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We investigate the thermal transport properties of a quantum anomalous Hall insulator nanoribbon covered
by superconductors. Due to the peculiar properties of chiral Majorana fermion (CMF) edge states, we found a
half-integer quantized thermal conductance plateau. Different from the ordinary superconductor which conducts
electricity but does not conduct heat, in the quantum anomalous Hall insulator–topological superconductor
junction, the CMF occurs at the boundary of the topological superconductor which carries heat from left to
right. A chiral topological superconductor with Chern number N = ±1 has a single CMF, which is equivalent
to half an ordinary fermion propagating along the edge, leading to a half-integer quantized thermal conductance
plateau. When the topological superconducting edge has two CMFs, it is equivalent to ejecting an ordinary
fermion, resulting in an integer quantized thermal conductance plateau. Moreover, the half-integer quantized
thermal conductance can also be used to study the properties of Majorana Kramer pairs in a helical topological
superconductor. Finally, we also find that the half-integer quantized plateau appears against moderate disorder
and with the metal leads besides the quantum anomalous Hall insulator, which is promising to be realized in
experiments.
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I. INTRODUCTION

Eighty-five years ago, Majorana discovered a charge-
neutral fermion when solving the relativistic wave equation of
electrons. Its antiparticle is itself called Majorana fermion
[1,2]. Over 10 years, Majorana fermions have attracted much
attention in the field of condensed-matter physics [3–8]. The
detection and regulation of Majorana fermions are not only
helpful to satisfy the basic theoretical research, but also pave
the way to realize topological quantum computation because
of the statistical properties of a Majorana fermion under ex-
change operations [9–13].

The chiral topological superconductors (TSC) are a new
topological physical state with a pairing gap in the bulk and
gapless edge modes consisting of a chiral Majorana fermion
(CMF) state [4]. It can be realized by the quantum anomalous
Hall insulator (QAHI) covered by the s-wave supercon-
ductor via the proximity effect [7,14–22]. One-dimensional
CMFs exist at the boundary of two-dimensional chiral TSC
[4,14,15]. The CMFs can perform the non-Abelian braiding
and are also expected to realize topological quantum computa-
tion [9,10,23,24]. Therefore, CMF has gained much attention
in recent years [2,5–7,14–22,25–30]. So far, detecting the
existence of the Majorana edge states is a very challenging
work in experiments. Although one experiment claimed the
half-quantized electric conductance in a hybrid QAHI-TSC-
QAHI system to confirm the chiral Majorana edge modes
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[25], subsequent theoretical and experimental interpretations
[26–30] seem to show alternative origins of the half-quantized
conductance plateau, such as the percolation of QAH edges
induced by magnetic disorder in the QAHI, or the device
being in two QAH states with well-aligned magnetization.
Therefore, more evidence is needed for the existence of a
single CMF in a hybrid QAHI-TSC-QAHI structure.

Similar to electronic transport, thermal transport is also
an effective way to reveal the intrinsic physics of quantum

channels. The quantized thermal conductance, κe/T = gπ2k2
B

3h ,
denotes the single quantum channel in quantum point contact
[31–33]. However, up to now, no investigations of the thermal
transport of a hybrid QAHI-TSC-QAHI system have been
reported. At first glance, the physical realization of CMF in a
hybrid QAHI-TSC-QAHI system is based on TSCs. In TSCs,
both the Cooper pair and the CMF can carry current. Due to
the interference of the Cooper pair, it is usually difficult to
characterize CMFs simply by electronic transport. In ordinary
superconductors, electrons are condensed into Cooper pairs
and do not conduct heat. However, in the TSCs, heat can
be carried by chiral Majorana edge states, which avoids the
influence of Cooper pairs. Therefore, the detection of charge-
neutral CMFs by thermal transport has obvious advantages.

In this paper, based on the Landauer-Büttiker formula, we
investigate the properties of thermal transport of CMF edge
states in a hybrid QAHI-TSC-QAHI (or metal-TSC-metal)
nanoribbon junction [see Fig. 1(a)] and find the half-quantized
thermal conductance plateau. The unique phenomenon of the
half-quantized plateaus originates from the peculiar properties
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FIG. 1. (a) Schematic diagram of a hybrid QAHI-TSC-QAHI
structure connected to a hot and a cold lead. A thermal gradient 2�T
is applied in x direction. (b)–(d) The edge transport configurations
of the hybrid QAHI-SC-QAHI structure with the topological Chern
number of the SC region being N = 0, 1, 2, respectively.

of CMFs in chiral TSC with Chern number N = ±1. The
quantized thermal conductance plateaus can well remain in a
certain temperature range and moderate disorder. This signifi-
cant feature of the half-quantized thermal conductance plateau
can be used as a smoking-gun signature to detect CMFs in the
experiment.

The rest of the paper is organized as follows. In Sec. II,
the effective tight-binding Hamiltonian including QAHI and
TSC is introduced. The formalisms for calculating electric
thermal conductance are then derived. In Sec. III, we study
the thermal transport properties of the hybrid QAHI-TSC-
QAHI and metal-TSC-metal system. In Sec. IV, we study
the thermal transport in helical TSC. In Sec. V, the effect of
disorder on the thermal conductance plateau is investigated.
Finally, discussion about the experimental realization and a
brief summary are shown in Sec. VI.

II. MODEL AND METHODS

A. Model and Hamiltonian

Considering the low-energy state, the effective Hamilto-
nian of a QAHI thin film [15,17,21,34,35] can be written as
HQAHI = �pψ

†
pHQAHI(p)ψp, with ψp = (ct

p↑, ct
p↓, cb

p↑, cb
p↓)T ,

and

HQAHI(p) = vF (pyτzσx − pxτzσy) + m(p)τxσ0

+ MQAHIτ0σz − μQAHIτ0σ0, (1)

where (σx, σy, σz) and (τx, τy, τz) are Pauli matrices for the
spin and layer spaces, respectively. ct (b)

pσ and ct (b)†
pσ are anni-

hilation and creation operators with momentum p = (px, py)
and spin σ=↑,↓ in the top (bottom) layer. m(p) = m0 −
m1(p2

x + p2
y ) describes the coupling between the top and bot-

tom layers. In the calculation, we set the parabolic term m0 =
−0.1 and m1 = 1, and the Fermi velocity vF = 1 [15,21,34].
MQAHI represents the exchange field along the z direction to
destroy the time-reversal symmetry. The change in MQAHI

can drive a phase transition from a trivial insulator with the
Chern number C = 0 (|MQAHI| < |m0|) to a QAH state with
C = ±1 (|MQAHI| > |m0|) [15,21]. μQAHI describes the chem-
ical potential. By adjusting μQAHI, the QAH system can be
placed in the metallic phase with |μQAHI| > |m0| [14].

When in proximity to the s-wave superconductor, a
finite pairing potential is induced in the QAHI and the

FIG. 2. (a)–(c) Band structure of the QAHI nanoribbon
with exchange field MQAHI = 0.25, chemical potential μQAHI = 0
(a), μQAHI = 0.8 (b), and μQAHI = 1.5 (c). (d)–(f) Band structure of
the TSC nanoribbon; the pairing potentials of the top and bottom
layers are �t = 0.2 and �b = 0. Exchange field Mz = 0.45 in TSC
with Chern number N = 2 (d), Mz = 0.15 with N = 1 (e), and
Mz = 0.02 with N = 0 (f).

Bogoliubov–de Gennes (BdG) Hamiltonian [15,17,21,34]
with 	p = [(ct

p↑, ct
p↓, cb

p↑, cb
p↓), (ct†

−p↑, ct†
−p↓, cb†

−p↑, cb†
−p↓)]T

can be written as HBdG = 1
2�p	

†
pHBdG(p)	p,

HBdG =
(

HQAHI(p) �0

�
†
0 −H∗

QAHI(−p)

)
, (2)

where

�0 =
(

i�tσy 0
0 i�bσy

)
. (3)

Here, �t and �b are the pairing potentials of the top and
bottom layers, respectively. To distinguish between the ex-
change field of QAHI region, Mz represents the exchange
field strength of TSC, which is equal to MQAHI in Eq. (1). As
Mz increases, the system goes through a series of topological
phase transitions from Chern number N = 0 to N = 1 and
then to N = 2 with inequivalent �t �= �b [15,21,34]. The
phase boundary can be expressed as ∓(�t · Mz − �b · Mz ) +
M2

z = m2
0 + �t · �b [15]. The N = 0 phase is a trivial super-

conducting phase without CMFs, which is denoted as NSC.
The N = 1 phase is a TSC with a single chiral Majorana
edge state at its edge and the N = 2 phase is topologically
equivalent to the C = 1 QAH state with two chiral Majorana
edge states [15,21,34] [see Figs. 1(b)–1(d)]. We also plot the
band structure of QAHI and TSC to clearly illustrate the edge
states; see Fig. 2. Figures 2(a)–2(c) show the band structure
of the QAHI nanoribbon. Among them, Fig. 2(a) corresponds
to the energy-band structures of the QAH state with C = ±1,
where the two chiral Dirac edge states crossing the bulk gap
intersect at E = 0 and Figs. 2(b) and 2(c) correspond to the
energy-band structures of a metallic phase with μQAHI = 0.8
and 1.5. Figures 2(d)–2(f) show the band structure of the
TSC nanoribbon. In Fig. 2(d), N = 2 chiral TSC has two
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degenerate edge states intersecting in the bulk band gap.
N = 1 chiral TSC has a single edge state in the bulk gap;
see Fig. 2(e). For N = 0 trivial superconductors, there is no
edge state in the bulk gap [see Fig. 2(f)].

Due to the existence of the superconductor, when an in-
cident electron with the energy E flows from the left QAHI
terminal into the central TSC region, there are four processes
[17,19,22], which are the normal tunneling, the local Andreev
reflection (LAR), the crossed Andreev reflection (CAR), and
normal reflection. Corresponding transmission coefficients
can be obtained by using the nonequilibrium Green’s function
method [17,19,22]:

T (E ) = Tr
[

L

eeGr
ee


R
eeGa

ee

]
, (4)

TLAR(E ) = Tr
[

L

eeGr
eh


L
hhGa

he

]
, (5)

TCAR(E ) = Tr
[

L

eeGr
eh


R
hhGa

he

]
, (6)

where e and h represent electron and hole, respectively, and
E is the incident energy. 
L/R(E ) = i[�r

L/R − �a
L/R] is the

linewidth function, with the self-energy �r
L/R = �

a†
L/R stem-

ming from the coupling between the left/right (L/R) QAHI
leads and the center TSC region. Gr (E ) = [E − Hcen − �r

L −
�r

R]−1 is the retarded Green’s function with the Hamilto-
nian Hcen of the center region [36,37]. In the numerical
calculations, we set the nanoribbon width W = 80a with the
dimensionless lattice constant a = 0.75 and the central TSC
length L = 100a throughout this paper unless otherwise men-
tioned.

B. Electric thermal conductance

After obtaining the transmission coefficients, by using the
Landauer-Büttiker formula, the heat current expression can be
rewritten as [38–42]

QL = 1

h

∫
(E − μL)T (E )[ fL(E ) − fR(E )]dE

+ 1

h

∫
(E − μL)TLAR(E )[ fL(E ) − f̃L(E )]dE

+ 1

h

∫
(E − μL)TCAR(E )[ fL(E ) − f̃R(E )]dE , (7)

where fα (E ) = [e(E−μα )/kBTα + 1]−1 and f̃α (E ) = 1 −
fα (−E ) = [e(E+μα )/kBTα + 1]−1 denote the Fermi-Dirac
distribution functions for electrons and holes, respectively.
In thermal transport, the temperature difference drives the
movement of electric charges. So we set μL = μR = 0; then

fL(E ) − fR(E ) = 1

eE/kBTL + 1
− 1

eE/kBTR + 1
,

fL(E ) − f̃L(E ) = 1

eE/kBTL + 1
− 1

eE/kBTL + 1
= 0,

fL(E ) − f̃R(E ) = 1

eE/kBTL + 1
− 1

eE/kBTR + 1
, (8)

and the heat current expression can be written as

QL = 1

h

∫
E [T (E ) + TCAR(E )]

×
[

1

e
E

kB (T +�T ) + 1
− 1

e
E

kB (T −�T ) + 1

]
dE , (9)

where TL = T + �T and TR = T − �T . Assuming small
thermal gradient �T , the Fermi distribution function in
Eq. (9) can be expanded linearly,

f (E , Tp) = 1

e
E

kBTp + 1
= f0 + �Tp

∂ f

∂Tp

∣∣∣∣
Vp=0,Tp=T

= f0(E ) + f0(E )[1 − f0(E )]

(
E

kB

)
�Tp

T 2
, (10)

where p = L, R. f0(E ) = [eE/kBT + 1]−1 is the Fermi distri-
bution in the zero bias and zero thermal gradient. So,

QL = 1

h

∫
E2[T (E ) + TCAR(E )] f0(E )[1 − f0(E )]

× �TL − �TR

kBT 2
dE . (11)

The electric thermal conductance is defined as κe =
lim QL

�TL−�TR
; then

κe = 1

h

∫
[T (E ) + TCAR(E )] f0(E )[1 − f0(E )]

E2

kBT 2
dE .

(12)

As to the contribution from electrons and phonons, the
electronic thermal conductance presents a linear relation to
the temperature, while the phononic thermal conductance
presents a cubic relation to the temperature [43,44]. Thus, at
low temperature, we focus on the electronic thermal conduc-
tance.

III. HALF-QUANTIZED THERMAL
CONDUCTANCE PLATEAU

First, we study the thermal transport properties of
the hybrid QAHI-TSC-QAHI junction. The exchange field
MQAHI = 0.25 for Mz > 0 (MQAHI = −0.25 for Mz < 0) and
chemical potential μQAHI = 0 in QAHI. That is, there is only
one quantum channel injecting/ejecting in the QAHI leads.
The pairing potential �t = � and �b = 0 in the central TSC.
Figure 3(a) shows T , TCAR, and TLAR for the incident energy
E = 0.005 as functions of exchange field Mz of TSC. When
the incident energy E is within the bulk gap, the transport
behavior is determined by the chiral edge states. We first
discuss the exotic case when the TSC is in the N = 1 phase
so that a single CMF lives along the boundary of C = 1
QAHI and N = 1 TSC. Consider an incident electron prop-
agating along the mode α1 indicated by the red arrow from
left QAHI lead [see Fig. 1(a)]; this electron propagates along
the upper chiral edge state. When it reaches the QAHI-TSC
interface, the incident electron splits into the two Majorana
fermions γ1 and γ2, i.e., α1 = 1/

√
2(γ1 + iγ2). γ1 propagates

along the QAHI-TSC interface and returns back to the left
terminal. γ2 directly propagates to the right terminal [see
Fig. 1(a)], i.e., γ1 → 1/

√
2(β1 + β

†
1 ) and γ2 → 1/i

√
2(β2 −

β
†
2 ). This indicates that, for the incident mode α1, the four

scattering processes (normal tunneling T , TCAR, TLAR and
normal reflection) have the same probability [15,17–19,22],
i.e., T = TCAR = TLAR = 1/4 holds the plateau of transport
coefficients around Mz = 0.15 in Fig. 3(a). This leads to the
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FIG. 3. Thermal transport properties in a QAHI-TSC-QAHI
nanoribbon junction. The pairing potential �t = 0.2 and �b = 0
and Mz represents the exchange field in TSC. The exchange field
MQAHI = 0.25 for Mz > 0 (MQAHI = −0.25 for Mz < 0) and chemi-
cal potential μQAHI = 0 in QAHI. (a) T , TCAR, and TLAR as functions
of exchange field Mz in TSC with the incident electron energy E =
0.005. Panel (b) shows κe/T (in units of π 2k2

B/3h) distribution with
temperature T = 0.03, �t = �. The magenta dashed dotted lines
represent the boundaries of the superconducting phase diagram with
∓� · Mz = M2

z + m2
0 [15]. (c) κe/T vs the function of Mz in TSC

with �t = � (� = 0, 0.1, 0.2, 0.3). Panel (d) plots κe/T as the func-
tion of Mz in TSC with temperature T = 0.001, 0.03, 0.08, 0.15.

half-quantized electric conductance plateau, G = 1
2 e2/h, as

pointed out in the literature [15,25]. Besides, when the in-
creasing Mz (Mz > 0) drives TSC into the N = 2 phase, there
are two CMFs, topologically equivalent to one electron. So the
injecting electron from the left QAHI entirely transmits into
the right QAHI; see the trajectory shown in Fig. 1(d). This
leads to the T = 1 and TCAR = TLAR = 0 when Mz > 0.3 in
Fig. 3(a) and corresponds to an integer quantized conductance
G = e2/h.

For thermal transport, the thermal conductance κe defined
in Eq. (12) only depends on the normal tunneling T and
crossed Andreev reflection TCAR. At relatively low tempera-
ture, electrons participate thermal transport within a narrow
energy range, where T and TCAR are constant; the formula of

κe is simplified as κe/T = (T + TCAR)π2k2
B

3h . In our design of
the QAHI-TSC-QAHI junction, what contributes to nonzero
T and TCAR is only the CMF in the TSC region. T = TCAR =
1/4 for Mz = 0.15 in Fig. 3(a) indicates that there is a single
Majorana edge state residing at the edge of TSC. A sin-
gle CMF is equivalent to half an ordinary fermion and will
contribute to half a quantized thermal conductance. T = 1,
TCAR = 0 when Mz > 0.3 in Fig. 3(a) indicates that there are
two CMFs existing on boundaries. Two CMFs contribute a
quantized thermal conductance. Due to the Chern number
N of TSC equal to the number of CMF edge modes, thus

κe/T =|N |
2

π2k2
B

3h . This means that κe/T can reveal the informa-
tion of the CMFs and the presence of the CMF in the central
TSC regions is confirmed with aids of the quantized thermal
conduction plateau.

The color plot of κe/T with quantized values in Fig. 3(b)
indeed distinguishes different phases of TSC with parameters
� and Mz at temperature T = 0.03. For a clear descrip-
tion, we take � = 0, 0.1, 0.2, 0.3 (marked with small arrows)
and plot κe/T as functions of Mz in Fig. 3(c). Figure 3(c)
shows κe/T plateaus change from 1 to 1/2 to 0 to 1/2 to
1, indicating the Chern number of the superconducting of
the central region varying N=−2 → −1 → 0 → 1 → 2 as
exchange field Mz increases. Besides the case with � = 0
only corresponding to the N = ±2 and N = 0 phase, κe/T
curves with nonzero � (0.1, 0.2, 0.3) all present the 1/2
quantized plateau, that is, the half-quantized thermal conduc-
tance of a single CMF. These half-integer quantized thermal
conductance plateaus can serve as a reliable signature of
topologically protected chiral edge states of charge-neutral
Majorana fermions. Next, we investigate the effect of tem-
perature on the quantized thermal conductance plateaus.
Figure 3(d) displays κe/T versus Mz for different tempera-
tures. We find that, when the temperature is low, the kBT
is much smaller than the induced bulk gap �p of TSC
[bulk gap �p ≈ 0.05; see Fig. 2(e)] and the quantized ther-
mal conductance plateau is maintained well over a certain
temperature range. As the temperature increases, the quan-
tized plateau still exists even if the kBT is larger than the
�p of TSC.

Now, we study the thermal transport properties in a
metal-TSC-metal ribbon structure. In fact, compared with
the QAHI-TSC-QAHI nanoribbon structure, metal leads are
very common and easier to fabricate in experiments. In
this paper, we tune the QAH phase into the metallic phase
with the exchange field MQAHI = 0.25 for Mz > 0 (MQAHI =
−0.25 for Mz < 0) and chemical potential μQAHI = 0.8 and
1.5 (|μQAHI| > |m0|) in QAHI. The electric conductance of
the metal-TSC-metal junction is usually very large, because
Cooper pairs in TSC can carry the electric current. Here
we focus on the thermal transport through the metal-TSC-
metal junction, which cannot be carried by the Cooper pairs.
Figure 4(a) shows T , TCAR, and TLAR as functions of exchange
field Mz in TSC. Figure 4(b) plots κe/T versus the exchange
field Mz in TSC with � = 0, 0.1, 0.2, and 0.3 at the tempera-
ture T = 0.03.

With metal leads connected to the central TSC region,
the injected electrons from leads can be reflected as elec-
trons or holes (TLAR), or transmitted as electrons (T ) or holes
(TCAR). Different from the QAHI-TSC-QAHI structure, there
are multiple channels in normal metal so that the local An-
dreev reflection coefficient can be over 1 even at the N = 1
TSC as shown in Fig. 4(a). Thus the two-terminal electric
conductance is very large and does not present the quantized
value as usual. However, this obstacle can be overcome in the
thermal transport measurement. Figure 4(b) shows the well
preserved half-integer plateau of κe/T versus Mz in the metal-
TSC-metal structure. Since the thermal conductance is related
to the T and TCAR, the local Andreev process does not affect
κe/T . Therefore, in the metal-TSC-metal structure, when the
Chern number of TSC varies from N = −2 → −1 → 0 →
1 → 2, the thermal conductance plateau also changes: 1 →
1/2 → 0 → 1/2 → 1 [see Fig. 4(b)]. In this case, thermal
conductance κe has a clear advantage in revealing the chiral
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FIG. 4. Thermal transport properties in a hybrid metal-TSC-
metal ribbon structure. The pairing potential �t = 0.2 and �b =
0 and Mz represents the exchange field in TSC. The exchange
field MQAHI = 0.25 for Mz > 0 (MQAHI = −0.25 for Mz < 0) and
chemical potential μQAHI = 0.8 in QAHI. (a) T , TCAR, and TLAR

as functions of exchange field Mz in TSC with E = 0.005. Panel
(b) shows κe/T vs Mz in TSC with temperature T = 0.03, μQAHI =
0.8 (solid line), and μQAHI = 1.5 (dashed lines), along the direc-
tion of the green arrow �t = � = 0.3, 0.2, 0.1, 0 in turn. Panel
(c) plots κe/T vs the function of Mz in TSC with temperature
T = 0.001, 0.03, 0.08, 0.12. Panel (d) plots κe/T vs temperature T .
Exchange field Mz = 0.45, 0.40, 0.17, 0.15, 0.02, and 0.01 in TSC,
respectively.

Majorana edge state that cannot be detected by the electrical
conductance. In addition, the thermal conductance plateau is
independent of the chemical potential μQAHI of QAHI. In
other words, when the TSC pairing potential �t = � is the
same in Fig. 4(b), the thermal conductance plateau curves of
μQAHI = 0.8 and μQAHI = 1.5 coincide.

Figures 4(c) and 4(d) show the effect of temperature on the
thermal conductance plateau. The change of thermal conduc-
tance with exchange field Mz in TSC at different temperature
is shown in Fig. 4(c) and the change of thermal conductance
with temperature T at different exchange field Mz is shown in
Fig. 4(d). Similar to the conclusion of Fig. 3(d), we also find
that the plateau maintains well within a certain temperature
range.

IV. HELICAL TOPOLOGICAL SUPERCONDUCTOR

In this section, we focus on the thermal transport properties
of helical TSC. We adopt the hybrid QAHI-TSC-QAHI (see
Fig. 5) and metal-TSC-metal structure (see Fig. 6). We tune
the QAH phase into the metallic phase with MQAHI = 0.25 for
Mz > 0 (MQAHI = −0.25 for Mz < 0) and chemical potential
μQAHI = 0.8 (|μQAHI| > |m0|) in QAHI. When the pairing
potentials �t = −�b = � in TSC, a helical TSC forms
[15,45–50]. The edges of helical TSC are composed of two
chiral Majorana edge modes with opposite chiralities, also
known as the Majorana Kramers pair. So far, helical TSC has
not been observed in experiments [15,49,50].

FIG. 5. Thermal transport properties of QAHI-TSC-QAHI struc-
ture. The pairing potential �t = −�b = � and Mz represents the
exchange field in TSC. The exchange field MQAHI = 0.25 for Mz >

0 (MQAHI = −0.25 for Mz < 0) and chemical potential μQAHI = 0
in QAHI. T , TCAR, and TLAR vs exchange field Mz in TSC with
the energy E = 0.005 of the incident electron. � = 0.05 for panel
(a) and � = 0.2 for panel (b). (c) κe/T as the function of Mz in
TSC with � = 0, 0.1, 0.2, 0.3. Panel (d) shows κe/T distribution
with the temperature T = 0.03. The magenta dashed dotted lines
represent the boundaries of the superconducting phase diagram with
M2

z − �2 = m2
0 [15].

Figures 5(a) and 5(b) plot the transmission coefficients
(T , TCAR, and TLAR) in the QAHI-TSC-QAHI structure as
functions of the exchange field Mz for different pairing gap
� (� = 0.05, 0.2). Figure 5(c) shows κe/T versus the ex-
change field Mz with �t = −�b = � = 0, 0.1, 0.2, 0.3 under
temperature T = 0.03 and Fig. 5(d) plots κe/T distribution.
Analogously, in metal-TSC-metal structure, Fig. 6(a) plots T ,
TCAR, and TLAR as functions of the exchange field Mz with
� = 0.2, Fig. 6(b) shows κe/T versus the exchange field
Mz with �t = −�b = � = 0, 0.1, 0.2, 0.3 under temperature
T = 0.03, Fig. 6(c) displays κe/T versus Mz for different
temperatures, and Fig. 6(d) plots κe/T distribution.

In Fig. 5(a), at fixed � = 0.05, the Chern number of TSC
is N = ±2 for |Mz| > 0.15 and two chiral Majorana edge
states propagate along the system boundaries; N = ±1 for
0.15 > |Mz| > 0.05, and a single Majorana edge state is on
the boundary; N = 0 for |Mz| < 0.05, and there is no Majo-
rana edge state [50]. This is completely similar to Fig. 2(a),
so the thermal conductance plateau varies 1 → 1/2 → 0 →
1/2 → 1 [see Figs. 5(c) and 5(d)]. In Fig. 5(b), we take � =
0.2 and m0 = −0.1. For |m0| + � < |Mz| (i.e., 0.3 < |Mz|),
the Chern number of TSC is N = ±2; for −|Mz| − � <

m0 < −||Mz| − �| (i.e., 0.1 < |Mz| < 0.3), the Chern num-
ber of TSC is N = ±1 [50]. These two cases are completely
similar to Fig. 5(a). However, for |m0| < � − |Mz| (|Mz| <

0.1), a helical TSC with Chern number N = 0 appears [see
the markings in Fig. 5(d)]. In this helical TSC phase, a pair
of Majorana edge states with opposite chirality exist along the
boundary of the central TSC region. One branch propagates
in the clockwise direction and the other branch propagates in
the counterclockwise direction, similar to the quantum spin
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FIG. 6. Thermal transport properties of metal-TSC-metal struc-
ture. The pairing potential �t = −�b = � and Mz represent the
exchange field in TSC. The exchange field MQAHI = 0.25 for Mz > 0
(MQAHI = −0.25 for Mz < 0) and chemical potential μQAHI = 0.8
in QAHI. (a) T , TCAR, and TLAR vs exchange field Mz in TSC with
� = 0.2; the incident electron energy E = 0.005. (b) κe/T vs the
function of Mz in TSC with � = 0, 0.1, 0.2, 0.3. Panel (c) plots
κe/T vs the function of Mz in TSC with � = 0.2 and the temper-
ature T = 0.002, 0.03, 0.07, 0.1. Panel (d) shows κe/T distribution
with the temperature T = 0.03. The magenta dashed dotted lines
represent the boundaries of the superconducting phase diagram with
M2

z − �2 = m2
0 [15].

Hall insulator [50]. The mode that contributes to the thermal
conductance is the Majorana edge mode at the boundary of
the topological superconductor, which enters from the lead of
QAHI on the left and flows out from the right. This is equiva-
lent to ejecting half of an ordinary fermion. The half ordinary
fermion contributes the half quantized thermal conductance,
so a half-integer quantized thermal conductance plateau forms
[see Figs. 5(c) and 5(d)].

When we use metallic leads instead of the QAHI leads,
the most obvious difference is that the thermal conductance
plateau exhibits an integer quantized plateau in the metal-
TSC-metal structure as the helical TSC is produced [see
Figs. 6(c) and 6(d)]. Since there are multiple channels in
normal metals, electrons are incident on the central TSC area.
For helical TSC, there is a single Majorana bound state at
each upper and lower edge to carry heat, so the normal tun-
neling T and the crossed Andreev reflection coefficient TCAR

are 1/2 other than 1/4 [see Fig. 6(a)]. A pair of Majorana
bound states residing at the edge is equivalent to ejecting an
ordinary fermion and an ordinary fermion will contribute a
quantized thermal conductance. So, we will obtain an integer
quantized thermal conductance plateau. As shown in Fig. 6(c),
when the background temperature T is low, e.g, T = 0.002,
the thermal conductance shows the integer and half-integer
quantized plateaus, which correspond to the helical and chiral
TSC phases, respectively. With the increase of the temperature
T , these quantized thermal conductance plateaus can well
keep as kBT being lower than the induced bulk gap of the
TSC (approximately 0.03), but they are gradually destroyed at
kBT larger than the induced bulk gap. We can use the jump

FIG. 7. Effects of disorder on thermal transport properties in
QAHI-TSC systems. The pairing potential �t = 0.2 and �b = 0
and Mz represents the exchange field in TSC. The exchange field
MQAHI = 0.25 and chemical potential μQAHI = 0 in QAHI. (a) κe/T
as the function of exchange field Mz in TSC at the different disorder
strength D (D = 0, 0.03, 0.08) with temperature T = 0.03. (b) κe/T
vs disorder strength D with exchange field Mz = 0.01, 0.15, and 0.40
in TSC.

from 1/2 → 1 of the thermal conductance plateau to identify
the helical Majorana edge state, which provides a useful tool
for experimentally identifying the helical TSC.

V. EFFECT OF DISORDER

Up to now, we have shown that the half-integer thermal
conductance plateau occurs in the pure QAHI-TSC and metal-
TSC systems. Since impurities and disorder exist inevitably in
real materials, next, let us investigate the effect of disorder on
the thermal conductance plateau.

We introduce the Anderson-type disorder in the central
TSC region of a hybrid QAHI-TSC structure. Based on the
Hamiltonian in Eq. (2), the Anderson-type disorder is intro-
duced by an additional term to the on-site energy. Diτ0σ0 is
added to the diagonal part HQAHI(p) and −Diτ0σ0 is added
to −H∗

QAHI(−p). Di is uniformly distributed in the interval
[−D/2, D/2] with the disorder strength D. We take the ex-
change field MQAHI = 0.25 and chemical potential μQAHI = 0
in QAHI and the pairing potentials �t = 0.2 and �b = 0 in
TSC. In the central TSC region, disorder of possessive points
is random and independent of each other. With each value of
disorder strength D, thermal conductance κe is averaged up to
40 configurations.

Figure 7(a) shows κe/T with different disorder strength at
temperature T = 0.03. Figure 7(b) shows κe/T versus the dis-
order strength D for different exchange field Mz in TSC with
Mz = 0.01, 0.15, and 0.40. The half-integer plateau of κe/T
preserves well with moderate strength of disorder, D = 0.03,
which is half of the induced gap �p of TSC. With the increase
of D, the plateaus of κe/T are gradually destroyed (e.g.,
D = 0.08) (see Fig. 7). Thus, for the experimental observation
of a half-quantized thermal conductance plateau, disorder can
exist in the sample but should not be too strong to close the
gap of TSC.

VI. DISCUSSIONS AND CONCLUSIONS

As compared with the experimental materials, the Fermi
velocity is estimated as about h̄vF ∼ 260 meV nm in the Cr-
(Bi, Sb)2Te3 films [51]. Then we choose the length unit as
0.17 μm such that the dimensionless lattice constant a = 0.75
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corresponds to about 0.17 μm × 0.75 ≈ 0.13 μm. The di-
mensionless superconducting gap, e.g., � = 0.2, corresponds
to a real value � ∼ 0.4 meV, which is achievable because the
proximity induced superconducting gap of Bi2Se3 films on the
NbSe2 substrate can reach � = 0.5 meV even at 4.2 K [8,15].
The dimensionless mass gap m0 = −0.1 corresponds to a real
value |m0| ∼ 0.2 meV, which is in the same amplitude of the
QAHE in the Cr-(Bi, Sb)2Te3 films. Also, the size of each
TSC region, (100a, 80a), corresponds to (13 μm, 10.4 μm),
which is comparable to the recent experimental device [25].

From the experimental perspective, we discuss the feasibil-
ity of our proposal. As to the experimental technique, recent
experiments have utilized the thermal transport method to
confirm the theoretical conjecture of physical systems, such
as the heavy-fermion superconductor [31] and the quantum
Hall system without/with strong correlations [52,53]. These
experiments could be performed at a temperature as low as
10 mK, within the requirement of QAHE. As to the effect
of measurement to the quantum regime, on the one hand, the
QAHI/TSC owns the topologically protected bulk gap, which
is robust against local perturbation, such as the shape, size,
and impurities of specific devices. On the other hand, we have
shown that both the QAHI and the normal metal can be used

as detecting leads, as would not affect the thermal transport
signature.

In summary, a half-integer quantized thermal conductance
plateau is found in the hybrid QAHI(metal)-TSC ribbon sys-
tem when the N = ±1 TSC phase is realized. The quantized
plateau can be maintained well in a certain temperature range
and in moderate disorder, but it will be destroyed with the
increase of temperature T and disorder D. The half-integer
quantized thermal conductance plateau can also serve as re-
liable evidence of the existence of Majorana fermions in
experiments.
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