PHYSICAL REVIEW B 105, 125419 (2022)

Quasinormal mode theory for nanoscale electromagnetism informed by quantum surface response
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We report a self-consistent quasinormal mode theory for nanometer scale electromagnetism where the possible
nonlocal and quantum effects are treated through quantum surface responses. With Feibelman’s frequency-
dependent d parameters to describe the quantum surface responses, we formulate the source-free Maxwell’s
equations into a generalized linear eigenvalue problem to define the quasinormal modes. We then construct
an orthonormal relation for the modes and consequently unlock the powerful toolbox of modal analysis. The
orthonormal relation is validated by the reconstruction of the full numerical results through modal contributions.
Significant changes in the landscape of the modes are observed due to the incorporation of the quantum surface
responses for a number of nanostructures. Our semianalytical modal analysis enables transparent physical
interpretation of the spontaneous emission enhancement of a dipolar emitter as well as the near-field and far-field

responses of plane-wave excitations in the nanostructures.
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I. INTRODUCTION

Nano-optics has flourished with the development of new
concepts in optical physics and the emergence of light-
enabled nanotechnologies. Light confinement, as a key
enabler, has well surpassed the diffraction limit and entered
nanometer length scale [1-5]. Surface plasmons supported
by metal nanostructures are the workhorse for light confine-
ment [1,2]. Multiscale plasmonic systems with nanoscopic
features (e.g., nanogaps) in a mesoscopic host metal struc-
ture [6] have attracted considerable interest, as they can
reveal nanoscopic details through far-field spectroscopic
measurements. Recent advances in nanotechnologies have
demonstrated the fabrication of ultrafine nanostructures and
meticulous nanomanipulation of the minuscule parts, such
that making features with sizes down to 1 nm and even smaller
becomes feasible [7-11]. In nanometer length scale, nonclas-
sical effects including electron nonlocality [8,12], spillover
[13,14], and Landau damping [15,16] start to play significant
roles. Calculations on field enhancement [16], spontaneous
emission rates [17], hot electron generation [18], plasmon
resonances [8,9], and spasing [19], to name a few, all should
include the possible nonclassical effects. First-principles cal-
culations such as time-dependent density functional theory
(TDDFT) are, in principle, exact, and have been used in a
number of proof-of-principle studies [20-24]. However, these
studies are restricted to metal clusters or systems of at most
few-nanometer size because the computational cost quickly
grows intractable for multiscale systems. In recent years, a
quantum surface response (QSR) description based on Feibel-
man’s d parameters is becoming a trending approach [25-33].
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The approach is particularly appealing as it is versatile to
account for major nonclassical effects with the conceptually
simple d parameters [34]. Moreover, in contrast to mainstream
volume descriptions, the QSR description is inherently com-
patible with more efficient implementations such a boundary
element method.

While QSRs with the d-parameter description can be
incorporated into calculations, transparent interpretation of
the involved optical processes is difficult with the brute
force numerics. A majority of optical processes in nano-
optics often can be conceptualized with a few resonant
modes. Therefore, a mode theory compatible with the d-
parameter description is of key importance and would
facilitate the establishment of a general theoretical frame-
work for nanometer scale electromagnetism. In view of the
openness and dissipative nature of plasmonic systems, here a
quasinormal mode (QNM) theory is necessitated. The clas-
sical QNM theory, in fact, has been available and well
received [35—40]. Various aspects of nano-optical theory in-
cluding scattering [41], harmonic generation [42], coupled
mode theory [43,44], perturbation theory [45,46], photon-
emitter interaction [47,48], and field quantization [49,50]
were revisited in the context of QNM theory. QNM the-
ory has also been generalized to incorporate nonclassical
effects based on volumewise material description [51-53].
While a perturbative d-parameter correction to the QNM
eigenfrequency was discussed in Refs. [27,30], a nonpertur-
bative QSR-informed QNM theory remains elusive. More
importantly, the orthonormalization of the QNMs compatible
with the d-parameter description is an open question. QNM
orthonormalization is inherently challenging [54,55] and at
the same time a crucial ingredient of a QNM theory, since
only with the orthonormal relation one can quantitatively and
analytically describe the optical responses with the modal
contributions.

©2022 American Physical Society
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FIG. 1. (a) The quantum surface responses (QSRs) of a metallic
nanostructure in terms of effective surface current K and polariza-
tion I1. The zoomed-in view illustrates the QSRs characterized by
Feibelman’s d parameters at the metal-dielectric surface. (b) Prin-
cipal QNM eigenfrequencies of a sodium (r, =4, iy = 0.1 eV)
nanosphere in vacuum obtained numerically by solving the general-
ized linear eigenvalue problem Eq. (5, 6) and analytically by locating
the poles of the generalized Mie coefficients [32]. d, is taken from
Fig. 2 (a).

Here we develop a nonperturbative QNM theory for
nanoscale electromagnetism with the incorporation of QSRs.
The source-free Maxwell’s equations incorporated with the
QSRs based on the d-parameter description are formulated
into a volume-surface composite linear eigenvalue problem
(LEVP). Moreover, we show a route to obtain an orthonormal
relation for the QNMs which directly leads to the proper
QNM normalization. The orthonormal relation, together with
suitably designated formal source terms, further empowers
analytical expansion of system responses in terms of QNMs.
Lastly, we demonstrate that the full-fledged mode theory pro-
vides physically transparent interpretations of nonclassical
optical responses to dipole emission and to the far-field ex-
citation.

II. QSR INFORMED QNM THEORY

Quantum surface responses originate from microscopic
eletron dynamics bounded at metal surfaces. Assuming metal
surfaces are microscopically flat, we look locally at the struc-
ture surface, e.g., z = 0 as illustrated in Fig. 1(a). A charge
distribution pjq(r) is induced around the surface by an op-
tical excitation. The QSRs on the nanoparticle then manifest
macroscopically as an effective surface current K and surface
polarization IT resulting from pjq(r) and the corresponding
current Jinq(r). Under the d-parameter description, the finite

extent of the light-induced current distribution Jinq(r) is de-
scribed on the leading order by [34,56]

2z T ina(2) A2z e (D)
[, dz d%Jz,ind(Z) ’ [, dz d%fn,md(Z) .

Then the effective surface current and polarization can be
approximated as

K = iad[D;],

dy

I (D

IT =ds[EL]. 2

In the above equations, the time convention e~ ig assumed.
We have adopted [f] = f(0+) — f(0—) and the notation
L /|| to denote the normal/parallel component of a vector.
K and IT in turn couple back to Maxwell’s equations as
secondary sources and consistently modify the overall opti-
cal responses. The main parameter d; can be rewritten as
di = [% dzzpina(2)/ [°5, dz pina(2) by using Gauss’s law. It
thus appears as the centroid of pinq(z), a characteristic length
scale of the theory. The other parameter dj, however, can
be shown to vanish at charge-neutral jellium interfaces and
charge-neutral interfaces with periodic ionic potentials [56],
and thus is reasonably expected to be negligible in most situa-
tions with charge-neutral interfaces [30]. Hence, we assume
d; =0 in the following, and only the surface polarization
remains:

O(r)) =d. eI D (x)). 3)

Here r denotes the coordinates on the surface 92 and ¢ is
relative permittivity. D’ corresponds to the electric displace-
ment field D on 9<2. A brief overview of the d-parameter
description is summarized in the Supplemental Material (SM)
[57]. Noticeably, the d-parameter description has deeper im-
plications that underlie its efficacy of modeling nonclassical
effects. The fact that d parameters are alternatively express-
ible with nonlocal permittivity [56] rationalizes the ability to
mimic nonlocal material. Their frequency dispersion indicates
nontrivial QSRs and the corresponding imaginary parts induce
surface contribution to loss.

To set the stage for modal analysis under the d-parameter
description, having an LEVP formulation is conceptually im-
portant. In this regard, the bulk material response inside the
metal domain €2 is treated the same as the classical QNM
theory [37]. Specifically, we assume the metal is described by
the Drude-Lorentz model (@) = €5 — a)g /(@* — 0} + iy D)
with €4, wp, wg, and y being the background permittivity,
plasma frequency, resonance frequency, and damping rate,
respectively. The response is linearized regarding @ by in-
troducing the auxiliary polarization P and the corresponding
current density J. In general, the parameter d is also disper-
sive, regarding  as retrieved from, e.g., TDDFT calculations
and experiments. We can similarly treat the QSRs charac-
terized with d; by exploiting the pole structure of f(@) =
d, (@)[e~"(@)]. Considering that f(@) is bounded at & = 0
and oo, we may expand it over the simple poles @g as
@

= “

CT)—CUIB

N
f@) =) fs
=0

A pseudopole @y = 0 is formally introduced for concise-
ness of expression. Thereupon, we introduce for each pole an
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FIG. 2. The QSR informed QNMs of sodium (left panel) and gold (right panel) nanosphere dimers. The sphere diameter is 60 nm. (a),
(b) The Feibelman’s d, parameters for the metal-air interfaces calculated with high-level theories (TDDFT for sodium [27] and specular
reflection model for gold [31]) and the multiple Lorentzian fittings. The fitting for sodium is according to Ref. [32]. (c)—(h) The first 12 QNM
eigenfrequencies for various gap sizes calculated with the QSRs (blue squares) and under LRA (green triangles). (i)-(m) The ratios between
the surface (NV;) and the complete (N) QNM normalization factors of the first 12 QNMs for various gap sizes.

auxiliary surface polarization ITg = @D’ /(& — wg), with the
constraint ZI,Z:O fellg = I [57].

In terms of the auxiliary fields P, J, and I1g, the source-free
Maxwell’s equations now become linearized. The system can
be formulated into a generalized LEVP comprising intercou-
pled volume and surface components

iVx 1
VO 0600 0 i€0€00
X 0 0 0 |~ ~
KA <I>v = q>v Vvs» 5
0O 0 0 i @Gt )
ieoa)g 0 —ia)g —iy
diag{@o, @1, -+, By} Dy = & By + iy, (6)

where &g, 1o, and @ are vacuum permittivity, permeability,
and the complex eigenfrequency, respectively. The composite
eigenvector ® = ®, @ g consists of P, = [E,~H, P,JI" in
bulk domains Q + Q€ and ®, = [[1y, [T}, - -- , [Iy]T on 892.
Here ¢ is the complement of €2. The supporting domains
of (E H) and (P, J) in ®, shall be understood separately.
The intercoupling sources that couple CI> and d> are Vs =

[;{‘J’f 0,0,0]" and Vy, = —a)DS [1,1,---,1]T. Note that 51
serves as the field mediating the two components. In addition,
the radiation boundary condition should be respected in the
far field.

The eigenmodes or QNMs defined above can be numeri-
cally solved based on a quadratic reformulation of the LEVP
and a boundary PDE implementation for d, (@), which is
fitted with multiple Lorentzians [57]. As a benchmark, the
first ten QNM eigenfrequencies of a sodium nanosphere is

solved and compared with analytical results. Sodium is mod-
eled as an electron gas with a Wigner-Seitz radius of r; = 4.
The decay rate is iy = 0.1 eV and d, () adopts the fitting
presented in Fig. 2(a). @,, are obtained analytically as the
poles of the Mie coefficients by resorting to a Mie theory
generalized to incorporate Feibelman’s d parameters [32].
As shown in Fig. 1(b), our numerical implementation gives
accurate results.

III. ORTHONORMALIZATION OF QSR INFORMED QNM

The normalization of the resulting QNMs of the LEVP
Egs. (5) and (6) are an indispensable part of a complete
QNM theory. However, the QNM profiles have the issue
of exponential divergence in the far field as their classi-
cal counterparts, owing to the non-Hermitian nature of the
LEVP [35,58]. The issue makes the normalization a difficult
problem to tackle [35]. The monotonic divergence appearing
in the sesquilinear form commonly used for the normaliza-
tion of normal modes can be converted by using a bilinear
form into an oscillatory diverging quantity [35,54,59,60].
Its integral then becomes manageable with the technique of
complex coordinate transformation and produces a physically
meaningful value [35]. Normalization based on bilinear form
was first applied to classical local media and has recently
been generalized by the authors to general nonlocal media
[53]. Nevertheless, when nonclassical effects exclusively oc-
cur at surfaces, d-parameter description is more favorable.
For QSR informed QNMs, the bilinear forms accounting
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for only material response in bulk domains are obviously
inapplicable.

Here we recognize the contribution of the QSRs and
provide a procedure to properly orthonormalize the QNMs
based on generalized unconjugated Lorentz reciprocity [57].
In particular, an extra surface integral of [Ig over 92
appears in the bilinear form as the QSR contribution. Con-
sequently, we arrive at a volume-surface composite bilinear
form (@, B e = (Bprvs Pas )y + (B, Py (sce SM
[57] for the derivation):

((E)m,Va EISn,,v))v = /dl‘ {5()800Em IA(jn - /’L()ﬁm IT‘In
a)(z) ~ 1 ~ ~
+ 2Pm : Pn 2Jm Jn}a (7)
80a)p 80a)p

The volume part remains unchanged and identical to the bi-
linear form in classical QNM theory [37]. The composite
bilinear form 1mmed1ately leads to the orthogonal relation
chm, ® 2)e = 0 when @, # @,. For a nondegenerate QNM
®,,, it can be normalized as @, —~<I>/ /~/N,,. Naturally, the
normalization factor N, = (D), @,)c = Ny + Nops also
consists of the unchanged classical one [36] and a surface
contribution:

- 0 - ~ ~
Nm,v = /dl'(z + wmaT>‘9(wm)80Em : Emy (9)
W

Npo = — / dr”(z B )duwm)[[e @l
a2 a W

€5 Dyt Dy, 1. (10)

The QNMSs are assumed normalized hereafter. For the normal-
ized QNMs, the electric complex mode volume is defined as

~ 1
V() = ——————=—, 11
™ 280?13(1‘)]*351(1‘) (n

where n,(r) is refractive index. The real-valued effective
mode volume is Ve = 1/Re[V, " (r)].

The normalized QNMs and their orthogonal relation com-
prise the cornerstone of the QSR informed QNM theory. The
orthogonal relation specially empowers the semianalytical
expansion of the optical responses of a nanosystem under
an arbitrary excitation. The linear response to a weak ex-
citation at real frequency w can be expanded as ¥(w) =
> Um(®w) ®,,. Applying the orthogonal relation, the expan-
sion coefficients are derived analytically as [57]

Qm ((1)) =

L (@ . (12)
w — @
The composite formal source S = Sy @ S; contains a volume
component Sy and a surface component S, and assumes an
excitation dependent form. For a current source Js, S only has
a nonzero volume component:

S, = [iJs/(2080), 0,0, 0] . (13)

As a special case, a dipolar source of dipole moment d at
rqg has Jy = —iwdd(r — rq). The expansion coefficient cor-
respondingly simplifies to a,, = —wE,(rg) - d/(w — &,). A
QNM’s contribution to the Purcell factor can be defined as
fom = Pyn/Py=— [drRe{J! -E,}/(2P)) with P, being the
power radiated by the dipole in vacuum. P,, and l~<3m are the
modal contributions to the radiated power and electric field,
respectively. Then the modal Purcell factor turns out to be

3rc? 1/V,,
fon = 3—Im { / } (14)
njw Wy — @
For an incident field E;,., the formal source is expressed with
Sy = [ (Aee/6x) @Einc, 0,0, —iggw’Einc] . (15)
S = —weoepEine 1 [1,1, -+, 1]7. (16)

Here Aey = €00 — &p With &, being the relative permittivity
of the scattering background. Using the response expansion
in Eq. (12) extinction cross section could also be decomposed
into QNM contributions. Noteworthily, the evaluation and ex-
pansion of the Purcell and extinction spectra make use of the
modified Poynting theorem under the d-parameter description
as detailed in the SM [57].

IV. QSR INFLUENCE ON OPTICAL EIGENMODES

The eigenmodes of a nanoplasmonic system often play a
central role in the optical responses. Here we first scrutinize
how the QSRs influence the eigenmodes. As a prototypi-
cal motif in nanoplasmonics, we consider metal nanosphere
dimers as examples. The conduction electrons in noble metals
are known to behave distinctly from those in simple metals
due to bound electron screening. Dimers made of sodium and
gold are thus examined in parallel as shown in the left and
right panels of Fig. 2. The complex d; parameters of Na
and Au are plotted in Figs. 2(a) and 2(b), respectively. The
dashed lines in Fig. 2(a) for Na are obtained from TDDFT
calculations [27] while the dashed traces for Au in Fig. 2(b)
are retrieved from the specular reflection model [31]. The
solid traces in Figs. 2(a) and 2(b) are the multiple Lorentzian
fittings of the corresponding dashed lines (see SM [57] for the
material parameters). The dimers’ QNM under study lie in the
frequency ranges shaded in gray, where the d, parameters of
the two metals show striking differences in several aspects.
While d, is weakly dependent on frequency for Na, strongly
dispersive d; is observed for Au. Moreover, Na has larger
positive Re{d }, characteristic of considerable electron spill
out of the metal boundary. For Au, Re{d,} takes negative
values and the magnitude is smaller, which is consistent with
typical slight electron spill in for noble metals.

To examine the influence of d; parameters on the eigen-
modes, we perform QNM analysis for the Na and Au dimers
with 5-nm, 3-nm, and 1-nm gaps. The resulting QNM spectra
for all cases are summarized in Figs. 2(c)-2(h). Since the
dimer structure and dipole excitation concerned in later dis-
cussion both have cylindrical symmetry, only the QNMs of
azimuthal order m = 0 are presented. The eigenfrequencies
of the QNMs calculated based on classical local response ap-
proximation (LRA) are displayed with green triangle markers
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while the results of the QSR-informed QNM -calculations
are depicted with blue squares. The immediate observation
is that the QSR informed QNMs are redshifted with re-
spect to the classical QNMs for Na dimers while they get
blueshifted for Au dimers. It in fact reflects the opposite signs
of Re{d, } for Na and Au. Positive/negative Re{d } leads to
redshift/blueshift of the eigenmodes. Besides the real parts,
the imaginary parts of the eigenfrequencies also display in-
teresting behaviors. The positive Im{d, } of Na causes more
damping in the QNMs, yet the negative Im{d } of Au seems
to mitigate some dissipation.

When inspecting the variations of the modal properties
against gap size and mode order, Na and Au dimers in-
stead show some common features. Most of the time, the
corrections to the LRA predictions, no matter in the real
or imaginary parts of the eigenfrequencies, are greater for
smaller gaps and higher-order modes. For both cases, the
QSRs gain more weight as the QNMs have a more confined
field near the metal surface and experience stronger QSRs.
The significance of the QSRs in a QNM could be partially
quantified with an indicator |[N/N|. The ratio is plotted in
Figs. 2(i)-2(n) for all dimers as functions of the mode order.
Although the ratios show nonmonotonic dependence on mode
order, the up to 20% values undoubtedly unveil the generally
significant effects of the QSRs on the eigenmodes of the
dimers with nanometric gaps. We remark that the surface
and volume responses act synergistically and shouldn’t be
understood solely separately since the presence of the QSRs
also modifies the field profiles in the volume.

V. MODAL ANALYSIS OF SPONTANEOUS EMISSION
ENHANCEMENT

Informed about the properties of the eigenmodes, we are
enabled to better interpret the optical responses of a nanosys-
tem. One of the most enticing promises of nanoplasmonics is
the huge spontaneous emission enhancement for a quantum
emitter. We thus apply our QSR-informed QNM theory to
investigate the emission enhancement of a dipolar emitter
placed at the gap center of the previous Na dimer with a
5-nm separation. To accurately delineate the enhancement
spectrum, the full QNM landscape of the dimer is required.
We carry out a thorough mode search and present in Fig. 3(a)
the exhaustive QNM spectrum. The QNMs by classical
LRA calculation are also indicated with green triangles. The
QSR-informed QNM spectrum becomes considerably more
intricate than the classical counterpart, where only one branch
of QNMs exists. The corresponding branch now bends back
to lower frequencies and opens up the possibility of mixing
with low-order QNMs. In addition, several new branches ap-
pear due to the multipole disperion of d, as indicated by
the red asterisks. According to Eq. (14), the contribution of
a QNM to emission enhancement correlates with its mode
volume. Therefore, we paint the square markers in gray scale
to highlight their relevance. A darker color means a smaller
mode volume and hence a larger contribution. Apart from the
lowest-order QNMs in almost black colors, we note those in
the new branches shouldn’t be omitted.

Given the numerically calculated QNMs, we can determine
analytically their individual contributions and construct the

3 4 5 6
BT ] log;o[Ver/(1nm)*]
(2) 0.16F T T T T T T ]
L * i
N 0.12F I i
3 - i 5nm d, poles *
3 0.08F i
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FIG. 3. The QNM analysis of emission enhancement for a dipo-
lar emitter at the center of a Na nanosphere dimer (60 nm diameter
and 5 nm gap). (a) The QNM spectrum calculated with the QSRs
(gray squares) and under LRA (green triangles). The gray scale
is weighted by the effective mode volumes (V.¢) evaluated at the
dipole position. The red asterisks denote the poles of d, (). (b) The
QNM construction of the Purcell factor spectra. The thin blue traces
denote the individual contributions of the QSR informed QNMs.
The construction of the total spectrum by ~300 QNM:s is plotted
with the red trace and benchmarked with the QSR-informed full
numerical simulation denoted by black circles. The green dashed and
orange dash-dotted traces depict the spectra calculated under LRA
and constructed with the QNMs normalized by only N, respectively.

total spontaneous emission enhancement spectrum, i.e., the
Purcell factor spectrum [57]. Since the emitter is only a few
nanometers from the metal surface, a large number of QNMs
can be excited. The total spectrum converges to the red trace
in Fig. 3(b) when about 300 QNMs are counted in. As a
benchmark, the Purcell spectrum by full numerical calcula-
tion under the d-parameter description is plotted with black
circles. Excellent agreement between the analytical QNM
construction and numerical calculation is witnessed. Albeit,
with so many QNMs involved, the first five QNMs or Q; to
Qs are sufficient to qualitatively account for the resonance
features. The modal Purcell spectra of Q; to Qs are displayed
in blue traces. Q; to Q4 dominantly contribute to the four
resonances of the total Purcell spectrum. Here the classical
Purcell spectrum is also depicted in the green dashed trace
for comparison. The redshift of the QSR-informed QNMs and
the increasing shifts with mode order are vividly observed.
The classical counterpart of Qs can also be identified in the
classical Purcell spectrum, but the shoulder around 0.66w,
disappears in the QSR-informed Purcell spectrum. That’s
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because Qs suffers extra damping due to the QSRs and its
modal Purcell spectrum is severely broadened. Aside from the
four prominent resonances, the Purcell spectrum has a shoul-
der structure around 0.8w, as shown in the zoomed-in view in
the inset of Fig. 3(b). This spectral feature without a classical
counterpart has the origin in the Bennett mode [27,61] and
corresponds to a new QNM branch. Moreover, we underlie the
crucial effect of the surface response by evaluating the Purcell
spectrum with N removed from the normalization factor. The
resulting spectrum plotted in the orange dash-dotted trace is
seen to considerably overestimate the Purcell factor.

VI. MODAL ANALYSIS OF THE RESPONSES TO
FAR-FIELD EXCITATION

A majority of nano-optical processes in the end need
to be probed with far-field optical excitation. In this sec-
tion, we demonstrate the application of the QSR-informed
QNM theory to a nanosystem under far-field excitation.
Nanoparticle on mirror (NPoM) is an easy-to-fabricate and
versatile nano-optical platform [6]. When the gap shrinks to
a few nanometers, nonclassical effects are bound to arise.
Concretely, a gold NPoM structure with the geometry spec-
ifications given in Fig. 4(a) is illuminated by an oblique plane
wave. The cylindrical symmetry of the structure allows us to
use a 2.5D numerical technique to conveniently calculate the
QNDMs [57]. The QNMs can be classified with azimuthal order
m. For the plane-wave incidence, mainly the m = 0 or M
and two degenerate m = +1 modes are relevant. In practice,
only My and a superposition of the m = 41 modes or M; are
excited by the plane wave [57]. Dependent on the incidence
angle 6, the two QNMs are excited with varying weights.
Utilizing our QSR-informed QNM theory, the two modes’
contributions to the extinction spectrum can be computed
analytically and their sum gives a good estimation of the total
extinction spectrum [57]. The spectra for 8 = 75°, 45°, and
15° are illustrated in Fig. 4(b). My/M; is seen dominantly
excited as the plane wave approaches the grazing/normal
incidence. The extinction spectra under classical LRA are
also shown with green shaded areas. As expected for Au, the
QSR-informed QNMs are blueshifted and M, experiences a
larger shift.

In the NPoM structure, the electric field confined in the
nanogap is greatly enhanced. The electric field similarly has
contributions from Mp ;. Our QNM theory also allows a
modal analysis of the near-field profile. We exemplify the field
construction for the & = 15° incidence at A = 705 nm. The
expansion coefficients op 1 of My ; at the excitation conditions
can be determined using Eq. (12). Then the electric field is
simply constructed as E = ogEg + o E;. The construction
is visually illustrated in Fig. 4(c) with Re{E;} on the cut
plane at the gap center. The asymmetric distribution due to
the oblique incidence apparently results from the superpo-
sition of the symmetric profiles of My ;. Considering the 1
V/m amplitude of the incidence, several hundreds folds of
enhancement in E, can be inferred from the leftmost map in
Fig. 4(c). Enhancement in light intensity, including all com-
ponents of the electric field, is more informative. Yet light
intensity is proportional to |E[> and can’t be decomposed
into just isolated modal contributions as the electric field.

tMi1 Mo 800 nm
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FIG. 4. The QNM analysis for a gold nanoparticle on mirror
(NPoM) under the illumination of a plane wave. (a) The schematic
of the NPoM structure. (b) The extinction cross section spectra for
various incidence angles are calculated with the QSRs (red) and
under LRA (green). The blue and magenta dashed lines denote the
respective contributions from the dominant QNMs M, ;. (c) For the
6 = 15° incidence at A = 705 nm, Re{E_} is constructed with Re{Ez}
of My ; on the cut plane at gap center; cf. the red line segment in (a).
(d) The QNM construction of light intensity enhancement at (x, y) =
(8, 0) nm on the cut plane; cf. the gray asterisks in (a) and (c). The
spectra constructed by eight QNMs, obtained by the QSR-informed
and classical LRA full numerical simulations are plotted with the red
trace, black circles, and green dashed trace, respectively. The thin
blue, magenta, and orange traces denote the respective contributions
from My, and the cross coupling. The inset shows the intensity
enhancement along the line y = 0 nm with the QSRs (red, A = 705
nm) or under LRA (green, A = 723 nm).

Cross-coupling terms must be included. For the Au NPoM
structure, the cross-coupling term between My ; should be
considered. In Fig. 4(d), we showcase the construction of
light intensity enhancement evaluated at the position indi-
cated by the asterisks in Figs. 4(a) and 4(c). Besides the two
spectra due to My i, there is the cross-coupling contribution
depicted with the red dash-dotted line. Here for 6 = 15°, M
dominates the enhancement around A = 705 nm. Although
My itself contributes little, the cross coupling contribution is
significant and peaks between the resonances of My ;. A more
accurate construction of the total enhancement spectrum is
achieved when the contributions from eight QNMs and their
mutual couplings are added up. It coincides with the QSR-
informed full numerical simulation (black circles). Compared
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with the prediction based on classical LRA (green dashed),
nonclassical effects clearly rectify the resonance position and
overestimated peak value. Nevertheless, the LRA prediction
regarding the spatial dependence of light intensity is seen as
acceptable, as shown in the inset of Fig. 4(d). At their respec-
tive resonant wavelengths, the intensity distributions have two
lobes and a nadir slightly displaced from the center.

VII. CONCLUSIONS

In this paper, we have developed a QNM theory for
nanometer-scale electromagnetism with QSRs. By introduc-
ing auxiliary variables for the surface responses, we have
formulated the source-free Maxwell’s equations into a com-
posite LEVP consisting of intercoupled volume and surface
components. We’ve established an orthonormal relation, re-
sorting to the generalized unconjugated Lorentz reciprocity
theorem. The orthonormal relation possesses a surface con-
tribution, which results from a nonvanishing integral on the
surface owing to the discontinuous boundary conditions. This
surface contribution in the mode normalization factor pro-
vides an indicator for quantifying the significance of the
QSRs. Enabled by the orthogonal relation, we have formalized

arbitrary external excitations and proposed analytical expan-
sions of system responses by the QNMs. The quasinormal
mode theory has been thoroughly validated with analytical
results and full numerical simulations (see SM [57]), and
proven highly accurate. We remark that our theory can be
extended to encompass the QSRs due to d (see SM [57]). The
present theory has substantially augmented the latest general
framework for nanoscale electromagnetism by entailing e.g.,
insightful modal analysis and analytical prediction of nonclas-
sical nano-optical responses. Thus, we envision the theory as
a useful tool that would serve well a wide range of areas
in nano-optics, such as integrated nanophotonics [62], light-
matter interaction in nanocavities [36], Raman spectroscopy
[63], and surface physics [31].
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