
r̂ ⊗ r̂

}
eikr

4πr
,

gd =r̂
(

ik − 1

r

)
eikr

4πr
,

(B2)

with
←→

I being the 3-by-3 identity tensor.
The radiation fields of the quadrupoles are expressed as

EQe = k2

ε0
[
←→
G Q · (

←→
Q e · r̂)],

HQe = −ikc0∇ × [
←→
G Q · (

←→
Q e · r̂)] = −ikc0[gQ × (

←→
Q e · r̂)],

EQm = ik

c0ε0
∇ × [

←→
G Q · (

←→
Q m · r̂)] = ik

c0ε0
[gQ × (

←→
Q m · r̂)],

HQm = k2[
←→
G Q · (

←→
Q m · r̂)],

(B3)

where

←→
G Q =

{(
−1 − 3i

kr
+ 6

(kr)2
+ 6i

(kr)3

)←→
I +

(
1 + 6i

kr
− 15

(kr)2
− 15i

(kr)3

)
r̂ ⊗ r̂

}
ikeikr

24πr
,

gQ =r̂
[

1 + 3i

kr
− 3

(kr)2

]
k2eikr

24πr
.

(B4)

APPENDIX C: DERIVATION OF THE ANALYTICAL DIPOLAR TORQUE

In this section, we will outline the main derivation steps for the analytical expressions of optical torque �p on an electric
dipole in a general electromagnetic field. Assume an isotropic Mie particle is placed at the origin r0. As shown in Eq. (13), the
total optical torque be calculated by integerating the total angular momentum over an enclosed spherical surface surrounding the
object,

� =
ˆ 2π

0

ˆ π

0
r × (〈←→T 〉 · n̂)r2 sin θdθdφ,= �

ˆ 2π

0

ˆ π

0
(rn̂) ×

{ε0

2
Etot (E∗

tot · n̂) + μ0

2
Htot (H∗

tot · n̂)
}

r2 sin θdθdφ, (C1)

where r = r′ − r0 = rn̂, r′ denotes a point on the spherical surface, r is the radius of the spherical surface and n̂ is the outward
unit vector normal to the surface, n̂ = r̂ = nx êx + nyêy + nzêz (nx = sin θ cos φ, ny = sin θ sin φ and nz = cos θ ). Here we only
consider the torque contributed by the induced electric dipole and the incident field so that Etot (r′) = Einc(r′) + Ep(r′) and
Htot (r′) = Hinc(r′) + Hp(r′). The analytical expressions of optical torque on an electric dipole can be derived based on the
knowledge that the radiation field of an induced electric dipole can be analytically expression as in Appendixes A and B.

The optical torque �p, attributed to the interaction between the induced electric dipole and incident EM field, can be
decomposed into different parts as shown in Eq. (13) and Eq. (14), namely the torque component purely dependent on incident
EM field,

�inc = ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)(E∗

inc · n̂) sin θdθdφ + μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hinc)(H∗

inc · n̂) sin θdθdφ, (C2)

the extinction torque �p,mix dependent on the interference between incident and radiation fields

�p,mix = ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)(E∗

p · n̂) sin θdθdφ + ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Ep)(E∗

inc · n̂) sin θdθdφ

+ μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hinc)(H∗

p · n̂) sin θdθdφ + μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hp)(H∗

inc · n̂) sin θdθdφ, (C3)

and the recoil torque �p,recoil as a result of self-interaction of the induced electric dipole

�p,recoil = ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Ep)(E∗

p · n̂) sin θdθdφ + μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hp)(H∗

p · n̂) sin θdθdφ. (C4)
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Due to the fact that the angular momenta of the incident, radiation and total fields are separately conserved quantities, the
corresponding contributions to the dipolar torque can be calculated independent of the radius of the enclosed surface,

�p = lim
r→∞ �p(r) = lim

r→0
�p(r),

�inc = lim
r→∞ �inc(r) = lim

r→0
�inc(r),

�p,recoil = lim
r→∞ �p,recoil(r) = lim

r→0
�p,recoil(r),

�p,mix = lim
r→∞ �p,mix(r) = lim

r→0
�p,mix(r),

(C5)

It follows from Eqs. (B1) and (B2) that

H∗
p · n̂ = 0. (C6)

It is thus easy to prove that

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hinc)(H∗

p · n̂) sin θdθdφ = 0,

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hp)(H∗

p · n̂) sin θdθdφ = 0.

(C7)

In the small r limit that r → 0, we can approximate the incident electric field on the integration spherical surface, to the first
order as

Einc(r′) ≈ E0 + r(n̂ · ∇ )E0,

Hinc(r′) ≈ H0 + r(n̂ · ∇ )H0,
(C8)

where E0 = Einc(r0) and H0 = Hinc(r0).
The optical torque component �inc attributed purely to the incident EM field can be proven to be zero as follows:

�inc = lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)(E∗

inc · n̂) sin θdθdφ + lim
r→0

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hinc)(H∗

inc · n̂) sin θdθdφ

= lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × E0)(E∗

0 · n̂) sin θdθdφ + lim
r→0

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × H0)(H∗

0 · n̂) sin θdθdφ

= 0. (C9)

We then calculate the remaining nonzero terms of �p. The following properties related to n̂ have been used in the derivations:

ˆ 2π

0

ˆ π

0
nl sin θdθdφ = 0,

ˆ 2π

0

ˆ π

0
nunv sin θdθdφ = 4π

3
δuv,

ˆ 2π

0

ˆ π

0
nlnunv sin θdθdφ = 0,

(C10)

and
ˆ 2π

0

ˆ π

0
nlnunvnm sin θdθdφ = 0, except

ˆ 2π

0

ˆ π

0
(nu)4 sin θdθdφ = 4π

5
,

ˆ 2π

0

ˆ π

0
(nu)2(nv )2 sin θdθdφ = 4π

15
, u �= v.

(C11)

It follows from Eqs. (B1) and (B2) that

E∗
p · n̂ = k2e−ikr

4πε0r

[
2i

kr
+ 2

(kr)2

]
(p∗ · n̂), (C12)
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and using aforementioned properties of n̂, we can derive that

lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)(E∗

p · n̂) sin θdθdφ = lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)

k2e−ikr

4πε0r

[
2i

kr
+ 2

(kr)2

]
(p∗ · n̂) sin θdθdφ

= lim
r→0

�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)

e−ikr

4π
[ikr + 1](p∗ · n̂) sin θdθdφ

= 1

4π
�
ˆ 2π

0

ˆ π

0
(n̂ × E0)(p∗ · n̂) sin θdθdφ

= 1

3
�{p∗ × E0}.

(C13)
It follows from Eqs. (B1) and (B2) that

n̂ × Ep = k2eikr

4πε0r

[
1 + i

kr
− 1

(kr)2

]
(n̂ × p), (C14)

and using aforementioned properties of n̂, we can derive that

lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Ep)(E∗

inc · n̂) sin θdθdφ

= lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0

k2eikr

4πε0r

[
1 + i

kr
− 1

(kr)2

]
(n̂ × p)(E∗

inc · n̂) sin θdθdφ

= lim
r→0

�
ˆ 2π

0

ˆ π

0

eikr

8π
(k2r2 + ikr − 1)(n̂ × p)(E∗

inc · n̂) sin θdθdφ

= − 1

8π
�
ˆ 2π

0

ˆ π

0
(n̂ × p)(E∗

0 · n̂) sin θdθdφ

= 1

6
�{p∗ × E0}.

(C15)

It follows from Eqs. (B1) and (B2) that

n̂ × Hp = −ikc0eikr

4πr

[
ik − 1

r

]
[n̂ × (n̂ × p)], (C16)

it is easy to prove that

lim
r→0

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hp)(H∗

inc · n̂) sin θdθdφ

= lim
r→0

μ0r3

2
�
ˆ 2π

0

ˆ π

0

−ikc0eikr

4πr

[
ik − 1

r

]
[n̂ × (n̂ × p)](H∗

inc · n̂) sin θdθdφ

= lim
r→0

�
ˆ 2π

0

ˆ π

0

μ0c0eikr

8π
(k2r2 + ikr)[n̂ × (n̂ × p)](H∗

inc · n̂) sin θdθdφ

= 0. (C17)
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The last nonzero term contributing to the electric dipolar torque is the so called ‘recoil’ torque. Using the relations of (n̂ × Ep)
and (E∗

p · n̂) just derived, we can arrive at the analytical expression of �p,recoil:

�p,recoil = lim
r→∞

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Ep)(E∗

p · n̂) sin θdθdφ

= lim
r→∞

ε0r3

2
�
ˆ 2π

0

ˆ π

0

k2eikr

4πε0r

[
1 + i

kr
− 1

(kr)2

]
(n̂ × p)

k2e−ikr

4πε0r

[
2i

kr
+ 2

(kr)2

]
(p∗ · n̂) sin θdθdφ

= �
ˆ 2π

0

ˆ π

0

ik3

16π2ε0
[n̂ × p](p∗ · n̂) sin θdθdφ

= � ik3

16π2ε0

4π

3
{p∗ × p}

= − k3

12πε0

{p∗ × p}.

(C18)

The analytical expression of optical torque corresponding to an induced electric dipole of a particle positioned in a general
electromagnetic field is thus derived from the total angular momentum flux method. The analytical expression of a magnetic
dipole torque can be easily derived in a similar manner. Both analytical expressions can be given as

�p =1

2
�{p∗ × E0} − k3

12πε0

{p∗ × p}

=1

2
�{p∗ × Einc} − k3

12πε0

{p∗ × p},

�m =1

2
�{m∗ × μ0H0} − k3μ0

12π

{m∗ × m}

=1

2
�{m∗ × μ0Hinc} − k3μ0

12π

{m∗ × m}.

(C19)

For a combined electric and magnetic dipole, additional terms due to the interference of the electric and magnetic dipole
could arise. However, these are shown to be zero, following Eq. (B1), Eq. (B2), and the aforementioned properties of n̂, it is easy
to prove that

�pm,recoil = ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Ep)(E∗

m · n̂) sin θdθdφ + ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Em )(E∗

p · n̂) sin θdθdφ

+ ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hp)(H∗

m · n̂) sin θdθdφ + ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hm )(H∗

p · n̂) sin θdθdφ

= lim
r→∞

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Em )(E∗

p · n̂) sin θdθdφ + lim
r→∞

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hp)(H∗

m · n̂) sin θdθdφ

= 0. (C20)

To summarize, the dipolar optical torque in a general electromagnetic field can be expressed as

�d = �p + �m. (C21)

APPENDIX D: DERIVATION OF THE ANALYTICAL “SPIN” AND “ORBITAL” DIPOLAR TORQUE

In this section, a brief derivation of the optical torque acting on an electric dipole using the spin and orbital angular momentum
flux method is shown, and the optical torque acting on a magnetic dipole can be derived in a similar way. The optical torque

attributed to the spin angular momentum flux 〈←→M s〉 can be derived by integrating the SAM flux over a spherical surface with
the object at its center as defined in previous section,

�s
p =

ˆ 2π

0

ˆ π

0
(〈←→M s〉 · n̂)r2 sin θdθdφ,

=
ˆ 2π

0

ˆ π

0

1

2ω

{Etot (H∗

tot · n̂) + H∗
tot (Etot · n̂) − (Etot · H∗

tot )n̂}r2 sin θdθdφ, (D1)

where Etot (r′) = Einc(r′) + Ep(r′) and Htot (r′) = Hinc(r′) + Hp(r′).
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The SAM related torque on an electric dipole �s
p can also be separated into three parts,

�s
p = �s

inc + �s
p,mix + �s

p,recoil, (D2)

where �s
inc depends purely on the incident field,

�s
inc =

ˆ 2π

0

ˆ π

0

1

2ω

{Einc(H∗

inc · n̂) + H∗
inc(Einc · n̂) − (Einc · H∗

inc)n̂}r2 sin θdθdφ. (D3)

�s
p,mix relies on the interference between the incident and radiation field,

�s
p,mix =

ˆ 2π

0

ˆ π

0

1

2ω

{Einc(H∗

p · n̂) + Ep(H∗
inc · n̂) + H∗

inc(Ep · n̂) + H∗
p(Einc · n̂) − (Einc · H∗

p + Ep · H∗
inc)n̂}r2 sin θdθdφ,

(D4)
while �s

p,recoil is attributed to the radiation field only,

�s
p,recoil =

ˆ 2π

0

ˆ π

0

1

2ω

{Ep(H∗

p · n̂) + H∗
p(Ep · n̂) − (Ep · H∗

p )n̂}r2 sin θdθdφ. (D5)

Due to the fact that the spin angular momenta of the incident, radiation and total fields are separately conserved quantities,
the corresponding contributions to the dipolar torque can be calculated independent of the radius of the enclosed surface,

�s
p = lim

r→∞ �s
p(r) = lim

r→0
�s

p(r),

�s
inc = lim

r→∞ �s
inc(r) = lim

r→0
�s

inc(r),

�s
p,recoil = lim

r→∞ �s
p,recoil(r) = lim

r→0
�s

p,recoil(r),

�s
p,mix = lim

r→∞ �s
p,mix(r) = lim

r→0
�s

p,mix(r).

(D6)

In the small r limit that r → 0, using the approximation that Einc(r′) ≈ E0 + r(n̂ · ∇ )E0 and Hinc(r′) ≈ H0 + r(n̂ · ∇ )H0, it
is easy to prove that the optical torque component �s

inc attributed purely to the incident field is zero:

�s
inc = lim

r→0

ˆ 2π

0

ˆ π

0

1

2ω

{Einc(H∗

inc · n̂) + H∗
inc(Einc · n̂) − (Einc · H∗

inc)n̂}r2 sin θdθdφ

= lim
r→0

r2
ˆ 2π

0

ˆ π

0

1

2ω

{E0(H∗

0 · n̂) + H∗
0(E0 · n̂) − (E0 · H∗

0 )n̂} sin θdθdφ

= 0.

(D7)

The various components of �s
p,mix can be derived following a similar method as in the previous section, using the dipolar

radiation field properties in Eqs. (B1) and (B2), the aforementioned integration properties of the unit vector n̂, and the
approximation of the incident field in the small r limit Einc(r′) ≈ E0 + r(n̂ · ∇ )E0 and Hinc(r′) ≈ H0 + r(n̂ · ∇ )H0. Their
analytical results are listed below: ˆ 2π

0

ˆ π

0

1

2ω

{Einc(H∗

p · n̂)}r2 sin θdθdφ = 0, (D8)

lim
r→0

ˆ 2π

0

ˆ π

0

1

2ω

{H∗

p(Einc · n̂)}r2 sin θdθdφ = 

ˆ 2π

0

ˆ π

0

{ −i

8π
(n̂ × p∗)(E0 · n̂)

}
sin θdθdφ

= 1

6
�{p∗ × E0},

(D9)

lim
r→0

ˆ 2π

0

ˆ π

0

1

2ω

{−(Einc · H∗

p )n̂}r2 sin θdθdφ = 

ˆ 2π

0

ˆ π

0

{ i

8π
[(n̂ × p∗) · E0]n̂

}
sin θdθdφ

= 1

6
�{p∗ × E0},

(D10)

lim
r→0

ˆ 2π

0

ˆ π

0

1

2ω

{Ep(H∗

inc · n̂)}r2 sin θdθdφ = 

ˆ 2π

0

ˆ π

0

−1

8πωε0
{[(n̂ · ∇ )H∗

0] · n̂}p sin θdθdφ

+ 

ˆ 2π

0

ˆ π

0

3

8πωε0
{[(n̂ · ∇ )H∗

0] · n̂}(n̂ · p)n̂ sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

3

8πωε0
{[(n̂ · ∇ )H∗

0] · n̂}(n̂ · p)n̂ sin θdθdφ

= 1

10
�{p∗ × E0} + 1

5ωε0

{(p · ∇ )H∗

0}, (D11)
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lim
r→0

ˆ 2π

0

ˆ π

0

1

2ω

{H∗

inc(Ep · n̂)}r2 sin θdθdφ = 

ˆ 2π

0

ˆ π

0

{
1

4πωε0
(n̂ · p)[(n̂ · ∇ )H∗

0]

}
sin θdθdφ

= 1

3ωε0

{(p · ∇ )H∗

0},
(D12)

lim
r→0

ˆ 2π

0

ˆ π

0

1

2ω

{−(Ep · H∗

inc)n̂}r2 sin θdθdφ = 

ˆ 2π

0

ˆ π

0

{
1

8πωε0
{[(n̂ · ∇ )H∗

0] · p}n̂
}

sin θdθdφ

+ 

ˆ 2π

0

ˆ π

0

−3

8πωε0
{[(n̂ · ∇ )H∗

0] · n̂}(n̂ · p)n̂ sin θdθdφ

= 1

6
�(p∗ × E0) + 1

6ωε0

[(p · ∇ )H∗

0]

−
{

1

10
�(p∗ × E0) + 1

5ωε0

[(p · ∇ )H∗

0]

}
. (D13)

From the above results, we can get the analytical expression for �s
p,mix

�s
p,mix = 1

2
�{p∗ × Einc} + 1

2ωε0

{(p · ∇ )H∗

inc}. (D14)

Similarly, the various components of �s
p,recoil can be derived using the dipolar radiation field properties in Eq. (B1) and

Eq. (B2) and the aforementioned integration properties of the unit vector n̂ in the large r limit as r → ∞,

lim
r→∞

ˆ 2π

0

ˆ π

0

1

2ω

{H∗

p(Ep · n̂)}r2 sin θdθdφ = 0,

ˆ 2π

0

ˆ π

0

1

2ω

{Ep(H∗

p · n̂)}r2 sin θdθdφ = 0,

(D15)

lim
r→∞

ˆ 2π

0

ˆ π

0

1

2ω

{−(Ep · H∗

p )n̂}r2 sin θdθdφ = 

ˆ 2π

0

ˆ π

0

{
− k3

32π2ε0
[(n̂ × p∗) · p]n̂

}
sin θdθdφ

= − k3

24π2ε0

{p∗ × p}, (D16)

and we can get the analytical expression for �s
p,recoil as

�s
p,recoil = − k3

24π2ε0

{p∗ × p}. (D17)

The optical torque on an electric dipole attributed to the orbital angular momentum flux can be calculated from

�o =
ˆ 2π

0

ˆ π

0
(〈←→M o〉 · n̂)r2 sin θdθdφ,

=
ˆ 2π

0

ˆ π

0

−1

4ω

{Etot (H∗

tot · n̂) + H∗
tot (Etot · n̂)}r2 sin θdθdφ

+
ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ E∗

tot] × Htot} · n̂r2 sin θdθdφ

+
ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ Htot] × E∗

tot} · n̂r2 sin θdθdφ. (D18)

In the following derivation, both expressions of ∇ in the Cartesian and spherical coordinates are applied such that

rn̂ × ∇ = r(êxnx + êyny + êznz ) ×
(

êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z

)

= rr̂ × ∇

= θ̂
∂

∂θ

+ φ̂
1

sin θ

∂

∂φ

. (D19)

The OAM related torque on an electric dipole �o
p can be separated into three parts,

�o
p = �o

inc + �o
p,mix + �o

p,recoil, (D20)
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where �o
inc depends purely on the incident field,

�o
inc =

ˆ 2π

0

ˆ π

0

−1

4ω

{Einc(H∗

inc · n̂) + H∗
inc(Einc · n̂)}r2 sin θdθdφ

+
ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ E∗

inc] × Hinc} · n̂r2 sin θdθdφ

+
ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ Hinc] × E∗

inc} · n̂r2 sin θdθdφ, (D21)

�o
p,mix relies on the interference between the incident and radiation field,

�o
p,mix =

ˆ 2π

0

ˆ π

0

−1

4ω

{Einc(H∗

p · n̂) + H∗
p(Einc · n̂) + Ep(H∗

inc · n̂) + H∗
inc(Ep · n̂)}r2 sin θdθdφ

+
ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ E∗

inc] × Hp + [(rn̂ × ∇ ) ⊗ E∗
p] × Hinc} · n̂r2 sin θdθdφ

+
ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ Hp] × E∗

inc + [(rn̂ × ∇ ) ⊗ Hinc] × E∗
p} · n̂r2 sin θdθdφ, (D22)

while �o
p,recoil is attributed to the radiation field only,

�o
p,recoil =

ˆ 2π

0

ˆ π

0

−1

4ω

{Ep(H∗

p · n̂) + H∗
p(Ep · n̂)}r2 sin θdθdφ +

ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ E∗

p] × Hp} · n̂r2 sin θdθdφ

+
ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ Hp] × E∗

p} · n̂r2 sin θdθdφ. (D23)

Due to the fact that the orbital angular momenta of the incident, radiation and total fields are separately conserved quantities,
the corresponding contributions to the dipolar torque can be calculated independent of the radius of the enclosed surface,

�o
p = lim

r→∞ �o
p(r) = lim

r→0
�o

p(r),

�o
inc = lim

r→∞ �o
inc(r) = lim

r→0
�o

inc(r),

�o
p,recoil = lim

r→∞ �o
p,recoil(r) = lim

r→0
�o

p,recoil(r),

�o
p,mix = lim

r→∞ �o
p,mix(r) = lim

r→0
�o

p,mix(r).

(D24)

In the small r limit that r → 0, using the approximation that Einc(r′) ≈ E0 + r(n̂ · ∇ )E0 and Hinc(r′) ≈ H0 + r(n̂ · ∇ )H0, it
is easy to prove that the optical torque component �s

inc attributed purely to the incident field is zero:

�o
inc = lim

r→0
r2
ˆ 2π

0

ˆ π

0

−1

4ω

{E0(H∗

0 · n̂) + H∗
0(E0 · n̂)} sin θdθdφ

+ lim
r→0

r2
ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ E∗

0] × H0} · n̂ sin θdθdφ

+ lim
r→0

r2
ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ H0] × E∗

0} · n̂ sin θdθdφ,

= 0. (D25)

The various components of �o
p,mix can be derived as follows. First of all, using the analytical expressions of integrals developed

when deriving �s
p,mix, one can easily arrive at the result that

ˆ 2π

0

ˆ π

0

−1

4ω

{Einc(H∗

p · n̂) + H∗
p(Einc · n̂) + Ep(H∗

inc · n̂) + H∗
inc(Ep · n̂)}r2 sin θdθdφ

= lim
r→0

ˆ 2π

0

ˆ π

0

−1

4ω

{H∗

p(Einc · n̂) + Ep(H∗
inc · n̂) + H∗

inc(Ep · n̂)}r2 sin θdθdφ

= − 2

15
�{p × E∗

0} − 4

15ωε0

{(p · ∇ )H∗

0}, (D26)
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Using the dipolar radiation field properties in Eqs. (B1) and (B2) and the aforementioned integration properties of the unit
vector n̂, one can arrive at the following result:

lim
r→0

ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ E∗

inc] × Hp} · n̂r2 sin θdθdφ

= lim
r→0



ˆ 2π

0

ˆ π

0

i

16π
{[(rn̂ × ∇ ) ⊗ E∗

inc] × (n̂ × p)} · n̂ sin θdθdφ

= 0. (D27)

Using the dipolar radiation field properties in Eqs. (B1) and (B2), the aforementioned integration properties of the unit vector
n̂, and the approximation of the incident field in the small r limit Einc(r′) ≈ E0 + r(n̂ · ∇ )E0 and Hinc(r′) ≈ H0 + r(n̂ · ∇ )H0,
one can derive that

lim
r→0

ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ E∗

p] × Hinc} · n̂r2 sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

i3k

16πωε0
{{(rn̂ × ∇ ) ⊗ [(p∗ · n̂)n̂]} × H0} · n̂ sin θdθdφ

+ 

ˆ 2π

0

ˆ π

0

3

16πωε0
{{(rn̂ × ∇ ) ⊗ [(p∗ · n̂)n̂]} × [(n̂ · ∇ )H0]} · n̂ sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

3

16πωε0
{{(rn̂ × ∇ ) ⊗ [(p∗ · n̂)n̂]} × [(n̂ · ∇ )H0]} · n̂ sin θdθdφ

= 1

20
�{p∗ × E0} − 3

20ωε0

{(p · ∇ )H∗

0}. (D28)

In the derivation of Eq. (D28), the following identity relations are applied:

(rn̂ × ∇ ) ⊗ [(p∗ · n̂)n̂]

=
⎛
⎝ −p∗

ynxnz + p∗
z nxny −p∗

xnxnz − 2p∗
ynynz − p∗

z (n2
z − n2

y ) p∗
xnxny + p∗

y (n2
y − n2

z ) + 2p∗
z nynz

2p∗
xnxnz + p∗

ynynz + p∗
z (n2

z − n2
x ) p∗

xnynz − p∗
z nxny −p∗

x (n2
x − n2

z ) − p∗
ynxny − 2p∗

z nxnz

−2p∗
xnxny − p∗

y (n2
y − n2

x ) − p∗
z nynz p∗

x (n2
x − n2

y ) + 2p∗
ynxny + p∗

z nxnz −p∗
xnynz + p∗

ynxnz

⎞
⎠

=
⎛
⎝ nx[êx · (n̂ × p∗)] −nz(p∗ · n̂) + ny

[
êx · (n̂ × p∗)

]
ny(p∗ · n̂) + nz[êx · (n̂ × p∗)]

nz(p∗ · n̂) + nx[êy · (n̂ × p∗)] ny[êy · (n̂ × p∗)] −nx(p∗ · n̂) + nz[êy · (n̂ × p∗)]
−ny(p∗ · n̂) + nx[êz · (n̂ × p∗)] nx(p∗ · n̂) + ny[êz · (n̂ × p∗)] nz[êz · (n̂ × p∗)]

⎞
⎠

= (p∗ · n̂)[(rn̂ × ∇ ) ⊗ n̂] + (n̂ × p∗) ⊗ n̂, (D29)

and

[
←→
A × a]il =

∑
jk

ε jkl [
←→
A ]i j[a]k, (D30)

where ε jkl is the Levi-Civita symbol.
Using the dipolar radiation field properties in Eqs. (B1) and (B2), the aforementioned integration properties of the unit vector

n̂, and the approximation of the incident field in the small r limit Einc(r′) ≈ E0 + r(n̂ · ∇ )E0 and Hinc(r′) ≈ H0 + r(n̂ · ∇ )H0,
one can derive that

lim
r→0

ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ Hinc] × E∗

p} · n̂r2 sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

−1

16πωε0
{[(n̂ × ∇ ) ⊗ H0] × p∗} · n̂ sin θdθdφ

+ 

ˆ 2π

0

ˆ π

0

3

16πωε0
{[(n̂ × ∇ ) ⊗ H0] × [(p∗ · n̂)n̂]} · n̂ sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

−1

16πωε0
{[(n̂ × ∇ ) ⊗ H0] × p∗} · n̂ sin θdθdφ

= − 1

12ωε0

{(p · ∇ )H∗

0}. (D31)
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Using the dipolar radiation field properties in Eqs. (B1) and (B2), the aforementioned integration properties of the unit vector
n̂, and the approximation of the incident field in the small r limit Einc(r′) ≈ E0 + r(n̂ · ∇ )E0 and Hinc(r′) ≈ H0 + r(n̂ · ∇ )H0,
one can derive that

lim
r→0

ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ Hp] × E∗

inc} · n̂r2 sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

i

16π
{[(rn̂ × ∇ ) ⊗ (n̂ × p)] × E∗

0} · n̂ sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

i

16π
{{[(rn̂ × ∇ ) ⊗ n̂] × p} × E∗

0} · n̂ sin θdθdφ

= 1

12
�{p∗ × E0}, (D32)

where the following identity relation is applied in the derivation:

(rn̂ × ∇ ) ⊗ n̂ =
⎛
⎝ 0 −nz ny

nz 0 −nx

−ny nx 0

⎞
⎠. (D33)

From above results, we can get the analytical expression for �o
p,mix

�o
p,mix = − 1

2ωε0

[(p · ∇ )H∗

inc], (D34)

The components of �o
p,recoil can be derived using the dipolar radiation field properties in Eqs. (B1) and (B2) and the

aforementioned integration properties of the unit vector n̂ in the large r limit as r → ∞,

ˆ 2π

0

ˆ π

0

−1

4ω

{Ep(H∗

p · n̂) + H∗
p(Ep · n̂)}r2 sin θdθdφ = lim

r→∞

ˆ 2π

0

ˆ π

0

−1

4ω

{H∗

p(Ep · n̂)}r2 sin θdθdφ

= 0,

(D35)

lim
r→∞

ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ E∗

p] × Hp} · n̂r2 sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

k3

64π2ε0
{{(rn̂ × ∇ ) ⊗ [p∗ − (p∗ · n̂)n̂]} × (n̂ × p)} · n̂ sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

k3

64π2ε0
{{(rn̂ × ∇ ) ⊗ [−(p∗ · n̂)n̂]} × (n̂ × p)} · n̂ sin θdθdφ

= − k3

48π2ε0

(p∗ × p),

(D36)

lim
r→∞

ˆ 2π

0

ˆ π

0

1

4ω

{[(rn̂ × ∇ ) ⊗ Hp] × E∗

p} · n̂r2 sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

k3

64π2ε0
{{(rn̂ × ∇ ) ⊗ (n̂ × p)} × [p∗ − (p∗ · n̂)n̂]} · n̂ sin θdθdφ

= 

ˆ 2π

0

ˆ π

0

k3

64π2ε0
{{(rn̂ × ∇ ) ⊗ (n̂ × p)} × p∗} · n̂ sin θdθdφ

= − k3

48π2ε0

(p∗ × p),

(D37)

and we can get the analytical expression for �o
p,recoil as

�o
p,recoil = − k3

24π2ε0

{p∗ × p}. (D38)
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APPENDIX E: DERIVATION OF THE ANALYTICAL EXPRESSION OF THE OPTICAL TORQUE ON AN INDUCED
ELECTRIC QUADRUPOLE

In this section, a detailed derivation for the analytical expression of the optical quadrupolar torque �Qe is provided. �Qe is
derived in the same way as the dipolar torques using the total angular momentum flux,

� =�
ˆ 2π

0

ˆ π

0
(rn̂) ×

{ε0

2
Etot (E∗

tot · n̂) + μ0

2
Htot (H∗

tot · n̂)
}

r2 sin θdθdφ, (E1)

where we only consider the torque contributed by the induced electric quadrupole and the incident field so that Etot (r′) =
Einc(r′) + EQe(r′) and Htot (r′) = Hinc(r′) + HQe(r′).

Like the dipolar torque, �Qe attributed to the interaction between the induced electric quadrupole and incident field can be
decomposed into different parts,

�Qe = �inc + �Qe,mix + �Qe,recoil. (E2)

As known in previous sections, the torque component purely dependent on the incident field does not contribute to the total
quadrupolar torque,

�inc = 0, (E3)

while the extinction torque �Qe,mix, as a result of the interference between incident and radiation fields, can be separated into
different components as

�Qe,mix = ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)(E∗

Qe · n̂) sin θdθdφ + ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × EQe)(E∗

inc · n̂) sin θdθdφ

+ μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hinc)(H∗

Qe · n̂) sin θdθdφ + μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × HQe)(H∗

inc · n̂) sin θdθdφ (E4)

and the recoil torque �Qe,recoil as a result of self-interaction of the induced electric quadrupole is expressed as

�Qe,recoil = ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × EQe)(E∗

Qe · n̂) sin θdθdφ + μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × HQe)(H∗

Qe · n̂) sin θdθdφ. (E5)

Due to the fact that the angular momenta of the incident, radiation, and total fields are separately conserved quantities, the
corresponding contributions to the dipolar torque can be calculated independent of the radius of the enclose surface,

�Qe = lim
r→∞ �Qe(r) = lim

r→0
�Qe(r),

�Qe,recoil = lim
r→∞ �Qe,recoil(r) = lim

r→0
�Qe,recoil(r),

�Qe,mix = lim
r→∞ �Qe,mix(r) = lim

r→0
�Qe,mix(r).

(E6)

It follows from Eqs. (B3) and (B4) that

H∗
Qe · n̂ = 0. (E7)

It is thus easy to prove that

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Hinc)(H∗

Qe · n̂) sin θdθdφ = 0,

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × HQe)(H∗

Qe · n̂) sin θdθdφ = 0.

(E8)

The analytical expressions of the remaining nonzero terms of �Qe can be derived as follows.
It follows from Eqs. (B3) and (B4) that

E∗
Qe · n̂ =−ik3e−ikr

24πε0r

[−3i

kr
+ 9

(kr)2
+ 9i

(kr)3

][
(
←→
Q e∗ · n̂) · n̂

]
. (E9)
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Using the aforementioned properties of n̂ and the approximation that Einc(r) ≈ E0 + r(n̂ · ∇ )E0, we can derive that

lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)(E∗

Qe · n̂) sin θdθdφ

= ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × E0) × −ik3

24πε0r

[
9

(kr)2

][
(
←→
Q e∗ · n̂) · n̂

]
sin θdθdφ

+ ε0r3

2
�
ˆ 2π

0

ˆ π

0
{n̂ × [(rn̂ · ∇ )E0]} −ik3

24πε0r

[
9i

(kr)3

][
(
←→
Q e∗ · n̂) · n̂

]
sin θdθdφ

= �−3ik

16π

ˆ 2π

0

ˆ π

0
(n̂ × E0)[(

←→
Q e∗ · n̂) · n̂] sin θdθdφ + � 3

16π

ˆ 2π

0

ˆ π

0
{n̂ × [(n̂ · ∇ )E0]}[(←→Q e∗ · n̂) · n̂] sin θdθdφ

= � 3

16π

ˆ 2π

0

ˆ π

0
{n̂ × [(n̂ · ∇ )E0]}[(←→Q e∗ · n̂) · n̂] sin θdθdφ

= �
{

ikZ0

10
H0

( ∑
u=x,y,z

Qe∗
uu

)}
− �

{
ikZ0

20
(
←→
Q e∗ · H0)

}
+ 1

10
�

{ ∑
u=x,y,z

Qe∗
u × De

u

}
,

(E10)
where we introduce the notation that De

u = ∑
v=x,y,z êv[

←→De ]uv and Qe
u = ∑

v=x,y,z êv[
←→
Qe ]uv

For an induced electric quadrupole moment in an isotropic Mie particle in which Qe
u = αQeDe

u, using the relations in Eqs. (A2)
and (A3) so that

∑
u=x,y,z Qe∗

uu = 0 and the fact that De∗
u × De

u are purely imaginary, Eq. (E10) is reduced to

lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)(E∗

Qe · n̂) sin θdθdφ = �
{−ikZ0

20
(
←→
Q e∗ · H0)

}
+ 
{αQe}

10

∑
u=x,y,z


{
De∗

u × De
u

}
. (E11)

It follows from Eqs. (B3) and (B4) that

n̂ × EQe = ik3eikr

24πε0r

[
−1 − 3i

kr
+ 6

(kr)2
+ 6i

(kr)3

]
[n̂ × (

←→
Q e · n̂)], (E12)

and using the aforementioned properties of n̂ and the approximation that Einc(r) ≈ E0 + r(n̂ · ∇ )E0, we can derive that

lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × EQe)(E∗

inc · n̂) sin θdθdφ

= ε0r3

2
�
ˆ 2π

0

ˆ π

0

ik3

24πε0r

[
6

(kr)2

]
[n̂ × (

←→
Q e · n̂)](E∗

0 · n̂) sin θdθdφ

+ ε0r3

2
�
ˆ 2π

0

ˆ π

0

ik3

24πε0r

[
6i

(kr)3

]
[n̂ × (

←→
Q e · n̂)]{[(rn̂ · ∇ )E∗

0] · n̂} sin θdθdφ

= �−1

8π

ˆ 2π

0

ˆ π

0
[n̂ × (

←→
Q e · n̂)]{[(n̂ · ∇ )E∗

0] · n̂} sin θdθdφ

= 1

15
�

{ ∑
u=x,y,z

(
←→
Q e∗ · êu) × (

←→
D e · êu)

}

= 1

15
�

{ ∑
u=x,y,z

Qe∗
u × De

u

}
.

(E13)

For an induced electric quadrupole moment in an isotropic Mie particle, this is equivalent to

lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × EQe)(E∗

inc · n̂) sin θdθdφ = 1

15
�

{ ∑
u=x,y,z

Qe∗
u × De

u

}

= 
{αQe}
15

∑
u=x,y,z


{
De∗

u × De
u

}

= 
{αQe}
15



{∑

j

ê j

∑
l

∑
u

∑
v

ε jlv[
←→De ]∗lu[

←→De ]uv

}
.

(E14)
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It follows from Eqs. (B3) and (B4) that

n̂ × HQe = −ik3c0eikr

24πr

[
1 + 3i

kr
− 3

(kr)2

]
{n̂ × [n̂ × (

←→
Q e · n̂)]}, (E15)

using the aforementioned properties of n̂ and the approximation that H∗
inc(r) ≈ H∗

0 + r(n̂ · ∇ )H∗
0, we can derive that in the small

r limit,

lim
r→0

μ0r4

2
�
ˆ 2π

0

ˆ π

0
(n̂ × HQe){[(n̂ · ∇ )H∗

0] · n̂} sin θdθdφ = 0, (E16)

lim
r→0

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × HQe)(H∗

inc · n̂) sin θdθdφ = � ikc0μ0

16π

ˆ 2π

0

ˆ π

0
{n̂ × [n̂ × (

←→
Q e · n̂)]}(H∗

0 · n̂) sin θdθdφ

= �
{

ikZ0

60
H∗

0

( ∑
u=x,y,z

Qe
uu

)}
− �

{
ikZ0

20
(
←→
Q e · H∗

0 )

}

= �
{

−ikZ0

60
H0

( ∑
u=x,y,z

Qe∗
uu

)}
+ �

{
ikZ0

20
(
←→
Q e∗ · H0)

}
. (E17)

For an induced electric quadrupole moment in an isotropic Mie particle, this reduces to

lim
r→0

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × HQe)(H∗

inc · n̂) sin θdθdφ = �
{

ikZ0

20
(
←→
Q e∗ · H0)

}
. (E18)

To summarize the above results, the analytical expression for �Qe,mix is

�Qe,mix = lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × Einc)(E∗

Qe · n̂) sin θdθdφ + lim
r→0

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × EQe)(E∗

inc · n̂) sin θdθdφ

+ lim
r→0

μ0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × HQe)(H∗

inc · n̂) sin θdθdφ

= �
{

ikZ0

12
H0

( ∑
u=x,y,z

Qe∗
uu

)}
+ 1

6
�

{ ∑
u=x,y,z

Qe∗
u × De

u

}
. (E19)

For an induced electric quadrupole moment in an isotropic Mie particle, this is equivalent to

�Qe,mix =
{αQe}
6



{ ∑

u=x,y,z

De∗
u × De

u

}
= 120πε0

k5
�(a2)sQe,

sQe =ε0

6


{ ∑

u=x,y,z

De∗
u × De

u

}
.

(E20)

The last nonzero term contributing to the electric quadrupolar torque is the “recoil” torque �p,recoil, which can be derived
using the dipolar radiation field properties in Eq. (B3), Eq. (B4), Eq. (A3), and the aforementioned integration properties of the
unit vector n̂ in the large r limit as r → ∞,

�Qe,recoil = lim
r→∞

ε0r3

2
�
ˆ 2π

0

ˆ π

0
(n̂ × EQe)

(
E∗

Qe · n̂
)

sin θdθdφ

= lim
r→∞ � 3ik5

2ε0 · (24π )2

[
1 + 3i

(kr)3
+ 18i

(kr)5

] ˆ 2π

0

ˆ π

0
[n̂ × (

←→
Q e · n̂)][(

←→
Q e∗ · n̂) · n̂] sin θdθdφ

= � 3ik5

2ε0 · (24π )2
[1]

ˆ 2π

0

ˆ π

0
[n̂ × (

←→
Q e · n̂)][(

←→
Q e∗ · n̂) · n̂] sin θdθdφ

= 3ik5

2ε0 · (24π )2

[−i8π

15

] ∑
j

ê j

∑
l

∑
u

∑
v


{
εlv jQ

e
luQe∗

uv

}

= − k5

720πε0


{ ∑

u=x,y,z

Qe∗
u × Qe

u

}
. (E21)
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For an induced electric quadrupole moment in an isotropic Mie particle, this is equivalent to

�Qe,recoil = = − k5

720πε0


{ ∑

u=x,y,z

Qe∗
u × Qe

u

}

= − k5

720πε0


{

|αQe|2
∑

u=x,y,z

De∗
u × De

u

}

= −120πε0

k5
|a2|2sQe. (E22)

To summarize above results, the torque acting on the isotropic Mie particle that is attributed to the induced electric quadrupole
can be written analytically as

�Qe = �Qe,mix + �Qe,recoil = 120πε0

k5
[�(a2) − |a2|2]sQe. (E23)
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