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Graphene’s near-field radiative heat transfer is determined from its electrical conductivity, which is commonly
modeled using the local (wave-vector independent) Kubo and Drude formulas. In this paper, we analyze the
nonlocality of the graphene electrical conductivity using the Lindhard model combined with the Mermin
relaxation time approximation. We also study how the variation of the electrical conductivity with the wave
vector affects near-field radiative conductance between two graphene sheets separated by a vacuum gap. It is
shown that the variation of the electrical conductivity with the wave vector, kρ , is appreciable for kρs greater
than 100k0, where k0 is the magnitude of the wave vector in the free space. The Kubo model is obtained
by assuming kρ → 0, and thus is not valid for kρ > 100k0. The Kubo electrical conductivity provides an
accurate estimation of the spectral radiative conductance between two graphene sheets except for around the
surface-plasmon-polariton frequency of graphene and at separation gaps smaller than 20 nm where there is
a non-negligible contribution from electromagnetic modes with kρ > 100k0 to the radiative conductance. The
Drude formula proves to be inaccurate for modeling the electrical conductivity and radiative conductance of
graphene except for at temperatures much below the Fermi temperature and frequencies much smaller than 2μc

h̄ ,
where μc and h̄ are the chemical potential and reduced Planck’s constant, respectively. It is also shown that the
electronic scattering processes should be considered in the Lindhard model properly, such that the local electron
number is conserved. A simple substitution of ω by ω + iγ (ω, i, and γ being the angular frequency, imaginary
unit, and scattering rate, respectively) in the collisionless Lindhard model does not satisfy the conservation of
the local electron number and results in significant errors in computing the electrical conductivity and radiative
conductance of graphene.

DOI: 10.1103/PhysRevB.105.125416

I. INTRODUCTION

Radiative heat transfer is in the near-field regime when
the separation distance of the heat exchanging media is com-
parable to or less than the wavelength of thermal radiation.
Otherwise, radiative heat transfer is said to be in the far-field
regime. Near-field radiative heat transfer (NFRHT) exceeds
the far-field blackbody limit by several orders of magnitude
due to an extraneous contribution from evanescent waves
that are confined in a distance approximately equal to the
thermal wavelength from the emitter. When the heat exchang-
ing media support surface modes such as surface phonon
polaritons and surface plasmon polaritons (SPPs), NFRHT
can become quasimonochromatic. Near-field radiative heat
transfer is very promising for applications such as thermopho-
tovoltaic conversion of thermal to electrical energy [1,2],
thermal rectification [3], and near-field photonic cooling [4]
to name only a few. Most of the near-field applications re-
quire heat exchanging media that support surface modes in
the infrared region of the electromagnetic spectrum, where
the surface modes can be thermally excited. The ability to
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tune the spectral location of the surface modes is also highly
desired. Graphene is a great candidate for NFRHT appli-
cations as it supports SPPs in the infrared region, and the
spectral location of the SPP modes can significantly be tuned
by changing the chemical potential of graphene via applying
a bias voltage. So far, graphene has been proposed for heat
transfer enhancement [5–34], active control and switching of
radiative heat transfer [18,21,27,29,31,35–42], thermophoto-
voltaic power generation [37,43,44], heat transfer suppression
[8,17,33], ultrafast modulation of heat transfer [45], and active
control of the direction of heat flow [46].

Most of the theoretical studies on graphene’s NFRHT
are based on using the local Kubo [5–18,20,22,24–29,32–
38,40–45] and Drude [19,23,30] models for the electrical
conductivity of graphene. These two local models are ob-
tained by making several simplifying assumptions as will be
discussed in Sec. III. For example, when deriving the Kubo
and Drude electrical conductivities, it is assumed that the
parallel component of the wave vector, kρ , approaches zero
[47,48]. However, NFRHT is mediated by electromagnetic
waves with various kρs ranging from 0 to infinity. Particularly,
the contribution from waves with large kρs can be signifi-
cant when the SPP and hyperbolic modes are excited. It is
not clear whether the Kubo and Drude electrical conductivi-
ties of graphene can accurately estimate NFRHT in systems

2469-9950/2022/105(12)/125416(9) 125416-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1249-8462
https://orcid.org/0000-0002-4948-5622
https://orcid.org/0000-0002-5796-0630
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.125416&domain=pdf&date_stamp=2022-03-22
https://doi.org/10.1103/PhysRevB.105.125416


ZARE, ZEINALI TAJANI, AND EDALATPOUR PHYSICAL REVIEW B 105, 125416 (2022)

FIG. 1. A schematic of the problem under consideration. Two
graphene sheets with a chemical potential of μc are separated by a
vacuum gap of size d . One of the sheets is at temperature T , while the
other is at a temperature infinitesimally greater than T . The radiative
conductance of the graphene sheets is desired.

involving this material. In this paper, we study the variation of
graphene’s electrical conductivity with kρ using the nonlocal
Lindhard-Mermin model and investigate how this variation
can affect NFRHT between two graphene sheets separated by
a vacuum gap. It is shown that the local Kubo formula can
provide an acceptable estimation of the electrical conductivity
of graphene for kρ < 100k0, where k0 is the magnitude of the
wave vector in the free space. Inversely, the Drude model is
valid only at temperatures much smaller than the Fermi tem-
perature and frequencies much smaller than 2μc

h̄ , where μc and
h̄ are the chemical potential and reduced Planck’s constant,
respectively. It is also shown that except for around the SPP
resonance frequency of graphene and at distances smaller than
∼20 nm, where there is a non-negligible contribution from
modes with kρ > 100k0 to NFRHT, the radiative conductance
between two graphene sheets obtained using the local Kubo
formula agrees well with the one found from the nonlocal
Lindhard-Mermin model.

II. PROBLEM DEFINITION

The problem under consideration is schematically shown
in Fig. 1. Two graphene sheets with chemical potential μc are
separated by a vacuum gap of size d . One of the graphene
sheets is at temperature T , while the other is kept at T + δT ,
where δT is an infinitesimal temperature difference. The near-
field radiative conductance of the graphene sheets is desired in
this study. The total (integrated over frequency) radiative con-
ductance, Gtot, is defined as Gtot = limδT →0

qtot

δT , where qtot is
the total radiative heat flux between the two graphene sheets.
The total radiative conductance is obtained by integrating the
spectral (frequency dependent) radiative conductance Gω over
frequency as

Gtot =
∫ ∞

0
Gωdω, (1)

where ω is the angular frequency. The spectral radiative
conductance is found by integrating the spectral radiative
conductance per unit parallel component of the wave vec-
tor, Gω,kρ

, over the parallel component of the wave vector,
i.e.,

Gω =
∫ ∞

0
Gω,kρ

dkρ. (2)

The term Gω,kρ
in Eq. (2) is found using the framework of

fluctuational electrodynamics as [49]

Gω,kρ
=

⎧⎪⎨
⎪⎩

kρ

4π2
∂�(ω,T )

∂T

∑
ζ=TE,TM

(1−|rζ |2−|t ζ |2 )2

|1−(rζ )2e2ik0zd |2 , kρ < k0

kρ

π2
∂�(ω,T )

∂T

∑
ζ=TE,TM

(Im[rζ ])
2

e−2k′′
0zd

|1−(rζ )2e2ik0zd |2 , kρ > k0

,

(3)
where �(ω, T ) = h̄ω

eh̄ω/kBT −1 is the mean energy of an electro-
magnetic state (kB is the Boltzmann constants), ζ refers to
the polarization state which can be transverse electric (TE)
or transverse magnetic (TM), rζ and t ζ are the reflection
and transmission coefficients at the interface of graphene and
vacuum for polarization ζ , respectively, and k0z = k′

0z + ik′′
0z is

the z component (as shown in Fig. 1, the z axis is normal to the
graphene sheets) of the wave vector in the vacuum found as

k0z =
√

k2
0−k2

ρ . It should be noted that the variation of rζ and

t ζ with temperature is neglected when taking the derivative of
the heat flux with respect to temperature in Eq. (3), which
is appropriate for NFRHT applications except for thermal
rectification [50]. The reflection and transmission coefficients
at the graphene-vacuum interface can be found for the TE and
TM polarizations as [51]

rTE = −μ0σω

2k0z + μ0σω
, (4a)

rTM = σk0z

2ε0ω + σk0z
, (4b)

tTE = 2k0z

2k0z + μ0σω
, (4c)

tTM = 2ε0ω

2ε0ω + σk0z
, (4d)

where ε0 and μ0 are the permittivity and permeability of the
vacuum, respectively, and σ is the electrical conductivity of
graphene. Equations (4a)–(4d) are obtained by assuming an
isotropic electrical conductivity for graphene, which is valid
except for electromagnetic modes with kρ � 300k0 [52] or in
the presence of a magnetic field or a drift current [31,39].

III. GRAPHENE’S ELECTRICAL CONDUCTIVITY
MODELS

The electrical conductivity of graphene is the key parame-
ter for determining its NFRHT. Three electrical conductivity
models, namely, Drude, Kubo, and Lindhard models, have
been used for studying NFRHT in graphene-based materials.
In this section, we briefly discuss these three models. An
extensive review of various electrical conductivity models for
graphene can be found in Ref. [53].

A. Kubo model

The local Kubo model is obtained using the linear response
theory and the Kubo formula under the assumptions that kρ →
0, ω � kρυF , and ω � γ , where υF is the Fermi velocity and
γ is a phenomenological parameter called the scattering rate
accounting for the electronic scattering processes [47,48,54].
The Kubo electrical conductivity of graphene is written as the
summation of a contribution from the intraband transitions
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of electrons, σ intra, and one from the interband transitions of
electrons, σ inter, i.e.,

σ (ω, T, μc ) = σ intra (ω, T, μc ) + σ inter (ω, T, μc ), (5a)

where T is the temperature, and

σ intra (ω, T, μc ) = 4iσ0

π h̄(ω + iγ )

[
μc + 2kBT ln

(
1 + e−μc/kBT

)]
(5b)

while

σ inter (ω, T, μc)

= σ0

[
G(h̄ω/2) + i

4h̄ω

π

∫ ∞

0

G(E ) − G(h̄ω/2)

(h̄ω)2 − 4E2
dE

]
. (5c)

In Eqs. (5b) and (5c), i is the imaginary unit, and σ0 and G are
defined as

G(x) = sinh
(

x
kBT

)
cosh

(
μc

kBT

) + cosh
(

x
kBT

) , (5d)

σ0 = e2/(4h̄), (5e)

where e is the electron charge. The scattering rate is the
inverse of the relaxation time, i.e., γ = τ−1, where τ is
the relaxation time. The relaxation time linearly varies with
the chemical potential as [55]

τ = mμc

eυ2
F

. (6)

In Eq. (6), m is the carrier mobility with a value of
1000–230 000 cm2/V s depending on the method used for fab-
ricating graphene. In this study, υF = 9.5 × 105 m/s [51] and
m = 10 000 cm2/V s [55] are considered for Fermi velocity
and carrier mobility of graphene, respectively. The intraband
contribution to the Kubo electrical conductivity is dominant
when h̄ω � 2μc, while the interband transitions become sig-
nificant when h̄ω > 2μc [53].

B. Drude model

At low frequencies (i.e., when ω � 2μc

h̄ ), the interband
contribution to the Kubo electrical conductivity can be ne-
glected. If the temperature is low compared to the Fermi
temperature (i.e., if T � μc

kB
), the second term in the intraband

electrical conductivity is also negligible. In this case, the Kubo
electrical conductivity is simplified to the following equation
which is referred to as the Drude model [48]:

σ (ω,μc) = 4iσ0μc

π h̄(ω + iγ )
. (7)

C. Lindhard model

The Lindhard electrical conductivity of graphene is a
nonlocal model which follows from a quantum mechanical
description of the material using the self-consistent linear
response theory [48,53,56,57]. The graphene electrical con-
ductivity can be related to its polarizability, �, as [48,53]

σ (kρ, ω, T, μc ) = i
ω

k2
ρ

�(kρ, ω, T, μc ). (8)

The polarizability of graphene in the collisionless Lindhard
model is given by [48,53,57,58]

�(kρ, ω, T, μc )

= 4e2 lim
η→0+

∑
n,n′=±1

∫
d2q

(2π )2

(
1 + nn′ cos θ

2

)

× fn′,q+kρ
− fn,q

εn′,q+kρ
− εn,q − h̄(ω + iη)

, (9a)

where η is a small number accounting for the Landau damping
[48,57], kρ is the parallel (to the graphene sheet) component
of the wave vector, q denotes a vector in the kρ space, and

εn,q = nh̄νF |q|, (9b)

fn,q = [1 + exp[(εn,q − μc)/kBT ]]−1, (9c)

cos θ = q.(q + kρ )

|q||q + kρ | . (9d)

As indicated by Eq. (9d), θ is the angle between vectors q and
q + kρ . It is shown that the Lindhard model can reproduce
the polarizability of graphene found from ab initio calcula-
tions for frequencies below 4.5 × 1015 rad/s (or wavelengths
above 0.42 μm) [53], the spectrum region in which thermal
radiation is typically located. It should be noted that the
electronic scattering processes are ignored in the collisionless
Lindhard model [48,53,57]. The electronic collisions can be
accounted for in the collisionless Lindhard model using the
relaxation-time approximation (RTA) via the scattering rate
γ [48,59]. Two approaches have been used for including the
electronic collisions in the Lindhard model. In the first ap-
proach, the angular frequency ω in the collisionless Lindhard
formula [Eq. (9a)] is simply replaced by ω + iγ [53,59]. This
approach is known to violate the conservation of the local
electron number [48,59,60] and is referred to as the Lindhard
model hereafter. In the second approach, which was proposed
by Mermin, the collisions relax the electronic density to an
equilibrium distribution with a shifted chemical potential such
that the local electron number is conserved [48,60]. Using
this approach, which is referred to as the Lindhard-Mermin
model in this paper, the polarizability of graphene is modified
as [48,60]

�γ (kρ, ω, T, μc, γ )

= (ω + iγ )�(kρ, ω + iγ , T, μc)

ω + iγ [�(kρ, ω + iγ , T, μc)/�(kρ, 0, T, μc )]
(10)

where � (kρ, ω + iγ , T, μc) is given by Eq. (9a). A com-
parison of the discussed electrical conductivity models is
presented in Sec. IV.

IV. RESULTS AND DISCUSSION

The real part and the absolute value of the imaginary part
of graphene’s electrical conductivity as predicted using the
Lindhard-Mermin [Eqs. (9) and (10)], Lindhard [Eq. (9)],
Drude [Eq. (7)], and Kubo [Eq. (5)] models are shown in
Fig. 2 for three cases. In case 1, μc = 0.05 eV and = 300 K
[Figs. 2(a) and 2(b)]. In case 2, μc is increased to 0.1 eV, while
T is kept at 300 K [Figs. 2(c) and 2(d)]. Case 3 is concerned
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FIG. 2. The real part and the absolute value of the imaginary part of the electrical conductivity of graphene, σ , as calculated using the
Lindhard-Mermin, Lindhard, Drude, and Kubo models. The Lindhard-Mermin and Lindhard electrical conductivities are calculated at kρ =
0.05k0, while the Drude and Kubo models are independent of kρ . Panels (a) and (b), respectively, show the real and imaginary parts of σ for
case 1 with μc = 0.05 eV and T = 300 K. The same are shown for case 2 with μc = 0.1 eV and T = 300 K in panels (c) and (d), and for case
3 with μc = 0.1 eV and T = 1000 K in panels (e) and (f).

with a μc of 0.1 eV and an enhanced T of 1000 K [Figs. 2(e)
and 2(f)]. The Lindhard-Mermin and Lindhard electrical con-
ductivities are computed at a small kρ of 0.05k0, while the
Kubo and Drude models do not account for the variation
of the electrical conductivity with kρ . It is seen from Fig. 2
that the real part of the electrical conductivity, Re[σ ], found
from the Kubo model agrees with the one obtained using the
Lindhard-Mermin model for small kρs. The maximum dif-
ference between Re[σ ] found from these two models is only
9.1% (the difference depends on the frequency) in Fig. 2(a),
10.9% in Fig. 2(c), and 3.8% in Fig. 2(e). The agreement

between the Kubo and the Lindhard-Mermin models can be
explained by considering the assumptions made when deriv-
ing the Kubo electrical conductivity as discussed in Sec. III A.
In the Kubo electrical conductivity, it is assumed that kρ → 0,
ω � kρvF , and ω � γ . Considering that vF ≈ c0

300 (c0 being
the speed of light in vacuum) [51], the second assumption
is valid when kρ � 300k0, while the third assumption holds
true for � 1013 rad/s. Since these two conditions are satisfied
for the cases presented in Fig. 2, the Kubo formula predicts
Re[σ ] with an acceptable accuracy in this figure. It is also
seen from Fig. 2 that Re[σ ] as predicted using the Lindhard
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FIG. 3. The real part and the absolute value of the imaginary part of the Lindhard-Mermin and Kubo electrical conductivities of graphene,
σ . The Lindhard-Mermin electrical conductivity is plotted for various kρs, while the Kubo model is independent of kρ . Panels (a) and (b),
respectively, show the real and imaginary parts of σ for case 1 with μc = 0.05 eV and T = 300 K. The same are shown for case 2 with
μc = 0.1 eV and = 300 K in panels (c) and (d), and for case 3 with μc = 0.1 eV and T = 1000 K in panels (e) and (f).

model agrees with the one found from the Lindhard-Mermin
model only at large frequencies. The reason is that electron
scattering by impurities and lattice defects, which has not been
appropriately accounted for in the Lindhard model, is sig-
nificant mostly at low frequencies [61]. The large difference
between the Lindhard and Lindhard-Mermin models at low
frequencies highlights the importance of proper consideration
of electronic scattering processes in the collisionless Lindhard
formula. Figure 2 also shows that except for at low frequencies
and temperatures, the Drude model cannot accurately esti-
mate the electrical conductivity of graphene. As mentioned in
Sec. III A, the Drude model is valid under the assumptions

that ω � 2μc

h̄ and T � μc

kB
. The former assumption, which

ensures no contribution from the interband transitions to the
electrical conductivity, is valid only for ω � 1.5 × 1014 rad/s
when μc = 0.05 eV [Figs. 2(a) and 2(b)] and for ω � 3.0 ×
1014 rad/s when μc = 0.1 eV [Figs. 2(c)–2(f)]. As such, the
Drude model fails at frequencies comparable to or greater
than 1014 rad/s. It should be pointed out that the frequency
below which the Drude model is valid is proportional to μc

(ω � 2μc

h̄ ) and thus increases as μc increases [e.g., compare
Figs. 2(a) and 2(c)]. Assuming T � μc

kB
in the derivation of

the Drude model ensures that the temperature dependence of
the electrical conductivity is negligible. When μc = 0.1 eV,
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FIG. 4. Spectral (frequency dependent) radiative conductance between two graphene sheets with chemical potential μc, temperature T ,
and separation gap d as predicted using the Lindhard-Mermin, Lindhard, Drude, and Kubo electrical conductivities.

T � 1160 K is required for satisfying this condition. Since
this condition is not met for case 3 with T = 1000 K, the
Drude model deviates from the Lindhard-Mermin model for
this case at all frequencies [Figs. 2(e) and 2(f)]. The results
presented in Fig. 2 contradict the conclusion made in Ref. [53]
that the Drude model accurately predicts the electrical con-
ductivity of graphene for kρ < 300k0. It is seen from Fig. 2(b)
that the imaginary part of the electrical conductivity, Im[σ ],
obtained using the Kubo formula for case 1 differs from the
one found using the Lindhard-Mermin model at large fre-
quencies. However, as the chemical potential and temperature
increase, the Kubo predictions for Im[σ ] converge to the ones
obtained from the Lindhard-Mermin model [Figs. 2(c)–2(f)].

The effect of kρ on the electrical conductivity of graphene
is studied in Fig. 3. In this figure, Re[σ ] and Im[σ ] predicted
using the Lindhard-Mermin model for various kρs from 0.05k0

to 200k0 are shown for cases 1–3. The Kubo electrical con-
ductivity, which is kρ independent, is also shown in Fig. 3 for
comparison. When kρ � 100k0, the variation of Re[σ ] with
kρ is modest and the Kubo formula can be used for predict-
ing the electrical conductivity with acceptable accuracy. For
example, Re[σ ] in Fig. 3(a) changes only between 0.03% and
13.25% (depending on the frequency) when kρ increases from
0.05k0 to 100k0. The variation of Re[σ ] with kρ becomes
significantly stronger as kρ increases, such that the Kubo
formula cannot be used for kρ � 100k0. When kρ increases
from 100k0 to 200k0, Re[σ ] in Fig. 3(a) changes by up to

54%. The same conclusion can be made using Figs. 2(c)–2(f)
which show the variation of σ with kρ for case 2 with a higher
chemical potential of μc = 0.1 eV [Figs. 3(c) and 3(d)] and
case 3 with a higher temperature of T = 1000 K [Figs. 3(e)
and 3(f)].

To study the effect of the variation of σ with kρ on NFRHT,
the spectral radiative conductance between two graphene
sheets is calculated using the discussed electrical conductivity
models. The radiative conductance at d = 50 nm is shown
for cases 1–3 in Figs. 4(a)–4(c), respectively, while Fig. 4(d)
shows the radiative conductance for case 3 at an increased gap
size of d = 500 nm. It is seen from Fig. 4 that the radiative
conductance has a peak in the considered frequency region
which is due to thermal emission of SPPs. The SPP peak
has a major contribution to the total radiative conductance.
Figure 4 shows a great agreement between the Kubo and
Lindhard-Mermin radiative conductances except for around
the SPP frequency. At the SPP frequency, the Kubo formula
overestimates the magnitude of the radiative conductance by
17% for case 1 shown in Fig. 4(a). This difference reduces
to 11.7% when the chemical potential is increased to 0.1 eV
in Fig. 4(b), and to 6.5% when the temperature increases to
1000 K in Fig. 4(c). The reason for the difference between the
Kubo and Lindhard-Mermin radiative conductances around
the SPP frequency can be explained by considering the dis-
tribution of the spectral radiative conductance over kρ . The
spectral radiative conductance per unit wave vector, Gω,kρ

,
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FIG. 5. Spectral radiative conductance per unit kρ , Gω,kρ
, for two

graphene sheets with a chemical potential of μc and a temperature
of T separated by a gap of size d as computed using the Lindhard-
Mermin [panels (a), (c), (e), and (g)] and Kubo [panels (b), (d), (f),
and (h)] electrical conductivities. The unit for Gω,kρ

shown in the
color bar is W m–2 (rad/s)–1 (rad/m)–1.

is plotted versus ω and kρ/k0 for the Lindhard-Mermin and
Kubo models in Fig. 5. The dispersion relation of the graphene
SPPs is also shown in Fig. 5. The dispersion relation of the
SPPs for two graphene sheets separated by a gap of size d
(Fig. 1) is split into two branches: one branch corresponding to
the optical mode given by 1

κ
tanh( κd

2 ) + 1
κ

+ iσ
ωε0

= 0, and one

corresponding to the acoustic mode found from 1
κ

coth( κd
2 ) +

1
κ

+ iσ
ωε0

= 0, where κ =
√

k2
ρ−k2

0 [48,62]. Figure 5(a) shows

Gω,kρ
for case 1 at d = 50 nm [corresponding to Gω in

Fig. 4(a)]. As it is seen from this figure, there is a contribution
from electromagnetic waves with kρ > 100k0 to the radiative
conductance around the SPP frequency. Since the difference
between the Kubo and Lindhard-Mermin electrical conduc-
tivities is appreciable for kρ > 100k0, the spectral radiative
conductances obtained using these two models do not agree
around the SPP frequency. The contribution of the electro-
magnetic waves with kρ > 100k0 to the radiative conductance
reduces as μc, T, and d increase [see Figs. 5(b)–5(d)], and so
does the difference between the Kubo and Lindhard-Mermin
radiative conductances around the SPP frequency. It is also
seen from Fig. 5 that the dispersion relation of graphene’s
SPPs obtained using the Kubo model deviates significantly
from the one found from the Lindhard-Mermin electrical con-
ductivity at large wave vectors for which the Kubo formula is
not valid. Figure 4 also shows that the Lindhard and Drude
electrical conductivities cannot accurately predict the spectral
radiative conductance and thus are not recommended for mod-
eling NFRHT for graphene-based materials.

The total radiative conductance, Gtot, for the two graphene
sheets as predicted using the discussed electrical conductivity
models is presented in Fig. 6. Figure 6(a) shows the total ra-
diative conductance versus μc for T = 300 K and d = 50 nm.
The total radiative conductances obtained using the Kubo and
Lindhard-Mermin models agree well for all considered chem-
ical potentials. The Kubo total radiative conductance is within
∼5% of the one found from the Lindhard-Mermin model.
Inversely, the total radiative conductances predicted using the
Drude and Lindhard models are significantly different from
the one found from the Lindhard-Mermin electrical conduc-
tivity. It is seen from Fig. 6(a) that the Lindhard-Mermin total
radiative conductive nonmonotonically varies by ∼40 times
as the chemical potential changes in the range 0.05–0.5 eV,
which is very promising for active control of radiative heat
transfer. The total radiative conductance versus T is plotted
in Fig. 6(b) for μc = 0.05 eV and d = 50 nm. Figure 6(b)
also demonstrates that the Kubo model provides an acceptable
estimation for the total radiative conductance. In this figure,
the difference between the Kubo and Lindhard-Mermin ra-
diative conductances at T = 300 K is 5.5%. This difference
constantly decreases with increasing temperature such that
the two models are different by only 1.3% at T = 1000 K.
Figure 6(b) also shows that the total radiative conductance
increases almost linearly with temperature by ∼3 times as the
temperature increases from 300 to 1000 K. The effect of d on
the accuracy of the discussed electrical conductivity models
for predicting the total radiative conductance is shown in
Fig. 6(c), where the total radiative conductance is plotted ver-
sus d for μc = 0.05 eV and T = 300 K. This figure shows that
the difference between the total radiative conductances pre-
dicted using the Kubo and Lindhard-Mermin models increases
considerably as the separation gap decreases. For example,
the difference is 2.5% for d = 1 mm, while it increases to
36% at d = 10 nm. The reason is that the contribution of
thermally emitted waves with kρ > 100k0 to the radiative
conductance increases when d decreases [see Figs. 2(e)–2(h)].
As discussed before, the Kubo electrical conductivity cannot
be used when kρ > 100k0. Additionally, Fig. 6(c) shows that
the Drude model cannot also provide an accurate estimation
for the far-field radiative conductance.
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FIG. 6. Total radiative conductance, Gtot , between two graphene sheets separated by a vacuum gap as predicted using the Lindhard-Mermin,
Lindhard, Drude, and Kubo electrical conductivities versus (a) chemical potential μc, (b) temperature T , and (c) separation gap d .

V. CONCLUSION

In summary, the Kubo formula can be used for modeling
NFRHT with an acceptable accuracy except for at separation
gaps smaller than ∼20 nm and around the SPP resonance fre-
quency. In this study, the difference between the total radiative
conductance found using the Kubo formula and the one ob-
tained using the Lindhard-Mermin electrical conductivity ex-
ceeded 20% at gaps smaller than 20 nm. The peak spectral ra-
diative conductance at the SPP resonance predicted using the
Kubo formula was different from that of the Lindhard-Mermin
model by up to 17%. At small separation gaps or around the
SPP frequency of graphene, there is an appreciable contribu-
tion from electromagnetic modes with kρ greater than 100k0

for which the Kubo formula ceases to be valid. As the chem-
ical potential, temperature, and separation distance of the
graphene sheets increases, the contribution of large-kρ modes

to the NFRHT decreases and thus the accuracy of the Kubo
formula for predicting the radiative conductance increases. It
was also shown that, in contrast to previous findings [53],
the Drude model is not valid for modeling NFRHT problems
except for ω � 2μc

h̄ and T � μc

kB
. Finally, simple substitution

of ω with ω + iγ in the collisionless Lindhard model cannot
accurately capture the effect of electronic scattering processes
on graphene’s electrical conductivity, as the local electron
number is not conserved in this approach. The Mermin relax-
ation time approximation is recommended for modeling the
scattering processes in the graphene’s electrical conductivity.
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