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Topological states in dimerized quantum-dot chains created by atom manipulation
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Topological electronic phases exist in a variety of naturally occurring materials but can also be created
artificially. We used a cryogenic scanning tunneling microscope to create dimerized chains of identical quantum
dots on a semiconductor surface and to demonstrate that these chains give rise to one-dimensional topological
phases. The dots were assembled from charged adatoms, creating a confining potential with single-atom
precision acting on electrons in surface states of the semiconductor. Coupling between the dots leads to electronic
states localized at the ends of the chains, as well as at deliberately created internal domain walls, in agreement
with the predictions of the Su-Schrieffer-Heeger model. Scanning tunneling spectroscopy also reveals deviations
from this well-established model manifested in an asymmetric level spectrum and energy shifts of the boundary
states. The deviations arise because the dots are charged and hence lead to an onsite potential that varies along
the chain. We show that this variation can be mitigated by electrostatic gating using auxiliary charged adatoms,
enabling fine-tuning of the boundary states and control of their superposition. The experimental data, which are
complemented by theoretical modeling of the potential and the resulting eigenstates, reveal the important role of
electrostatics in these engineered quantum structures.
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I. INTRODUCTON

The boundary states of topological insulators exist within
the bulk energy gap and cannot be removed by perturbations
that leave the bulk spectrum gapped [1,2]. This robustness
may enable applications in information storage and process-
ing [3–5]. An attractive way of reaching this goal is the
experimental realization of topological electronic phases in
engineered condensed-matter systems. This has already been
done in a few nanoscale materials such as graphene nanorib-
bons [6,7], polymer chains created by on-surface synthesis
[8], and artificial lattices created with a scanning probe tip on
metal surfaces [9–12]. Boundary states with tunable topologi-
cal character were demonstrated in these systems, marking an
important step toward their use in future technologies.

In this paper, we created dimerized chains of quantum
dots on a semiconductor surface using atom manipulation by
cryogenic scanning tunneling microscopy (STM) [13]. We
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then used scanning tunneling spectroscopy measurements to
demonstrate the existence of boundary states associated with
the chain ends and with domain walls deliberately fabricated
in their interior. The coupling between the dots leads to
molecularlike states whose wave functions, because of the
atom-by-atom method used to create the dots, have virtually
no statistical variation across different samples. By vary-
ing the alternating electron hopping between the dots, we
demonstrated that the resulting linear combinations of dot
states comprising the boundary states are consistent with the
Su-Schrieffer-Heeger (SSH) model of one-dimensional (1D)
topological phases [14–16]. We therefore conclude that the
observed boundary states are topological in origin, reflecting
the topological nature of the bulk phase via the bulk-boundary
correspondence.

We also observed deviations from the SSH model, man-
ifested as an asymmetry in the energy level spectra. This
deviation arises because the dots are charged and create an
onsite potential that breaks the sublattice symmetry. The
symmetry-breaking shifts the boundary states in energy, al-
ters their wave functions, and modifies their superposition
in finite chains. We demonstrate that these effects can be
tuned by electrostatic gating using auxiliary charged adatoms,
opening the door to manipulating the boundary states. The
experimental data are complemented by theoretical modeling
of the onsite potential due to the adatoms [17]; the corre-
sponding eigenstates calculated within a tight-binding model
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FIG. 1. (a) Upper panel: scanning tunneling microscopy (STM) topography images (0.1 nA, 0.1 V) of quantum-dot dimers with interdot
separations of 3, 4, and 5 in units of

√
3a′ (from left to right) with a′ = 8.57 Å the lattice constant of the 2 × 2 In vacancy reconstruction; each

dot consists of six positively charged In adatoms. Lower panel: corresponding conductance spectra revealing the bonding (σ ) and antibonding
states (σ ∗) of the dimers arising from the confinement of surface-state electrons of pristine InAs(111)A, the σ − σ ∗ splitting decreases as the
spacing increases (tip positions where spectra were recorded are marked by circles). The electrostatic potential experienced by each dot from
the other leads to a downshift �s of the σ − σ ∗ doublet relative to the corresponding confined-state energy of the discrete In6 dot (gray curves).
(b) STM topography image (0.1 nA, 0.1 V) of a dimer chain with alternating spacings of 4 and 3 in units of

√
3a′ referred to as (4,3) chains

below; N is the number of dots. The unit cell marked yellow contains two dots residing on A and B sites of the sublattice structure, respectively.
The intracell hopping t1 is smaller than the intercell hopping t2 and the ratio is t1/t2

∼= 0.7 based on the spectra of isolated dimers in (a). (c)
Same as (b) but with dot spacings of 5 and 3 [referred to as (5,3) chains], the hopping ratio is t1/t2

∼= 0.5. (d) Same as (b) but with t1>t2 and
t1/t2

∼= 1.4.

reveal the crucial role of electrostatics in these engineered
quantum structures. Our results demonstrate that the atom-by-
atom assembly in combination with the screening properties
of the semiconductor environment provides a unique degree
of spatial control over the confining potential and thereby the
resulting electronic states.

II. RESULTS AND DISCUSSION

A. Single quantum dots

We assembled quantum dots, each consisting of six In
atoms, on an InAs(111)A surface grown by molecular beam
epitaxy (MBE; details on the growth and sample preparation
are given in Appendix A). This surface offers two essential
ingredients for the fabrication of atomic-scale quantum dots,
namely, an intrinsic surface state [18] and the presence of na-
tive In adatoms (concentration ∼0.005 monolayers) that can
be repositioned by the STM tip with sub-ångström precision
[18–21]. The In adatoms are positively charged, and hence,
assemblies of these adatoms confine surface-state electrons
[18]. InAs(111)A exhibits a 2 × 2 In vacancy reconstruction
with a hexagonal surface unit cell and a lattice constant (va-
cancy spacing) of a′ = 8.57 Å. The reconstruction renders the
surface chemically inert [22], and the In vacancies define the
allowed sites of the native In adatoms. A linear arrangement
of six In adatoms in adjacent vacancy sites creates a quantum
dot or artificial atom that gives rise to a confined state with a
single-lobed probability density at ∼0.1 eV below the Fermi
level [18].

B. Quantum-dot dimers

We next created two identical quantum dots separated by
spacings 3, 4, and 5 in units of

√
3a′ [Fig. 1(a)] and probed

their electronic states using scanning tunneling spectroscopy
measurements of the differential tunnel conductance dI/dV .
By using a lock-in technique and peak-to-peak modulation of
5 mV, we obtain an energy resolution [23] of �E = 4.7 meV
at the present measurement temperature of 5 K. Conductance
spectra from these quantum-dot molecules reveal a bonding
(σ ) and an antibonding state (σ ∗) [18,21], as shown in the
lower panel of Fig. 1(a). The spectra cover the bias range
from 0 to −0.25 V, equivalent to an energy range from
the Fermi level of the InAs surface to 0.25 eV below. The
bonding-antibonding splitting �σ−σ ∗ , which reflects the de-
gree of coupling between the two dots, decreases as their
spacing increases. This splitting allows us to define an electron
hopping amplitude t = e�σ−σ ∗/2 = 55, 39, and 29 meV for
spacings of 3, 4, and 5 units, respectively (hopping amplitudes
are defined as positive quantities throughout this paper).

The width of the conductance peaks is 10 to 15 mV, smaller
by a factor of 5–10 than �σ−σ ∗ . This makes it possible to
probe individual states for more extended quantum-dot assem-
blies, as discussed below. The energy resolution of 4.7 meV
implies that the observed peak width is primarily limited by
lifetime broadening resulting from the coupling of the con-
fined electrons to the semiconductor environment. In contrast,
on metal surfaces, the effect of lifetime broadening is gener-
ally larger [24,25].

In addition to the bonding-antibonding splitting, the spec-
tra in Fig. 1(a) reveal that the σ − σ ∗ doublet is downshifted
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FIG. 2. (a) Conductance spectra of a (4,3) chain with N = 8 recorded at the tip positions marked in the scanning tunneling microscopy
(STM) image in (b), spectra taken at symmetry-equivalent positions are averaged. The observed sequence of eight conductance peaks denoted
n = 1 to 8 reveals the eight molecular states arising from surface-state confinement; vertical bars are a guide to the eye. The end states e1 and
e2 (n = 4,5) are situated in the middle of the level spectrum (shaded gray). The extra conductance peak denoted P is attributed to the electron
accumulation layer near the InAs(111)A surface, cf. Fig. 4 and related discussion. (b) Upper panel: topography image (0.1 nA, 0.1 V) of the
dimer chain. Lower panel: conductance map D(x,V) showing the dI/dV signal recorded at constant tip height along the symmetry axis of the
dimer chain (dashed line denoted x in the STM image) and as a function of sample bias V. States e1 and e2 have maximum probability density
at the outermost dots and reside predominantly on A (B) sites in the left (right) half of the chain.

from the energy of an individual In6 dot [gray curves in
Fig. 1(a)]. The shift �s decreases as the interdot separation
increases. We interpret the shift as electrostatic and arising
from the potential change that each dot experiences from the
other.

C. Quantum-dot-dimer chains

We next created chains of identical quantum dots with var-
ious spacings between the dots. The STM topography images
in Figs. 1(b)–1(d) illustrate some of the chains investigated.
The top panel shows a chain of N = 10 dots with dimerized
(alternating) spacing of 4 and 3 units, referred to here as (4,3)
chains. This arrangement can be described as a sequence of
5 unit cells each containing two dots, one on sublattice A
and the other on sublattice B. The dimerized spacing was
chosen so that the intracell hopping t1 = 39 meV is smaller
than the intercell hopping t2 = 55 meV, and hence, the weaker
hopping occurs at the ends, t1/t2 ∼= 0.7. In the tight-binding
description of the SSH model (outlined in Appendix B) this
choice of alternating hopping between degenerate atomic or-
bitals leads to the emergence of a localized state at both ends
of a finite chain, one residing on sublattice A and the other
on sublattice B [26]. In the limit of a long chain, these end
states are located in the energy bandgap of the dimerized chain
and decay exponentially into the bulk. The overlap of the end
states leads to an energy splitting between their odd and even
superpositions.

We searched for end states in dimer chains with the weaker
hopping occurring at the ends, t1/t2 < 1. A (4,3) chain of this
kind consisting of N = 8 dots is shown in the top panel of
Fig. 2(b). The colored circles indicate STM tip positions at
which the conductance spectra displayed in Fig. 2(a) were

recorded. A sequence of conductance peaks is observed which
can be associated with eight states labeled by the quantum
number n plus an extra peak denoted P reflecting a state at
higher energy, ∼70 meV below the Fermi level. The lower-
lying eight peaks (marked by vertical bars) correspond to
molecular states of the chain. We focus on the states n = 4 and
5 situated in the gap between the lower (n = 1, 2, and 3) and
upper states (n = 6, 7, and 8). Their spatial distribution along
the axis of the chain can be visualized by the conductance
probed at constant tip height at fixed sample bias. Performing
this scan as a function of bias yields the conductance map in
the lower panel of Fig. 2(b). The map reveals that the states
with n = 4 and 5 have maximum probability density at the end
dots and reside predominantly on sublattice A (B) sites in the
left (right) half of the chain. In contrast, the other states have
probability density concentrated in the interior of the chain;
this is especially clear for the lower set of states. We thus
identify the states n = 4 and 5 as the odd (labeled e1 ) and
even superposition (e2) of the chain end states, respectively.

These chains exhibit topological end states because the
hopping t1 at the ends is weaker, and hence, t1/t2 < 1 . The
reverse situation t1/t2>1 realizes a topologically trivial chain
without end states. We confirmed this different behavior in
short chains N = 6 by measuring their normalized conduc-
tance spectra [Fig. 3]. (The normalization (dI/dV )/(I/V ) is
useful here because it yields an approximate measure of the
density of states at the surface [27], allowing one to compare
peak magnitudes on similar footing.) We address the case
of weaker hopping at the ends in more detail, by comparing
(5,3) chains (alternating spacing of 5 and 3 units, t1/t2 ∼= 0.5)
and the (4,3) chains (t1/t2 ∼= 0.7) discussed above. In gen-
eral, the localization of the end states e1 and e2 at the outer
dots becomes more pronounced as the ratio t1/t2 is reduced.
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FIG. 3. (a) Normalized conductance spectra of dimer chains
made of six dots in (5,3) [t1/t2

∼= 0.5, top], (4,3) [t1/t2
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dle], and (3,4) configuration [t1/t2
∼= 1.4, bottom]; the latter implies

alternating dot separations of 3 and 4 units with the 3-unit sepa-
ration at the ends. Dots are indexed i = 1 to 6 from left to right.
Spectra taken with the tip probing symmetry-equivalent dots are
averaged. Vertical bars show the positions where the six molecular
states are observed for each configuration. (b) Normalized level
spacing (E4 − E3)/t2 vs hopping ratio t1/t2 for dimer chains with
N = 6; energies E3 and E4 refer to the states with n = 3 and 4. The
experimental data (red circles) are consistent with the tight-binding
result for a Su-Schrieffer-Heeger (SSH) chain indicated by the black
curve. End states exist in the range where t1/t2<1, whereas they are
absent when t1/t2 � 1.

Conversely, as t1/t2 is made larger, the resulting delocalization
will increase the overlap of e1 and e2 and thereby their energy
splitting. Indeed, as t1/t2 is made larger by going from (5,3) to
(4,3) chains, the conductance spectra show that the e1-e2 split-
ting increases from 12 to 25 mV. In addition, the probability
density at the inner dots (dot indexes i = 2 to 5) increases at
the expense of the outer dots (i = 1 and 6). Finally, the spectra
reveal that the energy range of the molecular states is smaller
for (5,3) than for (4,3) chains, in agreement with the fact that
the total energy bandwidth scales with t1 + t2 for an atomic
chain with alternating hopping [14,16].

We turn to the case of stronger hopping at the ends, using
the example of a (3,4) chain (alternating spacing of 3 and 4

units, t1/t2 ∼= 1.4). The spectra reveal six molecular states,
but the energy spacing E4-E3 between states n = 3 and 4 is
now 60 meV, several times larger than the end-state splitting
observed before. In addition, the states n = 3 and 4 have
their probability density maxima at inner dots and thus lack
localization at the ends. Figure 3(b) is a plot of the normal-
ized energy spacing (E4 − E3)/t2 vs the hopping ratio t1/t2
for these N = 6 chains and a (4,4) chain with t1 = t2 [28].
End states exist when t1/t2<1, while they are absent when
t1/t2 � 1. Also shown (black curve) is the tight-binding result
for a dimerized chain with N = 6 assuming equal site energies
(cf. Appendix B). Our data are in excellent agreement with
this phase diagram showing that t1/t2<1 leads to localized end
states, while t1/t2 � 1 does not.

The existence of topological end states in the SSH model is
closely linked to the symmetries of the model. The existence
of midgap end states requires sublattice or chiral symmetry.
This symmetry implies equal site energies of the A and B
sublattices as well as the absence of next-nearest-neighbor
hopping and leads to an energy level spectrum that is sym-
metric about the center of the gap (cf. Appendix B). It is
obvious from the conductance spectra in Figs. 2 and 3 that
the measured energy levels En do not show this symmetry.
The cause of the observed asymmetry is readily understood:
the dots are charged (because the In adatoms themselves are
charged) and hence create a varying onsite potential along the
chain that is higher at the ends than in the middle, breaking
the sublattice symmetry. The qualitative behavior of such a
potential is to increase energy spacings in the lower half of the
spectrum and compress them in the upper half, in agreement
with Figs. 2 and 3. We turn next to analyzing and modeling
this behavior quantitatively.

To make a systematic analysis of the energy level structure,
we investigated chains assembled at different surface loca-
tions, on different samples, and during different experimental
runs. Figure 4(a) summarizes the energies measured for 17
(4,3) chains with N = 4, 6, 8, and 10. The scatter in the
data reflects electrostatic potential disorder due to residual
charged defects [29–31]. For the MBE-grown samples used
in this paper, these effects are small, yielding a variation in
relative conductance peak positions and level spacings with a
standard deviation of ∼1 mV [18]. The absolute values have a
standard deviation of ∼5 mV [28]. The entire dataset reveals
that the level spectrum at given N is strongly asymmetric
about the midpoint of e1 and e2. In addition, with increasing
N, there is a significant downward shift of the entire level
spectrum.

These trends are well reproduced by the theoretical ener-
gies indicated by large empty circles in Fig. 4(a). We used a
nearest-neighbor tight-binding Hamiltonian with experimen-
tal hoppings t1, t2 = 39 and 55 meV and onsite energies e〈Vi〉
defined by the expectation value 〈Vi〉 = 〈ϕi|V |ϕi〉, where ϕ is
a hydrogenic orbital [32] located at each dot center, and V
is the potential from all the In adatoms screened by the two-
dimensional electron gas (2DEG) at the InAs surface [17,33–
36] (see Appendix C for details). We assumed each In adatom
is positively charged and incompletely ionized with q<1 when
assembled into a chain. A least-squares fit to the experimental
energies yields q = 0.69, which is in reasonable agreement
with an estimate obtained from minimizing the energy gained
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FIG. 4. (a) Experimental energies of the molecular states (small
filled circles) observed for 17 individual (4,3) dimer chains and
plotted vs N. The scatter in the experimental data points reflects the
electrostatic potential disorder due to residual charged defects in the
InAs(111)A substrate. The N-dependent trend of the entire dataset
is well captured by the tight-binding (TB) calculation (large empty
circles) described in the main text and Appendix C. The asymmetry
in the energy level spectrum is a consequence of the varying on-
site potential along the chain. (b) Normalized conductance spectra
(dI/dV )/(I/V ) spatially averaged over all dots of the dimer chain.
While the molecular states gradually evolve and shift in energy with
changing N, the state associated with the extra spectral peak P always
occurs in the same energy range (shaded yellow). This extra state
is likely to arise from the confinement of the electron accumulation
layer near the InAs(111)A surface.

by the adatoms from ionization plus the energy cost from their
Coulomb interaction, as discussed in Appendix D.

We turn briefly to the extra spectral peak denoted P in
Figs. 2 and 3 and show that it is of different origin than the
molecular states. The conductance spectra of N = 4, 6, 8,
and 10 chains in Fig. 4(b) show that this peak occurs in the
same energy range for all N and is significantly larger than the
conductance peaks associated with the molecularlike states
derived from the surface state of pristine InAs(111)A [18].
In contrast, we propose that the peak P arises from the bound
state [37] of the 2DEG on InAs(111)A [33–36]. This electron
accumulation layer arises from defects (such as the native In
adatoms) that create donor states above the conduction band
minimum and thereby a downward band bending near the
surface. While the accumulation layer extends over a region
∼20 nm below the surface, it is still sensitive to the scattering
at surface defects as revealed previously by the STM observa-
tion of quasiparticle interference patterns [35]. This suggests
that the accumulation layer undergoes lateral confinement in
the presence of quantum-dot-dimer chains as well.

D. Chains with internal domain walls

The ends of a finite dimerized chain are part of the broader
class of domain walls that break a sublattice symmetry. To
further explore this class, we introduced actual domain walls
interrupting the sublattice order within a chain. Within the
SSH model, this type of defect creates a midgap state [26].
The topography image in Fig. 5(a) shows an N = 10 chain
with a light domain wall centered at site i = 5. This defect
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FIG. 5. (a) Upper panel: scanning tunneling microscopy (STM) topography image (0.1 nA, 0.1 V) of a 10-dot dimer chain with two
boundaries, a light domain wall denoted L, and an end site of weaker bonding on the right-hand side denoted e. The sketch above visualizes
the bonding configuration. Center panel: spatial conductance maps D(x, y) of the molecular states with n = 5 and 6 reflecting the bonding and
antibonding combinations of the boundary states; the state with n = 5 (n = 6) has enhanced weight on the domain wall state (end state). Lower
panel: tight-binding-calculated squared wave-function amplitudes |�5|2 and |�6|2 showing good agreement with the experimental conductance
maps. (b) Same as (a) after rearranging the 10 dots to form a heavy domain wall denoted H and an end site of weaker bonding again on the
right-hand side denoted e. In analogy to (a), the conductance maps (center panels) and squared wave-function amplitudes reveal that the state
with n = 5 (n = 6) has enhanced weight on the domain wall state (end state).
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pography image (0.1 nA, 0.1 V) of the 10-dot dimer chain shown in
Fig. 5(a) after adding four auxiliary In adatoms (indicated by arrows)
near each end dot to reduce the variation in onsite potential along
the chain. The spatial conductance maps in the center panel reveal
comparable probability density distributions for the even (n = 5)
and odd superposition of the boundary states (n = 6) with a slightly
larger domain-wall character at n = 6. The tight-binding-calculated
squared wave-function amplitudes |�5|2 and |�6|2 in the lower panel
are consistent with the experimental conductance maps.

means that the rightmost dot (i = 10) has weaker coupling.
Therefore, the boundary state of the internal domain wall will
overlap with that of the right end state, leading to even and
odd superpositions. For N = 10, these correspond to the states
n = 5 and 6 in the middle of the spectrum [28]. In the absence
of any onsite potential, their wave-function amplitudes along
the chain would be identical, differing only in signs. In the
presence of the onsite potential, however, these two super-
positions are no longer degenerate. Instead, they experience
an energy shift that depends on the position of the boundary.
The domain-wall state is lower in energy than the end state
because the potential is lower in the interior. Hence, the lower-
lying superposition (n = 5) has more domain-wall character,
and the higher-lying superposition (n = 6) has more end-
state character. This effect is easily seen in the conductance
maps for n = 5 and 6 [Fig. 5(a) center panel]. These maps
show good overall agreement with the squared wave-function
amplitudes |�5|2 and |�6|2 obtained from our tight-binding
model [Fig. 5(a) lower panel].

The 10 dots can also be rearranged to form a heavy domain
wall, here centered at site i = 6, plus a weakly coupled dot at
the right end [Fig. 5(b)]. The conductance maps again reveal
the probability density for the states n = 5 and 6 to be very
different: the lower-lying superposition (having domain-wall

character) shows probability density predominantly on the
dots i = 5 and 7 adjacent to the domain wall position. This
is readily understood within the fully dimerized limit of a
SSH chain in which the heavy domain wall corresponds to a
discrete trimer having a zero-energy state with wave-function
amplitude exclusively on its outer sites. This typical signature
of a heavy-wall boundary state is also evident in the theoreti-
cal amplitudes |�5|2 and |�6|2 [Fig. 5(b) lower panel].

E. Fine tuning by electrostatic gating

Finally, we show that boundary states can be manipulated
by adding auxiliary charged adatoms to create localized elec-
trostatic gating. We used the 10-dot-dimer chain discussed
in Fig. 5(a) and positioned four additional adatoms near its
ends, as shown in Fig. 6. These gating atoms flatten the onsite
potential along the chain [38] and thereby bring the chain
closer to a SSH model with constant onsite energies. This flat-
tening partially restores the degeneracy of the two boundary
states which was absent in the ungated chain: conductance
maps (Fig. 6 center panel) show that the probability density
distributions of the even (n = 5) and odd superpositions (n =
6) are now very similar. The same effect is also evident in
the theoretical squared wave-function amplitudes in the lower
panel of Fig. 6, which were obtained by explicitly including
the electrostatic effect of the auxiliary adatoms. These results
demonstrate that boundary states can be tuned by modifying
the electrostatic potential around the dimer chain.

III. CONCLUSIONS

We have shown that boundary states in dimerized chains
of identical quantum dots on a semiconductor surface have
the properties predicted by the SSH model of 1D topological
phases. Deviations from this model—asymmetry in the energy
level spectrum and shifts of the boundary state energies—
arise from a varying onsite potential created by the partial
ionization of the individual adatoms comprising the dots. We
have shown that auxiliary adatoms can be used to create
electrostatic gates that flatten this potential and largely re-
store sublattice symmetry. Our results reveal that electrostatics
plays an important role in these engineered quantum struc-
tures. This circumstance enables fine tuning of the boundary
states and control of their superposition.

Boundary states that can be understood within the SSH
model were realized before in STM-generated artificial lat-
tices on metal surfaces [9–11]. For those cases, the effect
of local charges is expected to be negligible because of
strong electrostatic screening. In addition, the effect of en-
ergy broadening in conductance spectra is significantly larger,
making it difficult to resolve individual boundary states and
extract their energies. Such limitations are not present in our
semiconductor-based system because the effect of lifetime
broadening is significantly reduced, as discussed in Sec. II B.

In conclusion, the approach to simulate electronic structure
by atom manipulation on a semiconductor surface, as we have
demonstrated here, is general and versatile. It can be readily
extended to quantum dot arrays forming topological quantum
gates [39] and 2D-coupled architectures [40] based on the

125418-6



TOPOLOGICAL STATES IN DIMERIZED QUANTUM-DOT … PHYSICAL REVIEW B 105, 125418 (2022)

SSH model or to other 2D artificial lattices giving rise to
topological or strongly correlated electronic states [41,42].
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APPENDIX A: SAMPLE GROWTH AND PREPARATION

Here, 20-nm-thick undoped InAs layers were grown by
MBE on an InAs(111)A substrate (purchased from Wafer
Technology Ltd) to prepare the In-terminated InAs(111)A
surface with its intrinsic (2 × 2) In-vacancy reconstruction as
monitored in situ by reflection high-energy electron diffrac-
tion. Directly after the MBE growth, the surface was capped
by an amorphous layer of arsenic and transferred under ambi-
ent conditions to the ultrahigh vacuum chamber of the STM
apparatus. The As capping layer was then desorbed by anneal-
ing at 630 K, and the sample was loaded into the microscope.
InAs(111)A samples prepared in this way showed the same
surface features as MBE-grown and in situ investigated sam-
ples.

APPENDIX B: TIGHT-BINDING DESCRIPTION

The SSH model was originally conceived to describe
charge-carrier transport in conducting polymers [14–16]. For
fixed lattice distortions, one obtains a dimerized electronic
tight-binding model in which electrons hop with alternating
amplitudes between nearest-neighbor sites. In second quanti-
zation, the Hamiltonian takes the form

H = −
∑

j

[t + (−1) j�/2]c†
j c j+1 + H.c., (A1)

where c j annihilates a fermion at site j. The dimerization
� modulates the nearest-neighbor hopping along the chain,
so that hopping alternates between t1 = t−�/2 and t2 = t +
�/2. For infinite chains, the resulting band structure:

E (k) = ±
√

2t2[1 + cos (ka)] + �2/2[1 − cos (ka)], (A2)

is gapped for both positive and negative �, with a gap closing
for � = 0 separating two topologically distinct phases (k is
the wave vector and a the lattice constant).

Finite chains comprising N sites exhibit midgap end states
when the outermost bonds exhibit weaker hopping. No such
end states exist when the outermost bonds are strong. The
midgap nature of the end states is protected by sublattice
(sometimes referred to as chiral) symmetry. In the experiment,
chiral symmetry is explicitly broken by a spatially varying
onsite energy ε j :

H =
∑

j

{−[t + (−1) j�/2]c†
j c j+1 + H.c. + ε jc

†
j c j}. (A3)

Chiral symmetry would also be broken by next-nearest-
neighbor hopping, but we find that this is negligible in our

experimental system (see below). When chiral symmetry is
broken, the end states can shift away from the gap center
(weakly broken chiral symmetry) or even merge into the
bands (strongly broken chiral symmetry). However, two topo-
logically distinct phases can still be defined in terms of the
presence or absence of half-integer polarization charges at the
ends if the system remains bulk-inversion symmetric.

The end states are a consequence of the bulk-boundary
correspondence, which also predicts midgap states localized
at domain walls at which � changes sign. A heavy domain
wall has two neighboring strong bonds, and a light domain
wall has two neighboring weak bonds.

In first quantization, the SSH model becomes a matrix
Hamiltonian. For example, for N = 6 sites, the Hamiltonian
takes the form

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 t1 0 0 0 0
t1 0 t2 0 0 0
0 t2 0 t1 0 0
0 0 t1 0 t2 0
0 0 0 t2 0 t1
0 0 0 0 t1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

For identical (degenerate) atomic orbitals, all site energies
(diagonal entries) can be chosen as zero. The resulting energy
level spacing (E4 − E3)/t2 analyzed in Fig. 3(b) is depicted as
a black curve in that diagram.

To model the experimentally observed energy level spectra,
we extended the tight-binding description and chose nonzero
onsite energies to account for the variation in onsite potential,
as outlined in Appendix C. Spatially varying onsite energies
shift the end states away from the center of the gap and in-
troduce asymmetries between the bands. Spectral asymmetry
can also result from hoppings between next-nearest neigh-
bors. However, next-nearest-neighbor hopping alone does not
reproduce the overall downward shift of the levels that is
observed as N increases [cf. Fig. 4(a)]. We also find that any
nonzero value of these additional hopping terms lowers the
quality of the least-squares fit to the experimental energies. It
is therefore concluded that next-nearest-neighbor hopping can
be safely neglected in the experimental dimer chains.

APPENDIX C: THEORETICAL ELECTROSTATIC
POTENTIAL

The electrostatic potential was calculated based on the
result derived in appendix B of Ref. [17] for the potential V(r)
of a point charge q screened by a 2DEG:

V (r) = (q/κ )
∫ ∞

0
k(k + s)−1J0(kr)e−kd dk. (A5)

Here, κ is the average of the InAs bulk static dielectric
constant (15.15) and that of vacuum, s is a screening con-
stant written as s = 2m∗e2/h̄2κ , J0 is the Bessel function of
order zero, and d is the distance (here set to 1 Å) from the
point charge to the measurement plane. We used the effective
mass m∗ = 0.05 me, consistent with the experimental value
observed for the 2DEG at the InAs(111)A surface [35]. From
the potential V for a chain of N quantum dots, we calcu-
lated the expectation value 〈Vi〉 = 〈ϕi|V |ϕi〉 to define onsite
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energies e〈Vi〉 for each site i = 1 to N in the tight-binding
Hamiltonian. For simplicity, we assumed ϕ to be a hydrogenic
orbital with a Bohr radius of a0 = 17.5 Å as obtained from the
spatial conductance contour measured for the confined state of
an individual In6 dot.

APPENDIX D: CHARGE STATE OF INDIUM ATOMS
IN A CHAIN OF DOTS

We consider a chain of N dots each consisting of M indium
adatoms. An isolated adatom is known to be fully ionized
(q = +1), but when these are assembled into a chain, the re-
sulting cost from their mutual Coulomb interaction competes
with the energy gained by ionization of each adatom. As a
result, the ionization of the indium atoms in a chain of dots
may be incomplete, and hence, the average charge state q of
each atom will be <1. Here, we evaluate both energy terms
and minimize their sum to obtain a rough quantitative estimate
for q(N, M ).

An isolated adatom has charge +1 because an electron
is transferred from an adatom state to a surface state with
lower energy, thereby lowering the energy of the system by
E0. We estimate E0 as the difference between the energy of
unoccupied Inad states (at ∼0.7 eV) and the Fermi level. Thus,
a chain of NM adatoms, each with charge q, gains an energy
qNME0.

The magnitude of the Coulomb energy cost depends on the
specific arrangement of the atoms. Here, we used (4,3) chains;
the results for (5,3) chains are very similar. We computed the
total electrostatic energy assuming each atom has charge q and
creates a 2DEG-screened potential V (r) exactly as assumed
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FIG. 7. Indium atomic charge q that minimizes the total energy
of a chain of N dots each consisting of M indium atoms.

by the tight-binding modeling discussed in Sec. II C of the
main text. The resulting total energy is quadratic in q and can
be easily minimized numerically for each value of N and M
to obtain an estimate for q(N, M ), as shown in Fig. 7. These
results should be viewed as very rough estimates. For the
typical chains discussed in Fig. 2 of N = 8 dots, each with
M = 6 atoms, the predicted q is 0.85.
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