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Wigner-Weyl description of light absorption in disordered semiconductor alloys
using the localization landscape theory
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The presence of disorder in semiconductors can dramatically change their physical properties. Yet, models
faithfully accounting for it are still scarce and computationally inefficient. We present a mathematical and
computational model able to simulate the optoelectronic response of semiconductor alloys of several tens of
nanometer sidelength, while at the same time accounting for the quantum localization effects induced by the
compositional disorder at the nanoscale. The model is based on a Wigner-Weyl analysis of the structure of
electron and hole eigenstates in phase space made possible by the localization landscape theory. After validation
against eigenstate-based computations in 1D and 2D, our model is applied to the computation of light absorption
in 3D InGaN alloys of different compositions. We obtain the detailed structures of the absorption tail below the
average band gap and the Urbach energies of all simulated compositions. Moreover, the Wigner-Weyl formalism
allows us to define and compute 3D maps of the effective locally absorbed power at all frequencies. Finally, the
proposed approach opens the way to generalize this method to all energy-exchange processes such as radiative
and nonradiative recombination in realistic devices.
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I. INTRODUCTION

Semiconductor structures used for fundamental studies or
device applications most often incorporate alloy materials.
The necessity of using alloys results from the incapacity of
associations of pure compounds to reach the desired functions
or from fabrication issues due to lattice parameters mismatch.
For common III-V alloys, based on GaInAsP or GaInAlAs
materials systems, the effects of compositional disorder in-
herent to random alloys on the electronic properties can be
treated with a perturbative approach. This is unfortunately not
the case for the more recent nitride-based GaInAlN alloys,
where the changes in potential associated with the various
atoms induce strong localization effects. While considerable
progress has been made in past decades using such materials
for high performance light generation devices, these mate-
rials and their uses in heterostructures require new tools to
model their properties. Conversely, they constitute a unique
laboratory to evaluate strong disorder effects due to the large
difference in band-gap energy and band offset between the
pure compounds.

The simplest phenomena of absorption and luminescence
are of primary importance for the characterization of semicon-
ductor alloys as they reveal information about the electronic
properties [1–3]. Absorption near the band edges is of partic-
ular interest due to its sensitivity to temperature, impurities,
Coulomb interaction, and alloy disorder. It is also a much sim-
pler phenomenon than luminescence to analyze as it directly
probes the electronic band structure without the energy and
momentum relaxation involved in luminescence. Phenomeno-

logical laws have been proposed to describe the behavior
observed near the absorption edge for crystalline and amor-
phous semiconductors, such as the Tauc power laws just above
the edge [4,5] or the Urbach exponential law just below the
edge [6]. It is now accepted that the wide variety of behaviors
near the absorption edge in semiconductors may be caused
by thermal effect, microfield distribution [7], electron-hole
Coulomb interaction [8], alloy disorder [9], or the joint effect
of the latter two [10]. Alloy disorder can impact the absorption
and emission spectra in different ways depending on the type
of atomic species [11,12] and on the type of disorder. One
may encounter uncorrelated alloy disorder [13] or correlated
alloy disorder exemplified by (i) spinodal phase separation
[14], (ii) clustering [15], or even (iii) the formation of pure
crystalline quantum dots [16,17]. In practice, correlated alloys
effects remain controversial in nitrides as (i) they have been
shown to occur due to the degradation of the materials by
the observation technique, (ii) they are debated due to the
limited efficiency of atomic probe tomography (APT) in com-
parison with modern high resolution transmission electron
microscopy, and (iii) their observation corresponds to vastly
nonoptimum growth regimes, yielding microstructures never
observed in industry-grade materials.

Modeling and numerical simulation of light absorption
in disordered semiconductor alloys are challenging tasks.
First, they require an appropriate model for the electronic
structure. A hierarchy of methods exists to model the elec-
tronic structure of alloys, going from density functional theory
which can be considered as a first-principles method, via the
tight binding method, to continuous effective models (see the
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tutorial [15] and references therein). Once a model for the
electrons is chosen, there comes the second step of computing
the absorption coefficient by considering the interaction with
light. Several methods exist which use either directly Fermi’s
golden rule and require the computations of all involved
electronic eigenstates of the Hamiltonian, or time-dependent
simulation of the polarization field [10,18].

In the present paper, we derive a model based on the
localization landscape (LL) theory [19] for disordered semi-
conductor alloys, which we apply to the computation of the
light absorption coefficient in bulk InGaN. In Sec. II, we
start by introducing a continuous model of disordered band
edges based on the regularization of the indium concentra-
tion from randomly placed indium atoms on a lattice. Two
Schrödinger equations (one per band) are then written for the
envelope functions of the electron and hole eigenstates. In
Sec. III, exploiting this framework, we derive an exact formu-
lation of the absorption process in phase space based on the
Wigner transform of the eigenstates and the Weyl transform
of the Hamiltonians. We then identify quasidensities of states
in phase space, which lead in turn to closed form approxi-
mations for the absorption coefficient and for the absorbed
power density. The results are presented in two sections:
Section IV is devoted to the benchmark of the landscape-
based model for the absorption coefficient for 1D and 2D
systems by comparison with the eigenstate-based computa-
tion, while Sec. V presents 3D simulations in large samples
(above 100 000 nm3), from which we extract the characteris-
tics of the absorption response in InGaN disordered alloys.
Finally, we conclude by providing perspectives on the general-
ization of the presented method to a broader class of electronic
processes.

II. DISORDERED SEMICONDUCTOR ALLOYS

A. The effective mass approximation

We work within the framework of the effective mass
approximation (EMA). The alloy, consisting of randomly
drawn atoms on a lattice, is described by continuous position-
dependent conduction and valence potentials and effective
masses. These profiles are obtained locally from a Gaussian
averaging of the atomic composition. In mathematical terms,
we denote by ri the position of the cation site i ∈ I on the lat-
tice (where I is an arbitrary set of indices), and Xi a Bernoulli
random variable taking values 0 with probability 1 − x or 1
with probability x corresponding to whether a Ga atom or
an In atom is found at site i. We define the continuous local
indium concentration X (r) as

X (r) =
∑

i∈I Xi exp
(−|r−ri |2

2σ 2

)
∑

i∈I exp
(−|r−ri |2

2σ 2

) , (1)

which is a Gaussian averaging of the discrete atomic compo-
sition with smearing length σ . The Xi being random variables,
this operation constitutes a continuous bounded stochastic
process X (r). Note that if the random variables Xi are in-
dependent and identically distributed, then the mathematical
expectation of X (r) is E[X (r)] = E[Xi] = x and its variance

is

V ar[X (r )] = x(1 − x) fσ (r), (2)

with

fσ (r) =
∑

i∈I exp
(−|r−ri |2

σ 2

)
[ ∑

i∈I exp
(−|r−ri |2

2σ 2

)]2 . (3)

In particular, the two last equations show, through the function
fσ , that the variance is position dependent, X (r) is therefore
not a stationary process. In fact, the variance of X has the
periodicity of the lattice. Moreover, the variance decreases
with increasing σ and also decreases with the dimension of the
system since the denominator grows faster than the numerator
with increasing number of neighboring sites around point r.
Indeed, it can be easily shown that 0 � fσ � 1, and that for
a cubic lattice of lattice parameter a and asymptotically for
σ/a � 1, fσ becomes roughly constant and we have

fσ ∼
[

1

2
√

π

a

σ

]d

, (4a)

where d denotes the space dimension. For a 3D wurtzite
lattice, the above expression becomes

fσ ∼
√

3a2c

4(2
√

πσ )3 . (4b)

Keeping in mind the decaying variance of X (r) with increas-
ing smearing length and space dimension will be useful in
comparing results in Secs. IV and V.

From the local concentration X (r), we deduce the position-
dependent band gap energy, Eg, the conduction and valence
potentials, Ec and Ev , and the effective masses, mc and mv , as
follows:

Eg(r) = (1 − X (r))E (GaN)
g + X (r)E (InN)

g

− EbowX (r)(1 − X (r)), (5)

Ec(r) = E (GaN)
g − γ

(
E (GaN)

g − Eg(r)
)
, (6)

Ev (r) = (1 − γ )
(
E (GaN)

g − Eg(r)
)
, (7)

mc(r) =
[

X (r)

m(InN)
e

+ 1 − X (r)

m(GaN)
e

]−1

, (8)

mv (r) = −
[

X (r)

m(InN)
h

+ 1 − X (r)

m(GaN)
h

]−1

. (9)

TABLE I. Crystal parameters (a and c), band structure param-
eters (band gap Eg, effective masses me, mhh, and mlh) and energy
Ep associated to the momentum matrix element for wurtzite GaN
and InN. Bowing parameter for InGaN: 1.4 eV. Band offset factor
γ = 0.63. Parameters extracted from Refs. [20,21].

a c Eg Ep me mhh mlh

Alloy (Å) (Å) (eV) (eV) (m0) (m0) (m0)

GaN 3.189 5.185 3.437 9.9 0.21 1.87 0.14
InN 3.545 5.703 0.608 5.7 0.07 1.61 0.11
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FIG. 1. Realization of a two-dimensional In0.05Ga0.95N alloy. (a) Atomic configuration. Open blue circles denote Ga atoms and red disks
denote In atoms. (b) Conduction and (c) valence potentials obtained from Eqs. (6) and (7). The smearing length was set to σ = 2a ≈ 6.4 Å.

Note that we have chosen to give a negative sign to the valence
band effective mass in Eq. (9). This will enables us to express
energies both for the valence and conduction band states on
the same energy axis. Values of the band gap energies E (GaN)

g ,
E (InN)

g , the bowing energy Ebow, the effective masses m(InN)
e ,

m(InN)
h , m(GaN)

e , m(GaN)
h , and the band offset factor γ (i.e., the

fraction of the band offset E (GaN)
g − E (InN)

g which is attributed
to the conduction band) are extracted from the literature and
are given in Table I and its caption. As an illustration, a
realization of the atomic configuration and of the conduction
and valence potentials for a two-dimensional InGaN alloy
are shown in Fig. 1. In this paper, we only take one valence
band into consideration, the one for heavy holes, and neglect
the contribution from light holes for simplicity. Moreover,
since we use the InGaN alloy as a proxy for a disordered
semiconductor, we neglect the piezoelectric fields of the true
InGaN materials.

B. Conduction and valence states

Let the domain of study be � = [0, L[d with Born-von
Karman periodic boundary conditions along the three axes
x1, x2, and x3 [to which we assign the orthonormal ba-
sis (e1, e2, e3)]. The crystal is assumed to be oriented such
that the so-called c axis is aligned with the x3 direction.
The band edges being disordered, the eigenstates of the
Hamiltonian in the semiconductor cannot be described by
Bloch waves of the form ψ (v) = uv,k(r) exp(ik · r)/|�|1/2

and ψ (c) = uc,k(r) exp(ik · r)/|�|1/2, where uv,k and uc,k are
lattice-periodic functions, as for a homogeneous crystalline
semiconductor. Instead, we can assume the states to have the
form

ψ (c)
μ (r) = uc(r) χ (c)

μ (r), (10a)

ψ (v)
ν (r) = uv (r) χ (v)

ν (r), (10b)

where χ (c)
μ and χ (v)

ν are envelope functions satisfying

Ĥc χ (c)
μ = − h̄2

2
∇ ·

[∇ χ (c)
μ

mc

]
+ Ec χ (c)

μ = E (c)
μ χ (c)

μ , (11)

Ĥv χ (v)
ν = − h̄2

2
∇ ·

[∇ χ (v)
ν

mv

]
+ Ev χ (v)

ν = E (v)
ν χ (v)

ν . (12)

Here μ, ν are arbitrary indices associated to the eigenenergies
E (c)

μ and E (v)
ν . Note that in Bloch’s theorem, the lattice-

periodic functions depend, in principle, on wave vector k.
However, since we are primarily interested in the band-edge
part of the spectrum, we have assumed here that the uv,k and
uc,k cell functions from Bloch’s theorem depend weakly on k
so they can be approximated by uv,0 and uc,0 , and which we
have simply denoted uv and uc in Eq. (10).

For completeness, we report in Appendix A a critical dis-
cussion on the validity of the effective mass approximation
and its relevance for modeling InGaN.

III. LIGHT ABSORPTION

A. Absorption in the EMA

The transition rate for the excitation of an initial state in the
valence band, | ψ (v)

ν 〉, to a final state in the conduction band,
| ψ (c)

μ 〉, by absorption of a photon of energy h̄ω, is given by
Fermi’s golden rule [1–3],

Wμν = 2π

h̄

( e

2m0

)2 ∣∣ 〈 ψ (c)
μ

∣∣ A0 · p̂
∣∣ψ (v)

ν

〉 ∣∣2

× δ
(
E (c)

μ − E (v)
ν − h̄ω

)
, (13)

where E (v)
ν and E (c)

μ are the energies of the initial and final
states, respectively. The vector A0 is the amplitude of the
electromagnetic vector potential, which we take to be a plane
wave, i.e., A = A0 cos(k0 ·r − ωt ), with k0 = k0 e3 being the
wave vector of the plane wave in the material. The operator
p̂ = −ih̄∇ is the momentum operator. We assume the optical
wavelength to be significantly larger than the typical scales
of variations of the potentials to work within the dipole ap-
proximation, i.e., we regard the electromagnetic field as only
a varying function of time. Assuming the light intensity to be
weak and the absence of doping, we can neglect stimulated
emission and the total absorption rate is obtained by summing
the elementary rates, in Eq. (13), over all states in the valence
and conduction bands,

Wtot (ω) = 2
∑
μν

Wμν, (14)

where the factor of 2 accounts for the spin degeneracy.
We have seen that within the effective mass approximation,
the wave functions ψ (v)

ν and ψ (c)
μ have the form given in
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Eq. (10). Provided that the envelope functions χ (c)
μ and χ (v)

ν

vary slowly over the crystal unit cell, the matrix element
Mμν = 〈ψ (c)

μ | A0 · p̂ | ψ (v)
ν 〉 can be factorized as [2] (see Ap-

pendix B)

Mμν = 〈uc| A0 · p̂ |uv〉
〈
χ (c)

μ

∣∣χ (v)
ν

〉
. (15)

Note that this assumption may be questionable if σ < a since
then the potentials Ec and Ev vary on a scale of the order of
a few lattice constants and so may the envelope functions.
For such low values of σ , the use of the EMA should also
be questioned anyway. The total absorption rate can then be
recast as

Wtot (ω) = πe2A2
0Ep

h̄m0
C(h̄ω). (16)

Here we denote A0 = | A0 |, a = A0 /A0, and let Ep =
| 〈uc| a · p̂ |uv〉 |2/m0 be the energy associated to the momen-
tum matrix element. For practical computation, we will take
for Ep a linear interpolation of the values for GaN and InN
weighted by the average In concentration x [22]. Moreover,
we define the spectral coupling density as

C(h̄ω) =
∑
μ,ν

∣∣ 〈 χ (c)
μ

∣∣χ (v)
ν

〉 ∣∣2
δ
(
E (c)

μ − E (v)
ν − h̄ω

)
. (17)

A pair of modes contributes to the spectral coupling density
at energy h̄ω if their difference of energy is equal to h̄ω

(conservation of energy) and if there is a significant coupling
factor | 〈χ (c)

μ | χ (v)
ν 〉 |2. Note that in the absence of disorder, the

envelope functions are plane waves and the coupling factor
yields the conservation of momentum as expected for homo-
geneous materials (see Appendix C for the derivation in the
homogeneous limit). The photon flux through the surface area
S = L2 is given by the flux of the average Poynting vector
along the x3 direction, �, divided by h̄ω,

� = �S

h̄ω
= ε0ωn(ω)c0A2

0S

2h̄
, (18)

where ε0 is the vacuum permittivity, c0 is the speed of light
in vacuum, and n(ω) is the real part of the refractive index of
the material. The ratio Wtot/� is thus the fraction of absorbed
photons in the volume � along the propagation of a distance
L in the x3 direction, which by definition of the absorption
coefficient α is

Wtot (ω)

�
= α(ω)L, (19)

provided αL 	 1. From Eqs. (16), (18), and (19) we deduce
the following expression of the absorption coefficient:

α(ω) = 2πe2Ep

m0ε0ωc0n(ω)

C(h̄ω)

|�| . (20)

B. Wigner transform and Weyl law

According to Eq. (17), the spectral coupling density for
a given realization of the alloy requires computing the
eigenstates χ (c)

μ and χ (v)
ν , which can be numerically costly,

especially for 3D alloys. Instead, we look for an alterna-
tive way to evaluate C(h̄ω) without resorting to solving the
Schrödinger equations. This will be achieved in two steps.
First, we will rewrite Eq. (17) using the Wigner transform of

χ (c)
μ and χ (v)

ν and reinterpret the spectral coupling density in
terms of quasidensities of states in phase space. Second, we
will approximate the quasidensities of states in phase space
by exploiting the properties of the LL.

To begin, we recall that the Wigner transform Wψ of a
function ψ is a distribution in phase space and is defined by
[23,24]

Wψ (r, k) =
∫

ψ∗
(

r − x
2

)
ψ

(
r + x

2

)
exp(−ik · x ) dd x.

(21)
There exist several conventions for the definition of the
Wigner transform in the literature, differing in factors 2π and
h̄ depending on whether one works with the wave vector k or
the momentum p = h̄k. Here we have chosen the convention
used in Ref. [23]. The square modulus of the scalar product,
| 〈χ (c)

μ | χ (v)
ν 〉 |2, appearing in Eq. (17), can equivalently be

written in terms of the Wigner transforms W
χ

(c)
μ

and W
χ

(v)
ν

of

χ (c)
μ and χ (v)

ν . This is done via Moyal’s formula [23]:

∣∣〈χ (c)
μ

∣∣χ (v)
ν

〉∣∣2 =
∫∫

W
χ

(c)
μ

(r, k)W
χ

(v)
ν

(r, k)
dd r dd k

(2π )d
. (22)

Inserting Eq. (22) into Eq. (17), we obtain

C(h̄ω) =
∫∫ ∑

μ,ν

W
χ

(c)
μ

(r, k)W
χ

(v)
ν

(r, k)

× δ
(
E (c)

μ − E (v)
ν − h̄ω

) dd r dd k

(2π )d
. (23)

Now, to decouple the sums over μ and ν, we write the Dirac
mass δ(E (c)

μ − E (v)
ν − h̄ω) as the convolution product

δ
(
E (c)

μ − E (v)
ν − h̄ω

) =
∫

δ
(
E (c)

μ − h̄ω − ε
)
δ
(
E (v)

ν − ε
)

dε.

(24)
By inserting Eq. (24) into Eq. (23), we obtain

C(h̄ω) =
∫∫∫

D(c)(r, k, ε + h̄ω)D(v)(r, k, ε) dε
dd r dd k

(2π )d
,

(25)
where we have defined

D(c)(r, k, E ) =
∑

μ

W
χ

(c)
μ

(r, k) δ
(
E (c)

μ − E
)
, (26a)

D(v)(r, k, E ) =
∑

ν

W
χ

(v)
ν

(r, k) δ
(
E (v)

ν − E
)
. (26b)

Since each Wigner function involved in the sum in Eq. (26)
corresponds to a quasiprobability density in phase space as-
sociated with an eigenstate, the quantities D(c)(r, k, E ) and
D(v)(r, k, E ) can be interpreted as quasidensities of states
in phase space at energy E for the conduction and valence
band, respectively. The quasidensity of states in phase space
is in fact tightly linked with the usual densities of states, such
as the local and integrated density of states (IDOS) and the
spectral function, since the latter are recovered as marginal
integrations of the quasidensity of states in phase space as
shown in Appendix D and expressed below in Eq. (28).

Equation (25) therefore provides an alternative but equiv-
alent picture of the spectral coupling density to that given by
Eq. (17). Equation (17) states that to contribute to the spectral
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FIG. 2. Integrated density of states in phase space, i.e., the sum of the Wigner transforms W
χ

(c)
μ

of eigenstates whose eigenenergy lie below
a given energy E [see Eq. (27)] for a one-dimensional alloy with In concentration x = 5% and L = 100 nm. The smearing length was set to
σ = 2a. (a) E = 3.06 eV (first two states), (b) E = 3.22 eV (first 14 states), (c) E = 3.46 eV (first 20 states), and (d) E = 3.84 eV (first 50
states). The dashed lines are the contour Hc(x1, k1) = E and the solid lines are the contour H (eff )

c (x1, k1) = E . The color scale is held fixed for
the sake of visibility.

coupling density at energy h̄ω, a pair of states χ (c)
μ and χ (v)

ν

must be such that their difference of energies is equal to h̄ω

and that they have significant overlap integral. Equation (25)
states, instead, that the coupling spectral density evaluated at
h̄ω can be viewed as summing over the whole phase space the
convolution product of the conduction and valence quasiden-
sity of states in phase space at energy h̄ω. The conservation of
energy is encoded in the convolution product, i.e., we scan in
energy D(c) and D(v) simultaneously but with a fixed energy
difference equal to h̄ω. The coupling weight encoded in the
square modulus of the scalar product in direct space is now
encoded in the sum over phase space of the product of D(c)

and D(v).
The steps we have taken so far are exact. We now need

to assess the quasidensities of states in phase space, D(c) and
D(v). To that end, we integrate (26a) over energy,

∫ E

−∞
D(c)(r, k, ε) dε =

∑
μ

W
χ

(c)
μ

(r, k) �
(
E − E (c)

μ

)
, (27)

where � is the Heaviside step function. We refer to the above
quantity as the integrated density of states in phase space. The
idea now is to observe that, on the one hand, the sum over
phase space of the above integral is exactly equal to the IDOS

for all E :∫∫ ∫ E

−∞
D(c)(r, k, ε) dε

dd r dd k

(2π )d
= IDOS(c)(E ). (28)

Equation (28) is proven in Appendix D. On the other hand,
Weyl’s law for the IDOS associated with Hamiltonian Ĥc

states that, asymptotically for E → ∞, the IDOS is propor-
tional to the volume of the region of phase space Hc(r, k) =

h̄2k2

2mc (r) + Ec(r) < E , i.e.,

IDOS(c)(E ) ∼
∫

Hc (r,k)<E

dd r dd k

(2π )d
. (29)

Equations (28) and (29) suggest that, asymptotically for E →
∞, the function

∫ E
−∞ D(c)(r, k, ε) dε, can be approximated by

a plateau function equal to 1 within the domain Hc(r, k) < E ,
i.e., ∫ E

−∞
D(c)(r, k, ε) dε ≈ �(E − Hc(r, k)). (30)

We have verified numerically that the approximation Eq. (30)
is indeed satisfied for E sufficiently large. Figure 2 illustrates
the plateau function approximation for a one-dimensional al-
loy by comparing the integrated density of states in phase
space, Eq. (27), with the level line Hc(x1, k1) = E for
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different values of E (dashed lines). For E large enough, the
dashed contour line captures well the volume occupied by the
integrated density of states in phase space [see Figs. 2(c) and
2(d); lower values of E will be discussed at the end of the
section]. We note, however, that the suggested approximation
may not be mathematically valid pointwise but rather in a
weaker sense, as can be seen by the high frequency oscilla-
tions on the line k1 = 0, which develop for sufficiently large
values of E [see Fig. 2(d)]. These oscillations result from the
interference in the Wigner transform of high energy states
which are quasiplane waves ≈ exp(±ikx1). Clearly, a similar
approximation holds for the valence band,

∫ ∞

E
D(v)(r, k, ε) dε ≈ �(Hv (r, k) − E ), (31)

with Hv (r, k) = h̄2k2

2mv (r) + Ev (r). The change of order in the
bounds of the integral is due to the negative effective mass
mv , i.e., higher order excited states have decreasing energy.
Differentiating with respect to the energy E in Eqs. (30) and
(31) readily yields

D(c)(r, k, E ) ≈ δ(E − Hc(r, k)), (32a)

D(v)(r, k, E ) ≈ δ(Hv (r, k) − E ). (32b)

It follows that the integral over ε in Eq. (25) can be approx-
imated by ∫

D(c)(r, k, ε + h̄ω)D(v)(r, k, ε) dε

≈ δ(h̄ω − Hc(r, k) + Hv (r, k)). (33)

Inserting the above equation into Eq. (25), we finally obtain

C(h̄ω) ≈
∫∫

δ(h̄ω − Hc(r, k) + Hv (r, k))
dd r dd k

(2π )d

≈ d

dE

∫∫
H (c) (r,k)−H (v) (r,k)<E

dd r dd k

(2π )d

∣∣∣∣∣
E=h̄ω

, (34)

the two right-hand sides being equivalent ways of writing the
same quantity. Equation (34) can be referred to as a Weyl law
for the spectral coupling density. Furthermore, the integration
over k can be performed analytically. Indeed, we have

Hc(r, k) − Hv (r, k) = h̄2|k|2
2mr (r)

+ Eg(r), (35)

where the reduced mass mr is given by

1

mr
= 1

mc
− 1

mv

. (36)

Thus, we have

∫∫
Hc (r,k)−Hv (r,k)<E

dd r dd k

(2π )d
=

∫∫
|k|2<2mr (E−Eg)/h̄2

dd r dd k

(2π )d
= vd

(2π )d

∫ [
2mr (r)(E − Eg(r))

h̄2

]d/2

+
dd r, (37)

where vd = πd/2/�(d/2 + 1) is the volume of the d-dimensional unit ball, and the + subscript denotes the positive part function,
i.e., x+ = max(x, 0). By differentiation with respect to E , we obtain the following expressions for the spectral coupling density
in any dimension, and for the absorption coefficient in 3D [25]:

CWW(h̄ω) = dvd

2(2π )d

∫
�

[
2mr (r)

h̄2

]d/2

(h̄ω − Eg(r))d/2−1
+ dd r, (38)

αWW(ω) = e2Epv3

m0ε0c0ωn(ω)(2π )2|�|
3

2

∫
�

[
2mr (r)

h̄2

]3/2

(h̄ω − Eg(r))1/2
+ d3r. (39)

Note that in the homogeneous limit (where mr and Eg are
constant), we recover the well-known expression for the ab-
sorption coefficient (see Appendix C). We give in Appendix E
an alternative derivation of the above result based on the Weyl
transform of a two-particle Hamiltonian. Although the result
is identical, this second approach gives a complementary pic-
ture in terms of electron-hole pairs, and may be a good starting
point for further developments, in particular, for taking the
electron-hole interaction into account.

We have now found a closed form approximation for the
absorption coefficient, which in view of our analysis appears
to be accurate either in the limit of vanishing disorder or for
large enough values of the photon energy. But what about the
bottom of the spectrum? For lower values of E , we observe
that the level line Hc(x1, k1) = E overestimates the volume
occupied by the IDOS in phase space [see Fig. 2(a)]. The level
lines Hc(x1, k1) = E enclose a significant volume in phase
space which does not hold any eigenstate at the considered

energy. Eigenstates appear in these pockets of phase space
only at slightly larger energy values [see Fig. 2(b)], this phe-
nomenon being a manifestation of the tails in the density of
states characteristic of a disordered system at low energy.
We thus foresee here two limitations of the plateau function
approximation: (i) the set Hc(x1, k1) < E overestimates the
volume in phase space occupied by eigenstates as the phase
space pockets appear too early energy wise and (ii) the volume
enclosed by the level lines grows continuously with energy
while eigenstates appear at discrete energies. We show in
the next paragraph how the so-called LL overcomes the first
limitation.

C. Localization landscape and effective potential

In Refs. [26,27], the authors introduced an object called
the effective potential, defined as the reciprocal of the LL L,
which is the solution to the equation ĤL = 1 (Ĥ being the
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Hamiltonian and the right-hand side being the constant func-
tion equal to one) [19]. In particular, they showed numerically
that for a wide class of potentials, one could obtain a very
accurate approximation of the IDOS over the entire spectrum
by replacing in Weyl’s asymptotic law the original potential
by this effective potential. Following this work, we introduce
the LLs Lc and Lv associated with the conduction band and
the valence band potentials, respectively, which we define by

− h̄2

2
∇ ·

[
1

mc
∇Lc

]
+ (Ec − min Ec)Lc = 1, (40a)

h̄2

2
∇ ·

[
1

mv

∇Lv

]
− (Ev − max Ev )Lv = 1. (40b)

Note the change of sign in the Schrödinger operator in
Eq. (40b) to comply with the hypothesis of the positiveness

of the operator from the LL theory (i.e., a change of ori-
entation of the energy axis). Also note that the reference of
energy is set in such a way that the potentials Ec − min Ec and
−(Ev − max Ev ) are non-negative. The effective potentials
(expressed in the original energy frame) are then deduced
from the LLs as

E (eff )
c (r) = min Ec + 1

Lc(r)
, (41a)

E (eff )
v (r) = max Ev − 1

Lv (r)
, (41b)

and their difference defines the effective band gap profile

E (eff )
g (r) = E (eff )

c (r) − E (eff )
v (r). (42)

We thus obtain an approximation for the absorption coefficient
α (or, equivalently, for C) by replacing Eg by E (eff )

g in Eq. (39)
[or Eq. (38)],

CWWL(h̄ω) = dvd

2(2π )d

∫
�

[
2mr (r)

h̄2

]d/2(
h̄ω − E (eff )

g (r)
)d/2−1

+ dd r, (43)

αWWL(ω) = e2Epv3

m0ε0c0ωn(ω)(2π )2|�|
3

2

∫
�

[
2mr (r)

h̄2

]3/2(
h̄ω − E (eff )

g (r)
)1/2

+ d3r. (44)

Equation (43) is asymptotically equivalent to Eq. (38) as
h̄ω → ∞. The advantage of the approximation based on the
LL can be appreciated at the bottom of the spectrum. Indeed,
Eq. (43) corresponds to replacing the conduction potential
Ec by its effective counterpart E (eff )

c in the plateau function
approximation Eq. (30) and similarly for the valence potential
in Eq. (31):

∫ E

−∞
D(c)(r, k, ε) dε ≈ �

(
E − H (eff )

c (r, k)
)
, (45a)

∫ ∞

E
D(v)(r, k, ε) dε ≈ �

(
H (eff )

v (r, k) − E
)
, (45b)

with H (eff )
c (r, k) = h̄2k2

2mc (r) + E (eff )
c (r) and H (eff )

v (r, k) =
h̄2k2

2mh (r) + E (eff )
v (r). The level lines H (eff )

c = E (resp. Hc = E )
are shown as solid (respectively, dashed) black lines in Fig. 2.
While both lines capture correctly the volume in phase
hosting eigenstates at large energies [see Figs. 2(c) and 2(d)],
the quality of the approximation provided by the effective
potential appears clearly at lower energy [Figs. 2(a) and 2(b)].
Figure 2(a) is particularly illustrative of the fact that phase
space pockets enclosed by the lines H (eff )

c = E appear at
higher energy than those obtained with Hc = E due to the
quantum confinement energy that is accounted for by the LL.
As a general rule, for a given energy value E , the phase space
pockets are slightly broader along x1 and less broad along
k1 because the effective potential implicitly incorporates
the uncertainty principle [27]. The plateau function based
on the effective potential is thus expected to be a more
faithful continuous approximation of the IDOS in phase
space which evolves in jumps as the energy is increased.

This property is reminiscent of that found for the IDOS in
Refs. [26,27].

D. Spatial distribution of the absorbed power

The absorption coefficient appearing in Eq. (44) is ex-
pressed as an integral over the volume � of a function
proportional to (h̄ω − E (eff )

g (r))1/2
+ . We note that due to the

positive part function, only the volume E (eff )
g < h̄ω con-

tributes to the integral. This suggests an energetic picture,
namely, that the power brought by a given photon of energy
h̄ω is absorbed inside the volume E (eff )

g < h̄ω. Let us attempt
to make this idea more precise by defining an absorbed power
density at frequency ω, P (r, ω). Coming back to Fermi’s
golden rule expressed in Eq. (13), the transition rate Wμν gives
the number of transitions from state ψ (v)

ν to state ψ (c)
μ per

unit time, i.e., the number of photons of energy h̄ω absorbed
by this transition per unit time. Hence h̄ωWμν is the (time-)
average absorbed power by the transition ν → μ. If we ask
now where this energy is absorbed during one such transition,
we could answer that the energy h̄ω of the absorbed photon
is transferred to the electron during the time of the interaction
as the wave function of the electron, ψ (r, t ), evolves from
the initial state ψ (v)

ν to the final state ψ (c)
μ . In virtue of the

Poynting theorem from classical electrodynamics [28], the
instantaneous absorbed power density is equal to the work
transferred to the electron moving in the electric field, which
is of the form

pμν (r, t ) = Jμν (r, t ) · E(r, t ), (46)

where J = e
m Re(ψ∗ p̂ ψ ) is the electric current density and E

is the electric field. In fact, the absorbed power density can
easily be induced by rewriting Fermi’s golden rule Eq. (13)
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involved in the time-averaged absorbed power:

h̄ωWμν =
∫

�

( e

2m0

)2 〈
ψ (c)

μ

∣∣ A0 · p̂
∣∣ψ (v)

ν

〉∗
ψ (c)

μ

∗
(r) p̂ ψ (v)

ν (r) · ω A0 2πδ
(
E (c)

μ − E (v)
ν − h̄ω

)
dd r (47)

=
∫ ∞

−∞

∫
�

( e

2m0

)2 1

h̄

〈
ψ (c)

μ

∣∣ A0 · p̂
∣∣ ψ (v)

ν

〉∗
ψ (c)

μ

∗
(r) p̂ ψ (v)

ν (r) exp(iωμνt ) · ω A0 exp(−iωt ) dd r dt,

=
∫ ∞

−∞

∫
�

Jμν (r, t ) · E(t ) dd r dt . (48)

Here we have introduced the shorthand notation ωμν = (E (c)
μ − E (v)

ν )/h̄ and used the relation 2πδ(ω) = ∫
exp(iωt )dt in the

second step. In Eq. (48), we have identified the electric field E = ω A0 exp(−iωt ) and the current density associated to the
transition ν → μ:

Jμν (r, t ) =
( e

2m0

)2 1

h̄

〈
ψ (c)

μ

∣∣ A0 · p̂
∣∣ψ (v)

ν

〉∗
ψ (c)

μ

∗
(r) p̂ ψ (v)

ν (r) exp(iωμνt ). (49)

Equations (48) and (49) are interesting as they link the concept of transition rate between stationary states given by Fermi’s
golden rule from quantum mechanics and the electromagnetic power from classical electrodynamics. Here we are rather
interested in the time-averaged power density associated to the transition for a photon of energy h̄ω, pμν (r, ω), which in view of
Eq. (47) can be defined as

pμν (r, ω) =
( e

2m0

)2 〈
ψ (c)

μ

∣∣ A0 · p̂
∣∣ψ (v)

ν

〉∗
ψ (c)

μ

∗
(r) p̂ ψ (v)

ν (r) · ω A0 2πδ
(
E (c)

μ − E (v)
ν − h̄ω

)
. (50)

If we wish to consider the absorbed power density at the scale of the envelope functions, i.e., without resolving the contributions
of the periodic functions uc and uv in Eq. (50), we can integrate pμν over a lattice unit cell and follow the same steps as the ones
presented in Appendix B for the factorization of the matrix element Mμν . This gives the following cell averaged absorbed power
density:

p̄μν (r, ω) =
∫

�cell

pμν (r − r′, ω)
dd r′

�cell
= πωe2A2

0Ep

2m0

〈
χ (c)

μ

∣∣χ (v)
ν

〉∗
χ (c)

μ

∗
(r) χ (v)

ν (r) δ
(
E (c)

μ − E (v)
ν − h̄ω

)
. (51)

The above result gives a clear intuitive picture of the localization of the absorbed power. The absorbed power is distributed
proportionally to the product of the envelope functions of the initial and final states. The total power density absorbed at
frequency ω, normalized by the incident photon power �S, is obtained by summing Eq. (51) over all transitions:

P (r, ω) = 2

�S

∑
μν

p̄μν (r, ω)

= 2πe2Ep

m0ε0ωn(ω)c0S

∑
μν

〈
χ (c)

μ

∣∣ χ (v)
ν

〉∗
χ (c)

μ

∗
(r) χ (v)

ν (r)δ
(
E (c)

μ − E (v)
ν − h̄ω

)
. (52)

We note the close resemblance with the expression for the absorption coefficient given in Eq. (20). As for the absorption
coefficient, evaluating the above expression for P is numerically costly since it requires the knowledge of the eigenstates.
We can nevertheless make a simple guess for an approximation of P based on the Wigner-Weyl approach. Consider the integral
of P over the volume �. It is clear by integration of Eq. (52) that∫

�

P (r, ω) dd r = α(ω)L. (53)

This result was expected, of course, since by definition of P its integral should agree with h̄ωWtot/h̄ω� (by construction). The
interesting point is that since we have an approximation for α, e.g., Eq. (44), we directly obtain an approximation for

∫
P ,

namely, ∫
�

P (r, ω) dd r ≈ e2Epvd

m0ε0c0ωn(ω)(2π )d−1S

d

2

∫
�

[
2mr (r)

h̄2

]d/2(
h̄ω − E (eff )

g (r)
)d/2−1

+ dd r. (54)

The above equation states that two integrals over � are equal for all frequencies ω. We therefore propose to induce that the
corresponding integrands are equal (a derivation which is not mathematically correct in general). This yields the following
approximation for P:

PWWL(r, ω) = e2Epvd

m0ε0c0ωn(ω)(2π )d−1S

d

2

[
2mr (r)

h̄2

]d/2(
h̄ω − E (eff )

g (r)
)d/2−1

+ . (55)

Equation (55) translates mathematically our initial intu-
ition at the beginning of the paragraph: the absorbed

power at frequency ω is deposited in the volume E (eff )
g <

h̄ω, and the associated power density is proportional to
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[2mr (r)/h̄2]d/2(h̄ω − E (eff )
g (r))d/2−1

+ . For photon energies
h̄ω < min E (eff)

g , there is no energy transfer since no photon
is absorbed. For min E (eff )

g < h̄ω < max E (eff )
g , the energy is

absorbed in the part of the volume hosting somewhat localized
states (either in the valence or in the conduction band) whose
energies lie between the minimum and maximum of the ef-
fective potentials and which contribute to photon absorption.
For h̄ω > max E (eff )

g , the whole volume contributes. Note that
the absorbed power density around a given point r changes
with h̄ω in a way which is reminiscent of the density of states.
This encodes the fact that several states may contribute to the
power density at a given point and given frequency ω.

IV. NUMERICAL BENCHMARK

A. Numerics

1. Indium concentration map

The local indium concentration X (r) as given by Eq. (1)
can be expressed in terms of convolution products

X = gσ ∗ ∑
i∈I Xiδri

gσ ∗ ∑
i∈I δri

, (56)

where gσ (r) = exp(−|r|2/2σ ). The convolution products in
Eq. (56) are conveniently computed numerically by the use of
the fast Fourier transform (FFT) [29]. Given an almost cubic
box of size L1 × L2 × L3, where L1, L2, L3 are the nearest
integer multiples of lattice constant lengths along x1, x2, and
x3 to a desired length L, we construct a rectangular grid with
discretization steps �x1, �x2, and �x3 significantly smaller
than the lattice constants, and commensurate with the cation
lattice sites (i.e., that lattice sites exactly fall on grid points).
Based on this spatial discretization grid, we can construct
three arrays. An array G for gσ evaluated at the grid points,
an array � for the indicator of the lattice of the Ga and In
sites (i.e., equal to one for lattice points ri and zero otherwise)
and an array I for the indicator of the In sites [which depends
on the realization of (Xi )i∈I]. The discrete Fourier transforms
Ĝ = FFT[G], �̂ = FFT[�], and Î = FFT[I] are computed
with the FFT, and the indium concentration array evaluated
on the grid, Xi jk = X (ri jk ), is given by

X = FFT−1[ĜÎ]

FFT−1[Ĝ�̂]
, (57)

where the product of arrays is performed point wise. This
method is significantly faster than the naive method consisting
in summing Eq. (1) on the sampled grid points as it benefits
from the low complexity of the FFT. Furthermore, the result-
ing map automatically satisfies periodic boundary conditions.
For alloys of average indium concentration x, the wurtzite
lattice parameters are chosen following Vegard’s law, i.e.,
to be a linear interpolation of the InN and GaN parameters
a = x aInN + (1 − x)aGaN and c = x cInN + (1 − x)cGaN (see
Table I for values of the lattice parameters for InN and GaN).

2. Finite element computation of eigenstates
and localization landscapes

The computation of the localization landscapes and of
the eigenstates [30] is achieved by using the finite element

TABLE II. Numerical parameters used in the simulations: Sim-
ulation box size L, finite element mesh step �x, number of degrees
of freedom DoF, number of eigenstates per band M (only used for
1D and 2D benchmark), number of alloy realizations N , and CPU
speedup between eigenstates and landscape computation. The two
different values of the speedup correspond to the use of the direct
linear solver or the iterative method GMRES.

Simulations L (nm) �x (Å) DoF M N Speedup

1D eig./WWL 200.0 0.5 4.0×103 1000 100 178|178
2D eig./WWL 40.0 3.0 2.1×104 750 100 235|321
3D WWL 20.0 3.0 3.5×105 50

method. Meshes are generated with Gmsh [31] and we have
used the finite element solver GetDP [32,33]. The band-edge
data (potentials and effective masses) are interpolated on the
nodal points. The discretized linear system is solved either by
using a direct method or the iterative method of generalized
minimal residual (GMRES).

3. Computation of the absorption coefficient

The absorption coefficient, or equivalently C, is computed
either according to Eqs. (17), (38), or (43). For summing
Eq. (17), the Dirac masses are regularized as

δε

(
E (c)

μ − E (v)
ν − h̄ω

) = exp
[ − (E (c)

μ −E (v)
ν −h̄ω)2

2ε2

]
√

2πε
, (58)

with an energy width ε = 5 meV (unless specified otherwise),
which we have experienced to be small enough to resolve
some sharp physically meaningful peaks (see Sec. IV). The
absorption coefficient is averaged over N realizations of the
random alloy.

4. Numerical parameters

Material parameters used for the computation are summa-
rized in Table I. Numerical parameters such as the size L of the
box, and the discretization steps are summarized in Table II
for the different simulations. The real part of the refractive
index is taken to be the experimentally measured refractive
index of GaN for simplicity [34].

B. Absorption spectra in 1D and 2D

We first consider one- and two-dimensional systems, i.e.,
either a chain or a monolayer of InGaN with randomly drawn
Ga and In atoms. Since the parameters given in Table I are
relevant for three-dimensional materials, we should not at-
tempt to interpret our results in terms of realistic one- or
two-dimensional materials. Provided such materials could
be made, the band gap would be a priori different, etc.
Furthermore, as noted in Eq. (39), the prefactor in the ab-
sorption coefficient is only valid in 3D. Nevertheless, we use
the parameters from Table I, and our only concern in the
present section is to assess the quality of our approximations,
Eqs. (38), and (43), against the exact formula based on the
computation of the eigenstates, Eq. (17), for the spectral cou-
pling density per unit (d-dimensional) volume, C/|�|.
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FIG. 3. Average spectral coupling density per unit length, E[C/|�|], for one-dimensional InxGa1−xN alloys. (a) In concentration fixed
x = 5%, and smearing length fixed σ = 2a. (b)–(d) Varying In concentration x ∈ {5%, 10%, 15%} and fixed smearing length (b) σ = a,
(c) σ = 2a, and (d) σ = 3a. The results were obtained by using the eigenstate-based expression (eig.), Eq. (17), the Wigner-Weyl expression
(WW), Eq. (38), and the Wigner-Weyl localization landscape expression (WWL), Eq. (43), averaged over N = 100 realizations of the alloy
chain of length L = 200 nm. The shaded areas correspond to one standard deviation around the average.

Figure 3(a) displays the spectral coupling density per unit
length averaged over N = 100 realizations of the alloy chain.
The indium concentration and the smearing length are held
fixed to x = 5% and σ = 2a, respectively. The exact compu-
tation of the spectral coupling density (denoted eigenstates)
can be decomposed into three regimes:

(i) Above the band gap energy of GaN, E (GaN)
g =

3.44 eV, E[C/|�|] exhibits an inverse square-root be-
havior, E[C/|�|] ∝ (h̄ω − E (GaN)

g )−1/2 characteristic of the
one-dimensional density of states for a homogeneous mate-
rial. This is to be expected since for sufficiently large values
of h̄ω Weyl’s law applies. This can be interpreted from the
fact that the eigenstates at large enough energies are weakly
affected by the potential and are perturbed plane waves.

(ii) Within an intermediate range of photon energy
2.5 eV < h̄ω < 3.44 eV, the spectrum exhibits a plateau with
two peaks located at h̄ω00 = 2.98 eV and h̄ω02 = 3.19 eV
(indices 0 and 2 refer to the local ground and second excited
states in a well as will become clear below). The plateau can
be interpreted as the contribution of transitions between states
in the valence band and in the conduction band whose energies
are roughly between the minimum and the maximum of each

band potential. In other words, this can be seen as the average
broadening width of the band edges due to disorder. The two
peaks correspond to transitions from states in the valence band
to states in the conduction band which are localized on iso-
lated In atoms, and form sets of quasidegenerate eigenstates,
as will be seen below. Note the small standard deviation at the
two peaks as indicated by the shaded area, which is a signature
of the robustness of these quasidegenerate eigenenergies from
one realization to the other, and comforts the idea that the
transitions are indeed between states localized on isolated
In atom wells. The peak of lowest energy, h̄ω00 = 2.98 eV,
corresponds to a transition from the local ground state of
an isolated In well in the valence band to the local ground
state of the same isolated In well in the conduction band [see
the red and blue solid lines in the inset of Fig. 3(a)]. The
second peak, at photon energy h̄ω02 = 3.19 eV, corresponds
to a transition between the local second excited state of an
isolated In well in the valence band to the local ground state
of the same isolated In well in the conduction band [see the
dashed red line in the inset of Fig. 3(a)]. The first excited
state of the isolated well in the valence band does not couple
significantly to the local ground state in the conduction band
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due to the different parity of the wave functions, and what
would be the first excited state in a local well in the conduction
band is slightly delocalized compared to that of the valence
band due to the difference in effective masses. There is no
significant coupling between those as compared to coupling
between local ground states. The inset in Fig. 3(a) pictures
the aforementioned states and we verify that the differences
between their respective eigenenergies indeed match the two
peaks energy in the spectrum.

(iii) Finally, for photon energies h̄ω < 2.5 eV, we observe
a rapid decay of E[C/|�|] with decreasing photon energy,
also called the Urbach tail. Transitions contributing to the Ur-
bach tail correspond to low-energy states, respectively, close
to the minimum of the disordered conduction potential and
the maximum of the disordered valence potential. These are
mainly occurring where In atoms occupy several neighboring
sites, thus generating deep and broad wells. The probability
of occurrence of successive sites occupied by In atoms is ex-
ponentially small with increasing number of consecutive sites
and explains the somewhat exponential trend of the Urbach
tail.

For one-dimensional systems, we observe that the ap-
proximations to C based on the Weyl law with the original
or effective potentials (denoted WW and WWL) both agree
with the exact result above the band gap of GaN, as ex-
pected asymptotically. The plateau regime and the Urbach
tail are also captured, although the Wigner-Weyl-landscape
model is in closer agreement with the exact computation in
the Urbach tail in terms of trend. However, both approxi-
mations fail to capture the peaks which are characteristic of
quasidegenerate states. The reason for this behavior can be
understood in the sense that the derived approximations use
continuous, smoothly varying potentials or effective poten-
tials. The phase-space Hamiltonian functions Hc(r, k) and
Hv (r, k), or their effective counterparts, are smooth rep-
resentations of the energy landscape in phase space in a
semiclassical picture. To capture the individual peaks in the
spectral coupling density, one would need an approach in
which the quantized flavor of the states energies is, in some
sense, preserved. A simple heuristic to give a correction to
the Wigner-Weyl-landscape model and, for example, cap-
ture the peak associated to the transitions between local-well
ground states could be the following: one could approxi-
mate the ground-state energy of a local well by using the
rule of thumb [26] E (c)

μ ≈ (1 + d/4) min E (eff )
c , where the

minimum is taken locally for the considered well (and sim-
ilarly for E (v)

ν ), and then consider the probability density
(histogram) normalized by the wells volume of the approx-
imated energy differences (1 + d/4)(min E (eff )

c − max E (eff )
v )

over the domain � (not shown here). Figures 3(b)–3(d) show
the average spectral coupling density computed both based
on the eigenstates or by using the Wigner-Weyl-landscape
model for different values of the smearing length σ , and for
different average indium concentration x. We observe over-
all good agreement between the exact calculation and the
Wigner-Weyl-landscape model for all considered values of σ

and x.
For two-dimensional systems, we observe that due to the

weaker variability of the potentials compared to the one-

dimensional case [see Eq. (4)], there is no peak associated
to transitions between quasidegenerate states. Figure 4 shows
that the average spectral coupling density increases monoton-
ically with photon energy h̄ω to reach a constant value when
h̄ω → ∞ as expected from the Weyl law in 2D. Note that
the slow decay and the possible oscillations of the spectral
coupling density with h̄ω at high energy for the eigenstates
based computation [Figs. 4(a)–4(c)] comes from the limited
number of eigenstates accounted for the computation. We
have indeed observed that, for a computation with fewer
realizations, the high energy behavior becomes constant for
a large enough number of eigenstates taken into account.
The comparison between the eigenstates based computation
of the average spectral coupling density and the Wigner-
Weyl-landscape model in Figs. 4(a)–4(c) shows overall good
agreement over the whole spectrum and for all the consid-
ered indium concentration x. The agreement seems to be
better for increasing values of the smearing length σ . The
Wigner-Weyl-landscape model seems to slightly overestimate
the Urbach tail for σ = a. Figure 4(d) shows a comparison
of the spectral coupling density computed with the Wigner-
Weyl and Wigner-Weyl-landscape models for x = 10% and
different values of σ . We observe that the Wigner-Weyl model
clearly overestimates the Urbach tail compared to the Wigner-
Weyl-landscape model. This gives a clearer illustration, here
in 2D compared to 1D, that the Wigner-Weyl-landscape model
indeed performs better than the model based on the usual Weyl
law.

C. Urbach energy

We obtain the Urbach energies (reported in Table III for
two-dimensional systems) by fitting an exponential function
in the Urbach tail both for the eigenstate-based and the
landscape-based computations. The fit is performed by min-
imizing a least-squares cost function

χ2 = 1

Nω − p

Nω∑
n=1

[
ln(E[α(h̄ωn)]) − ln(αexp(h̄ωn))

�(h̄ωn)

]2

. (59)

Here Nω is the number of discrete frequency points ωn taken
into consideration, E[α] is estimated by the empirical aver-
age of the absorption coefficient obtained from simulations,
αexp(h̄ω) = α0 exp(h̄ω/EU ) is the Urbach tail exponential
model where α0 and EU are free parameters, p = 2 is the
number of free parameters, and

�(h̄ωn) =
√
V ar[α(h̄ωn)]

N

1

E[α(h̄ωn)]
(60)

is the uncertainty on the logarithm of the empirical average
(
√
V ar[α] /N is the uncertainty on the average) where V ar[α]

is estimated by the empirical variance. The uncertainty on the
Urbach energy, EU , is estimated from the diagonal element of
the Hessian matrix of the cost function corresponding to the
parameter EU [35]. From Table III, we see that the Urbach
energies E (WWL)

U obtained with the Wigner-Weyl-landscape
model are in very good agreement with that obtained with
the rigorous model. We note that the Urbach energy tends to
increase for increasing indium concentration, which is intu-
itively understandable since the disorder increases. Moreover,
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FIG. 4. Average spectral coupling density per unit area, E[C/|�|], for two-dimensional InxGa1−xN alloys. (a)–(c) Comparison between
the eigenstates based formula [eig., Eq. (17)] and the Wigner-Weyl law based on the localization landscape [WWL, Eq. (43)] for varying
In concentration x ∈ {5%, 10%, 15%} and fixed smearing length (a) σ = a, (b) σ = 2a, and (c) σ = 3a. (d) Comparison between the usual
Wigner-Weyl law [WW, Eq. (38)] and the Wigner-Weyl law based on the localization landscape [WWL, Eq. (43)] for a fixed In-concentration
x = 10%, and varying smearing length σ ∈ {a, 2a, 3a}. The results were obtained by averaging over N = 100 realizations of the alloy of area
L × L = 40 nm × 40 nm. The shaded areas correspond to one standard deviation around the average. The vertical dashed lines indexed with a
percentage corresponds to the band gap energy obtained with the bowing formula, Eq. (5), for X set to the average concentration x.

the Urbach energy tends to decrease with increasing smearing
length, which we can understand as well since an increasing σ

means a decreasing strength (variance) of the conduction and
valence potentials.

TABLE III. Urbach energy EU for two-dimensional alloys de-
duced by fitting an exponential function α ∝ exp(h̄ω/EU ) to the tail
of the average spectral coupling density.

σ/a x (%) E (eig)
U (meV) E (WWL)

U (meV)

1.0 5 48 ± 2 49 ± 3
1.0 10 57 ± 2 52 ± 3
1.0 15 56 ± 2 52 ± 3
2.0 5 27 ± 3 34 ± 3
2.0 10 41 ± 2 40 ± 3
2.0 15 46 ± 4 43 ± 3
3.0 5 21 ± 2 23 ± 3
3.0 10 20 ± 2 28 ± 3
3.0 15 27 ± 2 30 ± 3

D. Absorbed power density

Figure 5 shows the reduced two-dimensional absorbed
power density

P̃ (r, ω) =
∑
μν

〈
χ (c)

μ

∣∣χ (v)
ν

〉∗
χ (c)

μ

∗
(r) χ (v)

ν (r)

× δ
(
E (c)

μ − E (v)
ν − h̄ω

)
, (61)

and its approximation [see Eq. (55)]

P̃WWL(r, ω) = d vd

2(2π )d

[
2mr (r)

h̄2

]d/2(
h̄ω − E (eff )

g (r)
)d/2−1

+
(62)

for different values of the photon energy h̄ω. Note that for
the exact reduced power density P̃ we have used an energy
smearing width of ε = 20 meV. The reason for choosing a
rather large energy smearing width is that the approximation
P̃WWL is intrinsically smooth with h̄ω while for a finite-size
system, P̃ exhibits contributions at discrete photon energies.
The chosen value is arbitrary for the comparison but it reflects
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FIG. 5. (a)–(c) Absolute value of the reduced absorbed power density obtained with Eq. (61) for ε = 20 meV and (d)–(f) reduced absorbed
approximated by the Wigner-Weyl-localization landscape model, Eq. (62), for a two-dimensional In0.15Ga0.85N alloy, with σ = 2a. The maps
are shown for different values of the photon energy, (a,d) h̄ω = 2.7 eV, (b,e) h̄ω = 2.85 eV, (c), (f) h̄ω = 3.0 eV.

the intrinsic energy smearing of the effective potentials in this
case. We observe that the exact reduced power density, P̃ , is
localized in a small volume at low photon energy [Fig. 5(a)]
which corresponds to the contribution of local fundamental
states. As the photon energy increases, more delocalized states
contribute and the power density spreads over a larger volume
to eventually become roughly uniform over the whole vol-
ume [Figs. 5(b) and 5(c)]. Similarly, the approximate power
density based on the LL, P̃WWL, exhibits an almost constant
value in an increasingly larger domain with increasing photon
energy [Figs. 5(d)–5(f)]. The fact that the density is almost
piecewise constant is a particularity of the spatial dimension
d = 2. Indeed, for d = 2, P̃WWL(r, ω) vanishes for h̄ω <

E (eff )
g (r) and is proportional to m(r) for h̄ω > E (eff )

g (r) [note
that (h̄ω − E (eff )

g (r))0 = 1]. This local effective mass does
not vary much in view of the close values of the effective
masses for InN and GaN. The interesting feature of P̃WWL

is that it predicts remarkably well the volume in which the
eigenstates contribute by comparison with the exact absorbed
power density. The approximated density may be interpreted
as a smoothing in energy space, in some sense, of the exact
power density.

V. 3D ABSORPTION

A. Absorption spectra

We now turn to three-dimensional systems for which the
computation of the eigenstates becomes unpractical for rea-
sonable system sizes. Figure 6(a) displays the absorption

coefficient spectra obtained with the Wigner-Weyl-landscape
model for a few values of the average indium concentration
x and for σ = a, 2a, and 3a. Consistently with our observa-
tions for one- and two-dimensional systems, the Urbach tail
is less pronounced for larger values of the smearing length σ .
Furthermore, the Urbach energy which controls the decay of
the Urbach tail is also smaller than the values obtained for
two-dimensional systems for the same value of σ [compare
Table III with Fig 6(b)]. This is due to the lower variability
of the potentials Ec and Ev with the space dimension d [see
Eq.(4)]. Consequently the potentials are less confining. This
is particularly true for electrons in the conduction band. A
calculation of a few wave functions for one realization of
the alloy (not shown here) shows that the wave functions in
the conduction band are delocalized over the entire box and
quickly resemble plane waves with increasing energy while
the wave functions in the valence band remain localized in lo-
cal potential wells near the band edge. These observations are
in agreement with comparable computations reported in the
literature in the absence of interface fluctuations in quantum
well, or of the electron-hole Coulomb interaction [10,36].

Figure 6(b) shows the dependency of the Urbach energy
with the average indium concentration x between 0 and 20%.
We observe that the Urbach energy increases with the indium
concentration and decreases with increasing smearing length,
as observed for two-dimensional alloys. It is instructive to
compare the values of Urbach energies we have obtained
in 2D and 3D, with values obtained experimentally and nu-
merically for quantum wells. In Ref. [9], Piccardo et al.
found values of Urbach energies in the range between 15 and
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FIG. 6. (a) Absorption coefficient as a function of photon energy h̄ω for different values of the average indium concentration x and of the
smearing length σ . The shaded area correspond to ±2

√
V ar[α] /N . (b) Urbach energy as a function of x for different values of σ . The data are

obtained based on the Wigner-Weyl localization landscape approach.

25 meV for indium concentration varying between 10% and
30% by using the technique of bias photocurrent spectroscopy
[37]. They also found using a model based on the EMA that a
value of σ ≈ 2a was appropriate to fit the experimental data.
In view of Table III and Fig. 6(b), for σ = 2a we have values
of Urbach energies which are about 40 meV in 2D and 7 meV
in (bulk) 3D for these indium concentrations. Considering
that a quantum well is a quasi-two-dimensional system and
also the effect of piezoelectric field (which is absent in our
calculation), the fact that the values obtained in Ref. [9] fall
between the values we have obtained for 2D and 3D systems
is quite comforting. A more detailed comparison between
models and experiments is left for future work.

B. Absorbed power density

The absorbed power density computed based on Eq. (55)
is shown in Fig. 7 for different photon energies for a domain
of 50 nm side length. At low enough photon energy, at the

bottom of the Urbach tail [Fig. 7(a)], we observe that only
localized regions contribute to the absorbed power. As the
photon energy increases, an increasingly larger volume con-
tributes to the absorption and with more intensity. This gives
the intuitive picture of an underlying energy landscape, the
effective band gap profile, which is filled up as the photon
energy increases. Furthermore, with increasing photon energy,
more modes contribute at a given point, a feature which is
encoded in the (h̄ω − E (eff )

g )1/2 law, in Eq. (55), and which is
reminiscent of the density of states.

VI. CONCLUSION

In summary, we have derived a computationally efficient
model for light absorption in disordered semiconductor al-
loys. The model is based on an original approach in phase
space and takes advantage of the LL theory. We have demon-
strated that the model gives an accurate prediction for the

FIG. 7. Absorbed power density PWWL for a realization of the alloy for three values of h̄ω: (a) h̄ω = 2.8 eV, (b) h̄ω = 2.85 eV, (c) h̄ω =
2.9 eV. The results were obtained with Eq. (55) for a size of the computational domain L × L × L = 50 nm ×50 nm ×50 nm, with element
size �x = 3 Å, average indium concentration x = 15% and smearing length σ = 2a. The eighth top front corner cube is removed to help
visualize the inside of the volume. The color scale is common for the three values of h̄ω to ease the comparison.
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absorption coefficient over the whole spectrum when com-
pared with the model based on the solution of the Schrödinger
equations. The computational speedup has been estimated for
one and two-dimensional systems to be about two orders of
magnitude. Such a speedup is considerable, especially for
three-dimensional systems of relatively large size for which
the use of standard methods would be prohibitive.

The presented framework offers unique directions to be
investigated. Allowing for fast computation of the absorp-
tion coefficient in 3D, the model could be compared to a
light absorption experiment for bulk semiconductor alloys like
thick layers of InGaN for various indium concentrations or
more exotic alloys such as perovskites. Moreover, relatively
large devices could be simulated such as multiple disordered
quantum wells.

In addition, it is well acknowledged that the electron-hole
Coulomb interaction can play a significant role in absorption
spectra or more generally in the electronic structure [10]. It
would be of great theoretical and numerical interest to analyze
how we could generalize the presented theoretical approach in
phase-space accounting for the electron-hole interaction.

In the present paper, we have restricted ourselves to un-
correlated alloys but the theoretical framework can handle
correlated atomic disorder as well. Exploring the effect of
spatial atomic species correlation on the absorption spectrum,
for example, due to clustering [15] or even more subtle cor-
relations would be both of fundamental and practical interest.
Due to the limited precision and efficiency of APT and TEM,
atomic correlations which may hardly be visible with the
aforementioned techniques could be complemented by a care-
ful analysis of the absorption tail, which we believe should
be sensitive to atomic correlations. If one could rely on a
precise modeling of the absorption spectrum, in particular,
incorporating the Coulomb interaction, deviations from the
computed ideal case could be used to assess statistical prop-
erties of the alloy based on its physical impact on electronic
properties.

Furthermore, increasing interest has emerged in recent
years on nonlocal coupling between extended excitonic states
and the electromagnetic field, beyond the dipole approxima-
tion, which may yield significant effects both on the spectra
and on the excitonic states life time. Such a regime becomes
relevant for high refractive index and material exhibiting a
large scale disorder on a scale of a few nanometers [38].
It would be interesting to see whether our approach can be
adapted to go beyond the dipole approximation.

Beyond the study of light absorption, the Wigner-Weyl
framework is quite general and should apply to a broader
class of problems. The apparently obvious next question to
be addressed is that of luminescence phenomena. Our frame-
work should be easily adaptable to radiative recombination,
at least in the assumption of relaxed electrons. Indeed, one
may assume Fermi-Dirac statistics for the relaxed electrons
and holes near the band edges and carry out the derivation
presented in the paper by weighting the density of states in
phase space with Fermi-Dirac distributions. Additionally, this
would also allow for the study of the effect of temperature
on both absorption and luminescence spectra. Nonradiative
recombinations, such as Auger processes, for example, are
also likely to be modeled within the same framework at

the expense of coupling three densities of states in phase
space instead of two. Maybe more surprising, the problem
of phonon-assisted transport may also be suitably modeled
by the Wigner-Weyl approach in view of the mathematical
similarity between the electron-phonon interaction and the
electron-photon interaction, although care should be taken
with the different wavelength regimes.
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APPENDIX A: VALIDITY OF THE EFFECTIVE
MASS APPROXIMATION

We would like to make a few remarks on the disordered
band approximation, in particular, to motivate its relevance
for modeling InGaN. The method is inspired by the so-called
approximation of the envelope wave function, also known
as the effective mass approximation (EMA), for the model-
ing of quantum wells. In this context, effective Schrödinger
equations are written for the different carriers experienc-
ing piecewise constant or linear potentials on scales of few
nanometers, i.e., many lattice parameters. These potentials
are constructed via the band gaps of the involved semicon-
ductor layers and potentially electric fields [2,3]. Although
the method is largely validated, and is in fact the state of
the art for describing and designing quantum well devices,
the validity of the EMA to model disordered semiconductors
at the subnanometer scale is not immediate. Indeed, why
should an alloy even preserve a crystalline band structure?
An enlightening answer was given by Popescu and Zunger,
who showed numerically that an effective band structure, in
the sense of a broadening and a deformation of the dispersion
curves with increasing alloying concentration can still be de-
fined but only for some types of alloys [11,12]. Depending on
the atomic species involved in the alloy, one can observe either
a broadening of the band structure for a large range of alloying
concentration or the apparition of impurity states inside the
gap at low alloying concentration to a full population of the
gap and destruction of the band structure at higher concentra-
tions. InGaN belongs to the first category which motivates the
use of the effective mass approximation [11,12]. Furthermore,
this approach has been used for modeling disordered quantum
well devices with remarkable agreement with experiments,
provided the value of the smearing parameter is adequately
chosen [9,39].

The next question is the choice of EMA parameters and
evaluating how well they will lead to a local disordered po-
tential representative of the alloy. This can be done by (i)
comparison with other models of disordered semiconductor
alloys, supposedly more accurate, or by (ii) comparison of
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the resulting computations with some observables of the sys-
tem. In a number of cases, EMA has been compared with
density functional theory, such as for Si quantum dots, for
which an excellent agreement is obtained between the two
methods [40]. For nitride alloys, comparisons between atom-
istic models and EMA have also been made, with only small
differences [41,42]. It is, however, still difficult to assess these
differences to true deficiencies of either computations or to
the choice of parameters (e.g., the choice of the so-called
bowing parameter describing the nonlinear variation of the
alloy band-gap with alloy composition for the EMA, see, e.g.,
Caro et al. [43]). Turning to (ii), comparing with experiment,
the situation is also somewhat undecisive due to uncertainties
on samples quality and geometries [44]. For instance, analysis
of the Urbach tails in InGaN quantum wells (QWs) reported
by Piccardo [9] and David [10] are significantly different.
Both rely on the EMA for analysis. David et al. include the
Coulomb interaction to obtain agreement with a single QW
absorption data. In contrast, Piccardo et al. rely on layer
thickness fluctuations to fit the larger Urbach tail of multiple
QWs samples, and the impact of Coulomb interaction might
be hidden by these fluctuations.

In any case, the use of the EMA is sufficient at this point to
generate a representative disordered potential to evaluate the
computational approach developed in the present paper. As
observed in Secs. IV and V, the final results depend signifi-
cantly on the value of the smearing length.

APPENDIX B: MOMENTUM MATRIX
ELEMENT FACTORIZATION

By definition, the matrix element Mμν =
〈ψ (c)

μ | A0 · p̂ | ψ (v)
ν 〉 can be expanded as

Mμν = − ih̄ A0 ·
[∫

�

u∗
c (r)∇uv (r)χ (c)

μ

∗
(r) χ (v)

ν (r) d3r

+
∫

�

u∗
c (r)uv (r)χ (c)

μ

∗
(r)∇ χ (v)

ν (r) d3r

]
. (B1)

Assuming the envelope functions to be slowly varying over
the unit cell, the integration over � can be approximated by
a sum over unit cells �i centered on ri contained in � where
the envelope functions are considered constant over each cell,
i.e.,

Mμν = − ih̄ A0 ·
∑
i∈L

[
χ (c)

μ

∗
(ri ) χ (v)

ν (ri )
∫

�i

u∗
c (r)∇uv (r) d3r

+ χ (c)
μ

∗
(ri )∇ χ (v)

ν (ri )
∫

�i

u∗
c (r)uv (r) d3r

]
. (B2)

The integral in the second term in the above equation vanishes
as it is the scalar product of two unit cell Bloch functions of
different bands. The integral in the first term is the momentum
matrix element between uc and uv and it does not depend on
the specific unit cell �i since uc and uv are lattice periodic.
Thus, we have

−ih̄

|�i|
∫

�i

u∗
c (r)∇uv (r) d3r = 〈uc| p̂ |uv〉 (B3)

and

Mμν = 〈uc| A0 · p̂ |uv〉
∑
i∈L

χ (c)
μ

∗
(ri ) χ (v)

ν (ri )|�i|

≈ 〈uc| A0 · p̂ |uv〉
∫

�

χ (c)
μ

∗
(r) χ (v)

ν (r) dd r, (B4)

which justifies Eq. (15).

APPENDIX C: HOMOGENEOUS LIMIT

We consider here the limit where either the average in-
dium concentration x → 0 or where the smearing length σ →
∞, the disordered conduction and valence bands become
constant, Ec(r) = Ec and Ev (r) = Ev , and so are the effec-
tive masses mc(r) = me and mv (r) = −mh. In such cases,
the envelope functions reduce to plane waves χ (c)

μ (r) =
exp(i kμ ·r)/

√|�| and χ (v)
ν (r) = exp(i kν ·r)/

√|�|. Their
scalar product becomes 〈χ (c)

μ | χ (v)
ν 〉 = δkμ,kν

. The wave

vectors are given by kμ = ∑d
i=1 2πμi ei /L, where μ =

(μ1, · · · , μd ) ∈ Zd is a multi-index, and similarly for kν . The
eigenenergies are given by E (c)

μ = Ec + h̄2| kμ |2/2me, and
E (v)

ν = Ev − h̄2| kν |2/2mh. The spectral coupling density then
reads

C(h̄ω) =
∑

μ

δ

(
h̄2| kμ |2

2mr
+ Eg − h̄ω

)

≈ |�|
(2π )d

∫
δ

(
h̄2|k|2
2mr

+ Eg − h̄ω

)
dd k

= dvd |�|
2(2π )d

[
2mr

h̄2

]d/2

(h̄ω − Eg)d/2−1
+ . (C1)

Here we have introduced the reduced effective mass m−1
r =

m−1
e + m−1

h , used the density of states in k space |�|/(2π )d

and a change of variable E = h̄2|k|2/2mr . The factor vd =
πd/�(d/2 + 1) is the volume of the unit ball in dimension
d and the + subscript denotes the positive part function
x �→ x+ = max(x, 0). The absorption coefficient in 3D is then
given by Eq. (20) and becomes

α(0)(ω) = 3v3e2Ep
[ 2mr

h̄2

]3/2

2(2π )2m0ε0ωc0n(ω)
(h̄ω − Eg)1/2

+ . (C2)

APPENDIX D: MARGINAL DISTRIBUTIONS OF D(c)

We prove here the identity in Eq. (28). First, by definition
of D(c)(r, k, ε), we readily have∫ E

−∞
D(c)(r, k, ε) dε =

∑
μ

W
χ

(c)
μ

(r, k) �
(
E − E (c)

μ

)
, (D1)

where � is the Heaviside step function. Integrating the above
quantity over phase space yields∫∫ ∫ E

−∞
D(c)(r, k, ε) dε

dd r dd k

(2π )d

=
∑

μ

∫∫
W

χ
(c)
μ

(r, k)
dd r dd k

(2π )d
�

(
E − E (c)

μ

)
. (D2)
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Finally, the states χ (c)
μ being L2 normalized and in virtue of

the property of the Wigner transform for the marginal density
[23] ∫

W
χ

(c)
μ

(r, k)
dd k

(2π )d
= ∣∣χ (c)

μ (r)
∣∣2

, (D3)

we have ∫∫
W

χ
(c)
μ

(r, k)
dd r dd k

(2π )d
= 1. (D4)

Inserting the above equation in Eq. (D2) completes the proof
since∫∫ ∫ E

−∞
D(c)(r, k, ε) dε

dd r dd k

(2π )d
=

∑
μ

�
(
E − E (c)

μ

)
= IDOS(c)(E ), (D5)

the last line being the definition of the IDOS. As a side note,
it is also straightforward to show that we have the following
relationships between the quasidensity of states in phase space
and the density of states (DOS), the local density of states
(LDOS) and density of states in momentum space (MDOS)
also known as the spectral function for plane waves:∫∫

D(c)(r, k, E )
dd r dd k

(2π )d
=

∑
μ

δ
(
E − E (c)

μ

)
= DOS(c)(E ), (D6)∫

D(c)(r, k, E )
dd k

(2π )d
=

∑
μ

∣∣χ (c)
μ (r)

∣∣2
δ
(
E − E (c)

μ

)
= LDOS(c)(r, E ), (D7)

and ∫
D(c)(r, k, E ) dd r =

∑
μ

∣∣χ̂ (c)
μ (k)

∣∣2
δ
(
E − E (c)

μ

)
= MDOS(c)(k, E ). (D8)

In other words, all the usual densities of states can be
recovered as marginal distributions of the quasidensity of
states in phase space since the latter inherits the properties
on the marginal distributions of the Wigner transform by
construction.

APPENDIX E: THE TWO-PARTICLE PICTURE

We present in this Appendix an alternative derivation of
Eq. (38), which gives a complementary physical picture to
the problem. First, we recast the inner product in Eq. (17) as
follows:〈

χ (c)
μ

∣∣ χ (v)
ν

〉 =
∫

χ (c)
μ

∗
(r) χ (v)

ν (r) dd r

=
∫∫

χ (c)
μ

∗
(r) χ (v)

ν (r′) δ(r − r′) dd r′dd r

= 〈
χ (c,v)

μν

∣∣δdiag
〉
, (E1)

where the last bracket denotes a 2d-dimensional inner product
(in fact, a duality bracket in a space of distributions). Here
we have defined the state |χ (c,v)

μν 〉 = |χ (c)
μ 〉⊗ |χ (v)

ν 〉∗ whose
wave function is given by χ (c,v)

μν (r, r′) = χ (c)
μ (r)χ (v)

ν

∗(r′),
and δdiag(r, r′) = δ(r − r′) is the diagonal Dirac distribution.
Equation (17) can thus be recast as

C(h̄ω) =
∑
μ,ν

∣∣ 〈χ (c,v)
μν

∣∣δdiag
〉 ∣∣2

δ
(
E (c,v)

μν − h̄ω
) = Aδdiag (h̄ω),

(E2)
with E (c,v)

μν = E (c)
μ − E (v)

ν . The doubling of variables sug-
gests interpreting Eq. (E2) as the so-called spectral function,
Aδdiag , associated to the distribution δdiag, which corresponds
to two particles found at the same position r = r′, for
the 2d-dimensional Hamiltonian Ĥ = Ĥc ⊗ Î − Î ⊗ Ĥv of
independent particles. Indeed, since χ (c)

μ and χ (v)
ν are eigen-

functions of Ĥc and Ĥv with eigenenergies E (c)
μ and E (v)

ν , the
product χ (c,v)

μν (r, r′) = χ (c)
μ (r)χ (v)

ν

∗(r′) is an eigenfunction of
the Hamiltonian Ĥ with eigenenergy E (c,v)

μν .
The spectral function Eq. (E2) can thus be interpreted as

the energy distribution associated to the two-particle state δdiag

evaluated at energy E = h̄ω. In particular, any moment of the
energy in this state, 〈En〉, is given by

〈δdiag| Ĥn |δdiag〉 =
∫

En Aδdiag (E ) dE . (E3)

The left-hand side of the above equation can also be expressed
in phase space by using the Wigner-Weyl formalism. We
denote the Wigner transform of a function ψ in 2d dimension
as

Wψ (r, r′, k, k′) =
∫∫

ψ∗
(

r − x
2
, r′ −x′

2

)
ψ

(
r + x

2
, r′ +x′

2

)
exp(−ik · x −i k′ · x′) dd x dd x′. (E4)

Note that here we have explicitly expressed the Wigner trans-
form in the 4d-dimensional phase space associated to our
problem, hence the variables r, r′, k, and k′. The Wigner
transform of the diagonal state δdiag, which will be useful
below, can be easily computed and reads

Wδdiag (r, r′, k, k′) = (2π )dδ(r − r′)δ(k + k′). (E5)

The expectation value of an operator M̂ for a state ψ , i.e.,
〈ψ | M̂ |ψ〉 can be expressed in terms of the Wigner transform
of ψ and the Weyl transform M associated to the operator M̂

as [45]

〈ψ | M̂ |ψ〉 = 1

(2π )2d

∫
R4d

Wψ (r, r′, k, k′)

× M(r, r′, k, k′) dd r dd r′ dd k dd k′, (E6)

where the Weyl transform of the operator is given by

M(r, r′, k, k′)

=
∫∫ 〈

r + x
2
, r′ +x′

2

∣∣∣∣M̂
∣∣∣∣r − x

2
, r′ −x′

2

〉

× exp(−ik · x −i k′ · x′) dd x dd x′. (E7)
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Of particular interest in our study is the Hamiltonian M̂ = Ĥ .
Provided the effective masses vary weakly, the Weyl trans-
form of the Hamiltonian Ĥ reads

H (r, r′, k, k′) = h̄2k2

2mc(r)
− h̄2k′2

2mv (r′)
+ Ec(r) − Ev (r′).

(E8)
Hence, in view of Eq. (E6) and Eq. (E5), the expectation value
of the energy in the state δdiag is

〈δdiag| Ĥ |δdiag〉 =
∫∫ [

h̄2k2

2mr (r)
+ Eg(r)

]
dd r dd k

(2π )d
. (E9)

The above equation may seem at first sight problematic since,
mathematically speaking, the integral on the right-hand side
clearly diverges. However, we must notice that the left-hand
side also diverges as can be seen from the definition of the
diagonal Dirac distribution (a state which is perfectly lo-
calized has a non-normalizable energy spectrum). To make
our calculations rigorous, one would need to regularize the
diagonal Dirac distribution or, equivalently, introduce a high
energy cutoff and study an appropriate limit. Here we are
rather interested in manipulating Eq. (E9) formally. We may

rewrite the right-hand side as

〈δdiag| Ĥ |δdiag〉 =
∫

E
∫

E< h̄2k2
2mr (r) +Eg(r)<E+dE

dd r dd k

(2π )d

=
∫

E f (E ) dE , (E10)

where we have formally written

f (E ) dE =
∫

E< h̄2k2
2mr (r) +Eg(r)<E+dE

dd r dd k

(2π )d
. (E11)

Equation (E10) means that the average energy can be written
as the integral of the energy variable against the function f
which plays the role of an energy probability density and is
given by the Lebesgue measure in phase space of an elemen-
tary shell about h̄2k2

2mr (r) + Eg(r) = E as shown in Eq. (E11).
This result is reminiscent of what we have obtained with the
quasidensity of states in phase space Eq. (34). Note that f
is not the probability density of energy in the state δdiag but
only an approximation inducted from the expectation value
of the energy. This is to be linked to the plateau function
approximation in the point of view of the quasidensity of
states in phase space. Finally, another approximation can be
obtained by replacing Eg by E (eff )

g .
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