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Chiral limits and effect of light on the Hofstadter butterfly in twisted bilayer graphene
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We study the magnetic field induced Hofstadter butterfly in twisted bilayer graphene (TBG) in various kinds
of situations. First, we study the equilibrium case and identify the interlayer hopping processes that are most
crucial for the appearance of a Hofstadter butterfly. Surprisingly, the hopping processes that are important for
the appearance of the Hofstadter butterfly can be categorized as AA stacking type, that is, interlayer hoppings
between equivalent sublattices. This is in contrast to AB/BA-type hoppings that are important for the appearance
of flat bands in magic angle TBG and were discussed by G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath
[Phys. Rev. Lett. 122, 106405 (2019)]. We also find that if AB-type interlayer-hopping processes are turned off,
the resulting model is chiral but differs from the model discussed mentioned above. Therefore TBG has two
separate chiral limits: One of them is important to understand the formation of flat bands and the other for the
Hofstadter butterfly. Taking this as motivation we discuss how the role of AA-type hoppings in combination with
lattice relaxation effects can make individual Landau levels slightly harder to resolve in an experimental setting
than one would expect from a nonrelaxed lattice setting. Finally, we consider the impact of different forms of
light on the fractal structure of the butterfly spectrum. Particularly, we study the impact of circularly polarized
light and longitudinal light originating from a waveguide. As the system is exposed to circularly polarized light
we find butterflies with increasingly pronounced asymmetry with respect to energy £ = 0. This is due to the
introduction of a gap term that breaks the chiral symmetries for both of the two chiral limits mentioned above.
Lastly, we study the effect of longitudinal light that can be produced at the exit of a waveguide, in a slightly
simplified model. Here, we find that no additional terms that break chiral symmetry are introduced. Therefore it
is found to lead to no increase in asymmetry of the energy spectrum. In fact, we identify specific experimentally

accessible driving regimes in which the TBG achieves any of the two chiral limits.

DOLI: 10.1103/PhysRevB.105.125423

I. INTRODUCTION

The developments that led to our present work go all the
way back to graphene, a material that was first synthesized
when it was peeled off a graphite substrate using a scotch
tape technique [1]. It can be viewed as a monolayer of car-
bon atoms arranged in a honeycomb crystal lattice structure.
This seemingly simple structure is at the origin of marvelous
electronic and optical properties that made scientist predict
that graphene might revolutionize the nanotechnology indus-
try due to its potential for the development of more efficient
electronic components [2]. Indeed, one of graphene’s most
exciting and counter intuitive transport properties is that is
it allows for Klein tunneling: Charges can tunnel through
an electrostatic barrier regardless of its height. This effect
while it is interesting from a perspective of power consump-
tion has a huge drawback because it means that electrons
are difficult to confine. Hence, it thus far—in the case of
graphene—prohibits the realization of switching devices such
as field effect transistors (FET) which are the basic building
blocks of modern electronics. Therefore a lot of efforts have
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been devoted to overcome this difficulty via band engineering
[3-8]. One of the simplest approaches to modify graphene’s
band structure is by stacking multiple graphene layers on
top of one another. The simplest case is different stacking
configurations of bilayer graphene (BLG) which consists of
two stacked single layers. Bilayer graphenes have contin-
ued to attract significant theoretical interest in recent years
[9-19].

Recent technological advances have made it possible to
tune the electronic properties of layered materials without
changing the atomic structure of the individual layers. The
simplest technique in this regard is twisting successive lay-
ers with respect to one another. Such a twist creates an
angle-dependent moiré pattern, a periodic pattern of relatively
giant unit cells—a size ~1000 times the size of AB bilayer
graphene’s unit cells is not atypical. Moreover, the twist angle
plays the role of a knob that affects the carrier interaction. In
fact, it has been discovered that at certain, so-called magic an-
gles, flat energy bands occur which then give rise to a plethora
of highly correlated phases. An exciting example is a super-
conducting phase that occurs at the first magic twist angle
[20-33]. This superconducting state was first discovered in a
land-mark paper in Nature [20]. We stress that this observation
can be traced back to the appearance of moiré patterns, which
are the source of flat band behavior that eventually gives rise
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to superconductivity in twisted bilayer graphene (TBLG). It
should be mentioned that it was found early on—using scan-
ning tunneling microscope (STM) techniques [34-40]—that
these moiré-type patterns can exist in multilayer graphene.
Thus, twisted bilayer graphene not only offers the possibility
to engineer the electronic band structure but also allows to
control the relative importance of carrier correlations.

Last, but not least, band structures can also be modified by
the application of periodically time-dependent external drives
[33,41-44]. In fact, for the case of graphene it has been shown
theoretically that the drastic effect of strong high-frequency
electromagnetic fields on the electron energy spectrum near
the Dirac point depends strongly on polarization of the field.
Linear polarization results in an anisotropic gapless energy
spectrum while circular polarization gives rise to an isotropic
energy gap. Hence, the transport properties of electrons also in
twisted bilayer graphene are strongly affected by the polariza-
tion of the electromagnetic waves. From the application point
of view, it is easier to control light intensity and polarization
of an external light source than the twisting angle. Therefore
light can be seen as an ideal control knob for the transport
properties of twisted bilayer systems.

Floquet theory has been widely adapted to treat the elec-
tromagnetic interaction between external light sources and
materials and make these types of predictions. In this context,
various techniques have been developed to achieve a time-
independent description [45-57]. More recently, the moiré
and Floquet approaches have been combined to make theo-
retical predictions about various topological phases in moiré
materials [39,58-62].

Important for our current investigation is the recent work
of some of the current authors who studied TBLG under
the influence of two distinct forms of light polarization, cir-
cularly polarized light and transverse magnetic (TM) light
emanating from a waveguide [51,60]. For the circularly po-
larized light case a rotating frame Hamiltonian, valid for
both weak and strong drives in the high to intermedi-
ate drive frequency regime, has been developed [51]. This
Hamiltonian is appropriate in the regimes where the or-
dinary Van Vleck approximation (vV) breaks down, and
results in a significantly enhanced approximation to the
quasienergies [45].

In the present work, we wish to build on these develop-
ments and apply the effective Hamiltonian approach [51,60]
to another interesting phenomenon that have been investigated
in the context of twisted bilayer graphene since the start of
this field [63] and has recently begun to rise to popularity
again [64—67]. In particular, we consider the so-called Hof-
stadter butterfly phenomenon [68], where electrons under the
influence of a magnetic field exhibit an energy spectrum that
displays fractal patterns. These types of fractal butterfly spec-
tra have been observed experimentally in monolayer graphene
(MLG) [69,70], in AB-BLG, placed on a hexagonal boron
nitride (hBN) substrate [71], also on square, honeycomb and
triangular lattices [72,73], kagome lattices [74], and in TBLG
[65,67,75,76]. While the effect of a periodic drive - in our case
light—on the Hofstadter butterfly has been studied in various
systems [3,77-84]. To our knowledge, the Hofstadter butter-
fly in TBLG has not been extensively studied. Specifically,
previous works have mostly focused on the kicked-Harper

model [3,77-79]. Other cases include MLG subjected to a
uniform perpendicular magnetic field B in combination with a
laser. Here, the Floquet Hofstadter butterfly exhibits a richer
structure than in the equilibrium case [82-84]. While not
extensively studied in TBLG there have been some studies
that investigated the Hofstadter butterfly under the influence
of light [85,86]. While these works studied extensively the
fractal properties of Landau levels under the influence of light,
here we want to take a slightly different route and study
the interplay between light, chiral symmetries and the fractal
properties.

The work is organized as follows. In Sec. IT A, we de-
scribe TBLG, introduce the theoretical model, and highlight
some of its equilibrium properties. In Sec. II B, we analyze
which of TBLG’s hopping processes is most important for
the appearance of a Hofstadter butterfly at low energies and
how the different hopping processes influence the symmetry
with respect to energy E = 0. By inspection of the symmetry
properties in twisted bilayer graphene, we find that it has
two separate chiral limits. In Sec. III, we describe the first
form of light—circularly polarized light—which is used in the
Hamiltonian description, and discuss our numerical results.
In Sec. IV, we consider longitudinal light emanating from a
waveguide and discuss our numerical results. In Sec. V, we
summarize our main results and present our conclusions.

II. EQUILIBRIUM CASE
A. Model

We start by considering the simplest case where two
graphene layers are miss-aligned with respect to each other
by an angle 6. For this work we will work with a model that is
valid for 6 < 10° and will focus on the case of 6 = 2°, which
lies well within its range of validity. The structure of the lattice
we consider can be seen in Fig. 1(a).

Following the approach used in Refs. [63,75,87-90], the
Hamiltonian describing TBLG is given by

h(-6/2)

H&) :< TH(x) h?@%)) M
where the intralayer Hamiltonian is given by
h(®) = vrp - 0¢ 2
and rotated Pauli matrices are defined by
0y = (cosfo, — sinfay, cos Bo, + sinfay). 3)

The interlayer Hamiltonian describing the tunneling processes
between layers is given by

3
T(x) =Y _Tjexp(—ig; - x), @)
j=1
where g, =k(0,—1), g, =ko(v/3.1)/2,  gq3=

kg(—\/§, 1)/2 are the nearest neighbor vectors of the
moiré Brillouin zone. The characteristic momentum-scale in
the moiré Brillouin zone is set by ky = 2kp sin(6/2) with
kp = 4m /3ay being the Dirac momentum, and ay = 2.46 Ais
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FIG. 1. (a) A sketch of twisted bilayer graphene (TBLG). (b) The
moiré Brillouin zone and a schematic depiction of the corresponding
magnetic Brillouin zone in blue, which was obtained by reshaping
the moiré Brillouin zone in Eq. 14. (c) The Hofstadter butterfly in
TBLG.

the lattice constant. The hopping matrices 7; can be expressed
in terms of Pauli matrices

Ty = woo? + wyo”, (5)
T = wol o’ + wiot +wito, (6)
Ty = woto’ + wiot +wigto”, ©)

where ¢ = e?™/3 and 0% = (¢* £ic”)/2 act on sublattice
degrees of freedom. The 2 x 2 Pauli matrices and identity
matrix are denoted by o**? and ¢, respectively.

We stress that the Hamiltonian introduced here is valid for
the moiré BZ that is located near the K point. The Hamiltonian
describing the bands near the K’ point is related by time
reversal symmetry or equivalently it can be obtained by the
replacements

¢

09 — (—cosfo, —sinfo,, —cos oy + sinfoy),

q; = —q;;
(8

which was also noted in Appendix A of Ref. [91]. We note
that for the main part of the paper we will focus on the K point
to keep our discussion more coherent. Although, we found it
instructive to provide results for the K’ point in Appendix .

A few comments are in order about the parameters w;.
Some stacking configurations in TBLG are more energetically
favorable than others. Most importantly AB and BA stacking
is energetically preferred compared to AA stacked regions
[92,93]. This leads to different sizes of AA and AB stacked
regions—at very small twist angles AB stacked regions grow
in size compared to AA stacked regions [92,93]. Furthermore,
the different stacking regions have differing interlayer lattice
spacings. We account for these effects in an approximate fash-
ion through the parameters wj; in the interlayer tunneling terms
[60,94]. In our specific case we take the hopping amplitudes
as wo ~ 90 meV for AA-type hoppings and w; ~ 100 meV
for AB/BA-type hoppings.

Next, let us discuss this Hamiltonian in the presence of
a perpendicular magnetic field B = B,Z. This type of field is
introduced through the minimal substitution procedure p —
P + eA. For computational convenience we select the Landau
gauge A = B(—y, 0, 0). In this case, we find that the intralayer
blocks of our Hamiltonian can be written in terms of ladder
operators defined by

V4 l
a=——[p.—eBy—ip), a" = —=[p,—eBy+ip,)],
ﬁp Yy Py ﬁl’ y Py
9)

which fulfill the usual commutation relation [a,a’] = 1. In
this case, the intralayer Hamiltonian becomes

ho/2) = wlote”?a+ o~ e a", (10)

where the w, = +/2vr /€ is the cyclotron energy, and £ =
1/+/eB is the magnetic length.

Since the dominant energy scale is given by the intralayer
contributions it is now convenient to express the full Hamilto-
nian in a basis of layer index L = 1 and 2, sublattice index
o = A and B, guiding center y and Landau level n degrees
of freedom using a ket |L, n, v, y). This ket, however, will
not turn out to be the most convenient basis choice because
interlayer terms can shift the guiding center by A with A =
/3ky? J2—specifically through processes associated with
T> 3. This can easily be seen if we compute matrix elements

(A/B,n,a,yle " ®*|B/A,n,a,y) & 8y yrn. (11)

By analogy to a tight binding model we can now directly
see that the system has a periodicity arising from this re-
striction to interlayer hopping processes—a magnetic unit cell
arises. Now for the resulting Hamiltonian to be diagonalizable
for an infinite size system it is important that the moiré unit
cell is commensurate with the magnetic unit cell because
otherwise one will be dealing with a quasiperiodic system. It
is found to be the case when the magnetic flux @ through a
unit cell is such that [63]

he

o="2p  py="—, (12)
p e

where p/q € Q is the rational number relating the flux ® to
the flux quantum ¢, in our case we have chosen units such
that i = ¢ = 1. It is found that the resulting magnetic moiré
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Brillouin zone (MMBZ) is bounded by

Yo A
AR

or rewritten to allow a comparison to the nonmagnetic case

Yo /3 kg
= e—z < Tkg, 0< ky < 2_p (14)

Making use of the periodicity seen in Eq. (11) it is con-
venient to express the guiding center coordinate as y = yo +
(mg + j)A, where j€0,1,...,9— 1. A computationally
convenient basis is then given by the Fourier transform

2
0<k,= 0<ky <—, (13)
qA

0 <k,

. 1 ik, (m j .
Lot j) = = Y eMEDAIL n, yo + (mg + j)A),
(15)

where we dropped the transformed label &, from the ket on
the left side of the equation to simplify the notation because
the Hamiltonian will be diagonal in k,. The intralayer Hamil-
tonian in this basis is then given as

h©/)2) = — . Z(e*f&/%/n +1|L,n+ 1,4, j)

L.n,j
x (L,n, B, j| + H.c.). (16)

The interlayer Hamiltonian in the same basis can be
expressed as

TK) = D [TiFya()e % ™0 1200 j) (1nB |

n'nafj
Ty Fypn(2)e™ 2 e300 ™ 02Dyl 4 1) (1nB |

T3 Fyn(z3)e 2 eskhC o 1D 00 1) (1nB ],

(17
where z; = %E, and
2O nzm
Fon(2) = {Fn*;l(—z) m<n’
(18)

- m! 2
Fn(z) =/ e CaT iz)" "L (2,

where L is the so-called associated Laguerre polynomial and
z; the components of z.

It is important to expand on one subtlety about the numeri-
cal implementation of this Hamiltonian that was mentioned as
a brief footnote in Ref. [63]. While the Hamiltonian for the
most part is straightforward to implement numerically, one
has to be careful about the inclusion of basis states to avoid
a spurious degeneracy at low energies. Particularly, let us
consider the case where we neglect interlayer couplings. Since
we have chosen a model valid near the K point of graphene we
have to realize that there is only one zero energy eigenstate per
layer and K point. However, if we naively choose our basis
states from

{Le{t,b},ac{A,B},nef0,..., nml}, (19)

and diagonalize numerically, we find additional spurious
states at zero energy. To understand this better we may now

recall the analytical expressions for the wave functions of the
zero energy Landau level for graphene at the K point. For each
layer we find |n, &) = (£|n — 1), |n)). Thatis, n = 0 only has
contributions from sublattice B. Now, we find that there is zero
energy states that have contributions from sublattice A, which
we can identify as a numerical artifact coming from our choice
of basis, which does not break sublattice symmetry. Clearly
sublattice symmetry is broken by the solutions and we have
to ensure this is enforced in our numerical approach. The way
to achieve this is to make a slightly altered choice of basis
states that explicitly breaks sublattice symmetry. This choice
is given below

{Le{t,b},aec{A,B},ne{0,...,Amax —Sa.5}}, (20)

where the term 6, 5 = 1 if the sublattice index o« corresponds
to sublattice B. That is sublattice B has a smaller Landau level
cutoff than sublattice A.

This explicit breaking of sublattice symmetry in the choice
of basis states shifts spurious states to high energies, which
will be of no consequence for us [63]. We stress that while, in
the case of noncoupled layers the spurious low lying levels do
not seem to matter in a plot of Landau levels (since the plot
does not show degeneracy), this point becomes very important
in the presence of interlayer coupling. Indeed, as interlayer
couplings get introduced Landau levels split and spurious low
energy bands have a devastating effect. Therefore it is of
utmost importance to remove the spurious contributions using
the approach we have just outlined.

B. Equilibrium properties: interlayer hoppings
and the Hofstadter butterfly

Next, we want to study some of the equilibrium proper-
ties of this model. First, we recall that it has been noted in
Ref. [63] that in the presence of a nonzero magnetic field
we find that the Landau levels in TBLG possess a fractal,
self-similar structure see Fig. 1(c).

We next want to determine which types of interlayer hop-
ping processes are the most important for the appearance of
the Hofstadter butterfly. Therefore, in Fig. 2, we plot the Hof-
stadter butterfly for different values of the AA-type hopping
amplitudes wy and AB/BA-type hopping amplitudes w;.

In Fig. 2(a), we observe that if we set wg = 0 meV, w; =
110 meV, which corresponds to the so-called chiral model
[95]. For this case, the Hofstadter butterfly at the center of
our plot collapses into a zero energy line. The reason that
the lowest Landau level collapses can be understood from
a perturbative perspective. In essence is due to the fact that
the lowest Landau level of graphene lives only on a single
sublattice and that the terms proportional to w; in 7' (r) couple
between sublattices. Therefore these terms have no effect on
the lowest Landau level, which is in stark contrast to other
levels, which live on both sublattices. More precisely, treating
V = T (r) as a perturbation, the eigen-bi-spinors of the lowest
Landau level for T'(r) = O are |Ly;) = (0, |0), 0,0) or |[Lyp) =
(0,0,0,|0)). The first correction to the energy because of
this can be found as (L |V |Lgy) = 0, of course for wy = 0.
Therefore the lowest Landau level is left unsplit.

To contrast the case wyg =0 meV we also studied the
opposite case of wy= 110 meV, w; =0 in Fig. 2(b).
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FIG. 2. The Floquet Hofstadter butterfly spectrum as a function
of p/q = ¢o/P in the equilibrium case for different values of the
hopping amplitude. (a) wg = 0, w; = 110 meV. (b) wy = 110 meV,
w; = 0 meV. A cutoff for the Landau level index n that was used
for the plots is the same as the one suggested in Ref. [63] npy.x &
2[max(aoyrr, wl)/wc]z

Interestingly, we find that in our case it is this term that leads to
the splitting of the central Landau level and the appearance of
the Hofstadter butterfly. This is in stark contrast to the physics
that leads to the appearance of flat bands, where this term is
the less important one [95].

We should also note that both reduced models wy =0
or w; =0 lead to a Hofstadter butterfly that is symmetric
with respect to the axis E = 0. This is because in these
cases—unlike the case where both w; # O—there exist uni-
tary operators C; with C? =1 that anticommute with the
Hamiltonian. In the case wy = O itis C; = diag(1, —1, 1, —1)
and in the case of w; =0 it is C; = diag(1, —1, —1, 1). In-
deed, from C;H v, = —HC;y,,, one can directly see that each
state y,, fulfilling E,v,, = H, has a chiral partner state C; v,
with energy —E, and hence the spectrum is symmetric [96].

Now the disappearance of the center butterfly in the case
wy = 0 meV, w; = 110 meV leads to an intuitive understand-
ing of some subtle possible experimental consequences for
the measurement of an equilibrium Hofstadter butterfly in
a relaxed TBG lattice. Particularly, we may realize that wg

1.0 ‘ .

0.8t ]
Wo

Wi
0.4 1

0.2} | | ]

FIG. 3. Plot of the ratio wy/w, as a function of angle (in degree)
for the range of its validity.

tunes the strength of the lowest Landau level splitting. This
is something that becomes important to recognize because it
has been found that wy-type hoppings become less important
as one reduces the twist angle in TBG [97]. This effect,
which is due to lattice relaxations, can be captured by a fit
of wy/w; for angles & = 0.18° to 6° to the data in Fig. 3(c) of
Ref. [97] as

! (0222

wo/wy ~ 2D

—0.0002 - 200001 000001 + O(;i :

From here we can see that wy shrinks at small twist angles like
it is shown in Fig. 3 below.

This also means that the lowest Landau level at small twist
angles is split slightly less dominantly than in the unrelaxed
w; = wy case. Therefore, for a relaxed lattice, one might need
a slightly higher (than the wy = w; case) experimental energy
resolution to resolve the individual energy levels arising from
the lowest Landau level. However, to be fair, this effect is
relatively minuscule. For instance at 6 = 1°, w; = 110 meV,
and p/q = 0.05 the width of the split lowest Landau level is
reduced by only 10%. Therefore the additional energy reso-
lution that is needed to resolve the individual levels coming
from the lowest Landau level can be estimated at 10% higher
than for the case wy = w;. Nevertheless, it should be stressed
that this effect might potentially be more dominant in other
moiré materials.

III. CIRCULARLY POLARIZED LIGHT

In this section, we will turn our attention to the effect that
circularly polarized light has on the Hofstadter butterfly in
TBLG.

A. Effective Hamiltonian

If perpendicularly incident circularly polarized light (we
consider the right-handed or clockwise case) is applied to the
graphene layers, at frequency €2 and driving strength A, it
enters purely via minimal substitution as [51,58,98]

ko(t) = ke — Acos(Q),  ky(t) =k, — Asin(Qt).  (22)

Thus we have a time-periodic Hamiltonian satisfying
HXx, Kk, t +27/Q) = H(x, K, t). It is a well-known fact that
some of the physical features of a periodically driven
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Hamiltonians can be approximately captured by an effec-
tive time independent Hamiltonian [51]. In our case such
a description will be advantageous for numerical reasons.
Therefore let us briefly recall how to arrive at an effective
time independent description and what new physical effects
are introduced.

A nonperturbative scheme to find effective time-
independent Hamiltonians for a periodically driven system
is to transform its Hamiltonian to a rotating frame (RF)
Hr =UT(t)(H —id,)U(t) via a unitary transformation
[51]. If a convenient frame is chosen a subsequent time
average generates a Hamiltonian that is more accurate
than Hamiltonians found via the usual high frequency
approximations such a van Vleck or Floquet-Magnus [45].
With such a properly chosen unitary transformation it was
found [51,58] that a highly accurate effective Hamiltonian for
TBLG subject to a circularly polarized light is given by

h(6:, k)

B T (x)
H(x,t) = ( TT(x)  h(bs, k)> =

It is important to stress that the derivation from Refs. [51,58]
generalizes directly to a case with a magnetic field because
the unitary transformations that were used are momentum-
independent. In the expression (23) above, we observe that
the intralayer Hamiltonians have been modified by light as
follows:

h(@,k) = vrpR(O)Kk - 0 — ARpos3, (24)

where again we recall that R(#) is a rotation matrix in the layer
plane. The Fermi velocity is also modified and becomes

6)/ ZACI() 2Aa0
= vpJo| ——J J , 25
URE = UF 0( ) 1( 3 )) o< 3 ) (25)

where Jj is the zeroth Bessel function of the first kind. Hereby
Aag provides a unitless scale of driving strengths. Light also
causes the system to acquire a band gap, which is given by

3 2A 6+/2 2A
Aw=—:%h<jgﬁﬁ<—iglh(:f)) (26)

Interlayer tunneling matrices are also modified. If we express
T; =) ,Tj0;, where T;; are expansion coefficients. Then
modified interlayer hopping matrices 7; are given by

Ty =Y T 27)

where 61, = Jy(v)o; 2 and
N
o = 00 + (Jo(V/2v) — 1)[00 sin (5> + %m sin (9)},

63 =03 + (Jo(«/zv) — 1)|:a3 cos? (g) — éag sin (9):|
(28)

with v = (—6y/Q)J1(2Aay/3).

We may now include the magnetic field in the Landau
gauge via minimal substitution and use a convenient basis like
in Eq. (15) to express the Hamiltonian in a numerically advan-
tageous form. It is then found that the expressions are almost

the same as~Eqs. (16) and 17 just with ., — wrr = W VRp/VF
and 7; — T;, of course with an additional gap term

HA = ARF Z('Lv n, A’ Y> <L7 n, A’ )’|
L,n,y

—|L,n, B, y)(L,n, B, yl), (29)

which we use in our numerical analysis.

B. Numerical results

We will now numerically investigate the effect that circu-
larly polarized light has on the Hofstadter butterfly. For this,
we have plotted the Hofstadter butterfly at a fixed driving
frequency of 2 =2y (chosen to be in the high frequency
regime) and various driving strengths, which can be seen
in Fig. 4 below We observe that as the driving strength is
increased, the asymmetry of the energy levels with respect to
E = 0 becomes increasingly apparent. Now it is interesting to
also consider the cases of either wy = 0 or w; = 0 that have
a spectrum which in the equilibirum case was symmetric with
respect to E = 0. In both cases we find that energy levels cor-
responding to the levels that appear from the split O-th Landau
levels of two decoupled graphene layers (we will call it center
branch of the butterfly) move upwards to higher energies as we
increase the driving strength Aag. This introduces an apparent
asymmetry of the spectrum with respect to £ = 0. The source
of this asymmetric behavior is obvious because the chiral
symmetry we discussed earlier is broken by the introduction
of term ARp.

However, interestingly in the case of wy = 0 and w; # 0,
it is found that this asymmetry appears only for the center
branch of the butterfly—all other levels, up to numerical ac-
curacy, remain symmetric with respect to £ = 0. In contrast
for the case of w; = 0 and wy # 0, we find that the complete
spectrum becomes asymmetric with respect to E = 0 so there
seem to be no remnants of a chiral symmetry. Both cases can
be seen in Fig. 5.

Finally, it is important to mention that there is an easy way
to understand why the center branch of the Hofstadter butter-
fly moves upward—rather than downward. Particularly, this
can be understood from the Landau levels of single graphene
layer, which are just split into the branches of our butterfly. Let
us first consider two isolated graphene layers. Here, for each
layer, the wave function near the K point has the form ,, =
(£In — 1), |n)). In the case of n = 0, one should note that
there is only a lower component. For each layer, the gap term
Agr enters as —Agpo;,. To leading order perturbation theory
we can then directly see that this shifts the n = 0 Landau level
upwards. It may seem surprising that symmetry is broken in
this way. We should also point out that while near the K’ point
the opposite shift Agro, happens, the center band is actually
shifted in the same direction as in the case of the K point.
This is because for the K’ point ¥, — (|n), £|n — 1)), i.e., the
first and second components are flipped, which compensates
for the change in the sign of Agrp. A plot showing this can
be found in Appendix. For the remainder of this work, we
focus on the physics near the K points of the graphene layers
because for our purposes the physics near the K’ point does
not differ substantially from the physics near the K point.
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FIG. 4. The Floquet Hofstadter butterfly spectrum as a function of p/q = ¢/ P, subject to right-handed circularly polarized light with
driving frequency fixed at 2 = 2y. The representative driving strengths are chosen as Aay = 0.1, Aap = 0.2, Aay = 0.3, and Aay, = 0.4. The
parameters used are y = 2364 meV, wy = 0.9w;, w; = 110 meV, and 6 = 2°. The Landau level cutoff that was used for the plots is the same

as the one suggested in Ref. [63] npmax ~ 2[max(agyre, W)/, ]?

Lastly, we may consider the question on how to obtain
a center band that is shifted downward, rather than upward.
This can be answered quite easily via left handed circularly
polarized light, which can be seen in Fig. 6.

We see that the center Landau level is shifted downward
just as we wanted. This can be understood quite easily. Specif-
ically, to leading order in Floquet theory it is found easily that
the main effect of the change from right-handed to left-handed
circularly polarized light is the replacement Agg — —Agg.
That is, the lowest Landau level is shifted downward rather
than up like in the case of right-handed circularly polarized
light.

IV. WAVEGUIDE LIGHT

After our discussion of circularly polarized light, in this
next section we will focus on the effects due to a second
type of light, a linearly polarized light emanating from a
waveguide.

A. Theoretical approach

The second type of light that will be considered is longi-
tudinal light coming from a waveguide. Here, the boundary
conditions of a waveguide allow for light with longitudinal
components A = Re(e*~¥)? to exist, which is not pos-
sible in a vacuum—this expression is valid in a carefully
chosen spatial region (more details can be found in the Ap-
pendix [60] or most standard references on electromagnetism
such as Ref. [99]). The effect of this light can be included
within the tight binding model via a Peirls substitution #;; —

tij exp(— frff dlA). In the continuum Hamiltonian interlayer
hopping terms correspond to w;, which is why the w; —
w; exp(— [, rtj dlA). To leading order in the high frequency
regime of our continuum model (that is the average of the
Hamiltonian over one period) this effect can be captured if
we replace interlayer couplings as given below

(30)

wo — wolo(Aaas), w1 — wiJo(Aass).

More details on the derivation can be found in Ref. [60]. We
note that in Ref. [60] it is also found that this lowest order
approximation captures most of the features of a more detailed
treatment that uses an extended space approach. We therefore
restrict our attention to this case. Hereby, axa = 0.36 nm and
aap = 0.34 nm are interlayer distances in AA and AB regions
of TBG. We should note that with the interlayer spacing we
made the assumption that AA and AB stacked regions are
well pronounced enough to have the corresponding lattice
spacing. This is a simplification of the model that becomes
well justified in the case of very small twist angles where
AB stacked regions become increasingly pronounced due to
lattice relaxation effects.

B. Numerical results

We will now discuss the effect of the waveguide light on
the Hofstadter butterfly via numeric results. Since the effect
that waveguide light has on the Hofstadter butterfly does not
differ considerably between the K and K’ points, we chose to
only consider the case of the K point.

125423-7



BENLAKHOUY, JELLAL, BAHLOULI, AND VOGL

PHYSICAL REVIEW B 105, 125423 (2022)

400
. 200 ko S SO
S
D
E 0
=

-200

e e
. ;:::i:xzu:nii-in

L
i W

1108

-400

0.0 1.0

o
[ TR

FIG. 5. The Floquet Hofstadter butterfly spectrum as a function
of p/q = ¢o/P, subject to right-handed circularly polarized light
with driving frequency fixed at 2 = 2y, where y = 2364 meV. A
representative driving strength is chosen as Aay = 0.4 and the angle
was set as 6 = 2°. The top figure corresponds to the case wy = 0,
w; = 110 meV, and bottom figure wy = 110, w; = 0 meV. The
Landau level cutoff that was used for the plots is the same as the
one suggested in Ref. [63] npax A 2[max(agyre, 1)/ w.]*

Here, we consider a range of different values for our unit-
less driving strength Aaaa. Note that

Aass = 28 Agys. 31)
AAA

We consider different values for the driving strength in the
range Aaaa = 0.2 to 4 in Fig. 7 below. We find that the
level splitting of the individual Landau levels first decreases
as we increase Aaa and then eventually increases again. This
can be explained very easily using the fact that wy and w; set
the scale for the size of level splitting, which in our case are
modulated by Bessel functions Jy. This observation of course
allows us to go one step further to find that the two chiral
models either w; = 0 or wy = 0 can be realized via this form
of light. Particularly, wy is effectively set to zero if Aaas =
Jo.n 18 the nth zero of the Bessel function Jy(x). Similarly w;
is effectively set to zero if Aaaa = (aaa/aas)jo.n- At these
points the mirror symmetry of the spectrum with respect to

E = 0 is restored.
We should stress regarding the appropriateness of the
approximation in Eq. (30). When the band structure resulting
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FIG. 6. The Floquet Hofstadter butterfly spectrum as a function
of p/q = ¢o/ P, subject to left-handed circularly polarized light with
driving frequency fixed at = 2y. A representative driving strength
was as Aap = 0.2. The parameters used are, y = 2364 meV, wy =
0.9w;, w; = 110 meV, and 6 = 2°. The Landau level cutoff that was
used for the plots is the same as the one suggested in Ref. [63] ny,,x ~
2[max(agyrr, Wi )/wc]2

from this approximation was compared to band structures
resulting from a full extended space treatment of the time
dependent problem such as in Ref. [60] it was found that even
at driving strengths as high as n = Aaaa = 4 the approxima-
tion yielded results that were almost indistinguishable from
the exact extended space treatment.

Last, but not the least, regarding the potential experimental
realizability of such large driving strengths. We can recall that
(reintroducing units) n = ei?zAA (see Ref. [60]). Here, for driv-
ing frequencies in the high frequency regime i2 > 2.7 eV
and electric field strengths up to E < 15 meV/cm, n < 0.2
is rather limited. Here, the high frequency assumption /2 >
2.7 eV is our main limiting factor. However, Landau levels
are flat and therefore one can find regimes of p/q and 6 where
A2 < 100 meV is a high frequency regime for the center part
of the Hofstadter butterfly [see, e.g., Fig. 1(c) to identify such
a regime visually—being careful that for the high frequency
regime the driving strength also needs to be smaller than the
gap size]. Therefore our high-frequency approximation can
be justified with certain restrictions while values of 1 > 4
are achievable experimentally. Therefore both chiral limits
of TBLG should be achievable experimentally by employing
waveguide light.

Lastly, we consider the case where one starts from one of
the chiral limits wy = 0 or w; = 0. Here, we find that this
form of light does not lead to chiral symmetry breaking, in
contrast to the circularly polarized light case.

V. SUMMARY AND CONCLUSION

We have studied the Floquet Hofstadter butterfly spectrum
in TBLG subject to a uniform perpendicular magnetic field
both in the equilibrium case and in the presence of different
forms of light. We have focused on the cases of circularly
polarized light and waveguide linearly polarized light. For the
equilibrium case, we have identified two separate chiral limits
and found that one of them—w(y # 0 and w; = O—includes
most of the butterfly physics.
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FIG. 7. The Floquet Hofstadter butterfly spectrum as a function of p/q = ¢o/P, subject to waveguide light. The representative driving
strengths are chosen from Aaaa = 0.2 to Aaas = 4. The parameters used are y = 2364 meV and 6 = 2°.

In the case of circularly polarized light, we have found
that the main effect is the creation of a gap term that breaks
chiral symmetry. This causes the Hofstadter butterfly to de-
form such that levels are visibly and based on numerical
grounds less mirror symmetric with respect to £ = 0. In the
case of waveguide light we have found that it does not break
chiral symmetries if they are present from the start. Interest-
ingly, field driving strength can be selected to achieve both
of TBLG’s chiral limits. That is, we have found a way to
design an experimentally accessible regime that allows the
realization of the two chiral limits of TBLG.
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APPENDIX: DISCUSSION OF THE K’ POINT

For the reader’s convenience, we have also included in this
section a brief discussion of the K’ point. First we note that
the Hamiltonian in the Landau level basis can be obtained if
we make the following replacements, which are equivalent to
the replacements that were mentioned in the main text.

h(0/2) > e Y (e "Pn+1|L,n+ 1, B, j){L,n, A, j|

L.n,j
+ H.c.),
q— —q; ¢—>C% Arp—> —Arp; 0 — —06.
(A1)

We stress that one has to be careful about the order of
these replacements and apply them in the listed order. Another
subtle point one has to be mindful about is that one has
to ensure the correct type of sublattice symmetry breaking
through the choice of basis set—the lowest Landau level state
at each K or K’ point does not have this symmetry. Therefore,
to ensure a numerical error that happens only at large energies
one had to introduce basis sets for A and B sublattices that
are altered from the main text but serve the same purpose,
which is to remove spurious low energy states. Recall that

400
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[—]

=200
-400
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FIG. 8. The Floquet Hofstadter butterfly spectrum as a function
of p/q = ¢o/P, subject to right-handed circularly polarized light
with driving frequency fixed at 2 = 2y. A representative driving
strength was chosen as Aap = 0.2. The parameters used are, y =
2364 meV, wy = 0.9w;, w; = 110 meV, and 6 = 2°. The Landau
level cutoff that was used for the plots is the same as the one sug-
gested in Ref. [63] npa & 2[max(aoyre, wy)/w.]?. The plot is valid
near the K’ point. The top right of Fig. 8 is a comparable figure for
the K point.
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(£In — 1), |n)) — (X|n), |n — 1)). Particularly our choice of
basis has to be according to

{L € {tvb}9a € {A3 B},}’l € {0, ooy Mmax — 80!,A}}1

(A2)
where L is the layer degree of freedom, « the sublattice and n
the Landau level index. The term 4, 4 ensures that the Landau
level index is truncated earlier for sublattice A.

With these changes to the Hamiltonian we were able to
generate plots that are valid near the K’ point. The presum-
ably most interesting situation occurs in the case of circularly
polarized light with a plot in Fig. 8 given below

We see that even for this case there is no major physics that
differs fundamentally from the physics near the K point, this
validates our decision to consider only the K point in our main
text.
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