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Entanglement dynamics in confining spin chains
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The confinement of elementary excitations induces distinctive features in the non-equilibrium quench dy-
namics. One of the most remarkable is the suppression of entanglement entropy, which in several instances
turns out to oscillate rather than grow indefinitely. While the qualitative physical origin of this behavior is clear,
till now no quantitative understanding away from the field theory limit was available. Here we investigate this
problem in the weak quench limit, when mesons are excited at rest, hindering entropy growth and exhibiting
persistent oscillations. We provide analytical predictions of the entire entanglement dynamics based on a
Gaussian approximation of the many-body state, which captures numerical data with great accuracy and is further
simplified to a semiclassical quasiparticle picture in the regime of weak confinement. Our methods are valid in
general and we apply explicitly to two prototypical models: the Ising chain in a tilted field and the experimentally
relevant long-range Ising model.
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I. INTRODUCTION

The relentless advances in cold atom experiments made
available extremely tunable platforms where synthetic phases
of matter can be engineered with high precision. Quantum
simulators [1,2] are on the verge of replacing classical devices
in the challenge of understanding and faithfully describ-
ing many-body and strongly interacting quantum systems,
promising a pathway to simulations that are far beyond the
reach of classical computers. A prominent example is the
physics of strongly coupled gauge theories routinely probed
at large hadron colliders. Even though the promised land of
an accurate quantum simulator for such complex systems is
getting closer to a fast pace, it nowadays remains still low on
the horizon. Recent times witnessed an increasing interest in
simpler, yet challenging, toy models where the capability of
quantum simulators can be put at test against the state of the
art analytical and numerical techniques. The physics of con-
finement canonically belongs to high-energy physics in 3 + 1
dimensions: Quarks cannot exist in isolation and strong inter-
action confines them into composite particles, such as mesons
and baryons. However, confined excitations can also be re-
alised in simple one-dimensional condensed matter settings
[3], which are within reach of current experimental venues
[4,5]. Admittedly, these realizations crudely oversimplify the
complicate processes taking place in hadron colliders, but
nevertheless capture many of their salient features. An ideal
testbed for the physics of confinement is the one-dimensional
Ising spin chain in a tilted field [6–9]. In the presence of a
pure transverse field, the Ising model is exactly solvable and
equivalent to noninteracting fermions. Of particular interest is

the Z2–spontaneously broken phase, featuring two degenerate
ground states of opposite magnetization. In this regime, topo-
logical excitations have the form of domain walls (or kinks)
interpolating between the two vacua.

The nature of excitations dramatically changes in the pres-
ence of an additional longitudinal field that explicitly breaks
the aforementioned symmetry by inducing a Zeeman-like gap
in energy between the two lowest levels, which split in a lower
and higher energy states, dubbed true vacuum and false vac-
uum respectively. This means that the spin chain pays energy
every time it visits the false vacuum and that domain walls
experience a potential that grows linearly in their separation.
As a result, the kinks (playing the analogous role of quarks)
cannot be pulled infinitely far apart without breaking energy
conservation and get confined in composite excitations, which
are identified as mesons.

The appealing simplicity of the model is self-evident and,
together with other comparably simple spin chains, has been
used to probe several aspects of confinement physics. Already
the pioneering paper [9] shows how confinement strongly sup-
presses the spreading of correlation after a quantum quench.
Shortly after, connections with quantum scarring [10,11] and
lattice gauge theories [12–16] have been unveiled. In general,
confinement has been understood to have striking conse-
quence on transport [13,17,18] and features anomalously
slow thermalization due to a strong suppression of meson
creation/annihilation mediated by the Schwinger mechanism
[19–27]. Notably, recent works closely mimic the large hadron
physics by studying scattering events of mesonic particles
[28–31]. The stepping stone for these investigations is the
possibility of efficiently simulate physics in one dimension,
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thanks to tensor network techniques [32]. Numerical inves-
tigations backed up qualitative or semiquantitative analytical
results, contributing to clarify the global picture. In contrast,
the strongly interacting nature of these models makes fully
analytical treatments scarce, especially in nonequilibrium set-
tings.

This paper aims to analytically quantify the information
spreading in confined spin chains after a quantum quench by
focusing on the dynamics of entanglement. In the framework
of confinement, analytical predictions for the entanglement in
the Ising chain close to the critical point have been obtained
in Ref. [33] in the field theory limit, but the far more com-
mon gapped scenario remains unexplored and motivates our
investigation. In the following, we first build on the standard
quasiparticle picture [34–37] by developing a semiclassical
approach able to capture the behavior of entanglement. Such
semiclassical method is valid in the regime of large quantum
numbers, which is achieved with a small confining force.
Away from this regime, quantum effects lead to clear in-
terference patterns in the entanglement entropy, as already
observed in Ref. [9]. In order to capture this features, we
develop a fully-quantum analytical treatment that reproduces
the numerical data with great accuracy.

II. MODEL AND QUENCH PROTOCOL

As a prototypical model of confined spin chain, we shall
focus on the Ising chain in a tilted magnetic field with Hamil-
tonian

Ĥ = −J
∑
j∈Z

(
σ̂ z

j σ̂
z
j+1 + h⊥σ̂ x

j + h‖σ̂ z
j

)
, (1)

where h‖ (resp. h⊥) are longitudinal (resp. transverse) compo-
nents of the magnetic field and J is the overall energy scale
that we set hereafter to one. We denote with σ̂ α

j (α = x, y, z)
the standard Pauli operators acting on site j. For this model,
we consider the following quench protocol. At times t � 0,
we prepare the Ising chain in the ferromagnetic ground state
by setting the transverse field to 0 � h̄⊥ < 1 at zero longitu-
dinal field h‖ = 0. For t > 0, the system is then brought out
of equilibrium by the sudden variation of the transverse field
h̄⊥ → h⊥ and by turning on the longitudinal field h‖ �= 0.

For h‖ = 0, the model is equivalent to noninteracting spin-
less fermions and it allows for a well-known exact solution,
see Appendix A for a short summary.

In particular, the Hamiltonian (1) at h‖ = 0 is diagonal-
ized in terms of fermionic modes {γ̂ (k), γ̂ †(q)} = δ(k − q)
obeying the dispersion law ε(k) = 2

√
(h⊥ − cos k)2 + sin2 k.

These excitations are semiclassically interpreted as ballistic
particles with velocity v(k) = ∂kε(k). Deep in the ferromag-
netic phase h⊥ � 1, the model shows two degenerate ground
states (GS↑ and GS↓, respectively) with opposite magnetiza-
tion 〈σ̂ z〉 = ±1 and the excitations can be identified as sharp
domain walls interpolating between the two ground states. At
finite transverse field h⊥ < 1, the ground-state magnetization
is properly renormalized 〈σ̂ z〉 = ±σ̄ , with σ̄ = (1 − h2

⊥)1/8

and the fermions are still identified as dressed domain walls.
We further consider the confined model in Eq. (1) in the

limit of small quenches |h⊥ − h̄⊥|, |h‖| � 1, where the exci-
tations of the gas are made of dilute mesons with zero total

FIG. 1. Illustration of the quasiparticle picture in the confined
model: Small quenches mostly excite pairs of domain walls with
zero total momentum, which are then confined into mesons with
zero velocity. In the dilute regime, mesons behave as stationary
extended particles with semiclassical trajectory dt (k) in Eq. (5). The
entanglement entropy measures the shared information among the
two subsystems A ∪ B mediated by the mesons sat at the boundaries
between the two regions.

momentum, as depicted in Fig. 1. As matter of convention, we
choose to describe low-energy excitations on the ground state
with positive magnetization (|GS↑〉 ≡ |0〉). Indeed, the GS↓
sector has the same description after replacing h‖ → −h‖.
To this end, we consider the matrix elements of Ĥ on the
eigenbasis of the pure transverse part, which can be labeled
with asymptotic states |{ki}n

i=1〉 and we focus on the form
factors of the longitudinal Pauli operator σ̂ z

0 , see Appendix A
for their explicit expression. These matrix elements can be
divided in two classes: those inducing interactions within a
sector with a fixed number of fermions and those violating
fermion-number conservation.

A naive analysis of the Hamiltonian (1) would put the two
terms on equal footing, but effects spoiling the number con-
servation have been shown to be exponentially suppressed in
the weak longitudinal field [13]. Therefore, once the fermionic
excitations are generated, they behave as stable particles. Nev-
ertheless, these modes experience a nontrivial interaction for
h‖ �= 0 due to the fermion-conserving part of the perturbation.
Such interactions are mainly of the form of a kink-antikink
pair that interact through a linear potential 2h‖σ̄d , where d is
their relative distance, plus negligible short range terms, see
Appendix A. Following Ref. [9], one can perform a quantum
quench in the transverse field to create an initial distribution
of fermionic excitations [38] and later evolve the latter in the
presence of confinement. In this respect, the longitudinal field
might appear as a mere spectator during the preparation of the
initial state as its effect enters only at a second stage. However,
its sudden activation gives nontrivial contributions to the early
stage dynamics.

Let |ψ0〉 be the initial state, which is let to evolve
with Hamiltonian (1) as |ψt 〉 = e−it Ĥ |ψ0〉. We split Ĥ into
two parts Ĥ = Ĥdiag + Ĥoff-diag, where Ĥdiag is the projec-
tion of Ĥ onto the number conserving sector. Despite the
fact that Ĥoff-diag can be neglected in the late time dynam-
ics, it creates excitations within a finite time scale after
the quench. For this reason, it is useful to write |ψt 〉 =
e−it Ĥdiag T exp[−i

∫ t
0 dτ Ĥ (I )

off-diag(τ )]|ψ0〉 where Ĥ (I )
off-diag is the

off-diagonal term of the Hamiltonian in the interaction picture
with respect to the diagonal part. Under the assumption of
weak longitudinal field h‖ � 1, one can argue on a separation
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of time scales and approximate the state as |ψt 〉 � e−it Ĥdiag |ψ̃0〉
by defining the renormalized initial state

|ψ̃0〉 � T exp

[
−i

∫ th⊥

0
dτ Ĥ (I )

off-diag(τ )

]
|ψ0〉, (2)

with th⊥ a large time scale compared with the transverse Ising
energy scale th⊥ε(k) � 1, but still smaller when compared
with the longitudinal field th⊥h‖ � 1. In Appendix B we sub-
stantiate on this idea and compute the renormalized initial
state |ψ̃0〉 in the sought limit of small quenches using form
factor perturbation theory [6,39,40] and obtaining a simple
squeezed state

|ψ̃0〉 ∝ exp

[∫ π

0
dk K(k)γ̂ †(k)γ̂ †(−k)

]
|0〉. (3)

Above, mode operators act on the postquench vacuum
γ̂ (k)|0〉 = 0. The wave function K can be written as

K(k) = −i tan
(
θ

h⊥
k − θ

h̄⊥
k

) − ih‖σ̄v(k)/ε2(k), (4)

where θ
h⊥
k is the Bogoliubov angle that diagonalizes the

transverse part of the Hamiltonian, see Appendix B for the
detailed derivation. Here, the energy ε(k) and velocity v(k)
are computed with respect to the postquench transverse field
h⊥. The squeezed form represents an incoherent superposi-
tion of pairs of particle with opposite momenta and density
nk = |K(k)|2(1 + |K(k)|2)−1. The limit of small quenches is
then attained for |K(k)|2 � 1.

III. ENTANGLEMENT DYNAMICS

Entanglement quantifies the amount of shared quantum
information in a bipartition A ∪ B. The most common en-
tanglement measure is the von Neumann entropy SA =
−Trρ̂A log ρ̂ of the reduced density matrix ρ̂A = TrB|ψt 〉〈ψt |,
but the Rényi entropies S(n)

A = − 1
1−n log(Trρ̂n

A) recently be-
came experimentally accessible [41–47].

The quasiparticle picture (QP) [34,35,37] judiciously sup-
plements few quantum inputs with semiclassical arguments,
providing the leading order extensive part of the entanglement
entropy. Within this framework, local pairs of entangled exci-
tations with opposite momenta are seen as an initial source for
the entanglement and, during the dynamics, the propagating
pairs that are shared by the two subsystems become respon-
sible for the entanglement growth. Notably, the QP picture
can be used beyond the pair structure of the postquench state
[48–50]. In the context of confinement, these ideas give a
quick qualitative grasp on the expected behavior of entangle-
ment. In particular, sooner or later, the confining force bends
the short time ballistic trajectories dt (k) � 2v(k)t and con-
sequently mitigates the entanglement growth, see Fig. 1 for
an illustration. Focusing on a single pair created at momenta
(−k, k) and overlapping position, the classical distance is [7]

dt (k) = (h‖σ̄ )−1[ε(k) − ε(k − 2h‖σ̄ (t mod k/(h‖σ̄ )))]. (5)

In the limit of dilute mesons, each fermionic pair remains well
separated and thus independent from others during the time
evolution. Precisely, this regime is reached if dmax

∫ π

0
dk
2π

nk �
1, where dmax = 4h⊥/(|h‖|σ̄ ) is the maximum extension of
a meson. In the case where only the longitudinal field is

FIG. 2. von Neumann entropy dynamics of the confined Ising
model (1). We show different quenches of the transverse field on
different columns and different values of h‖ on different rows. In each
panel, we compare the semiclassical prediction (6) (dashed line),
the quantum prediction in Gaussian approximation (full line), and
numerical data obtained with time-dependent DMRG simulations
(symbols). Notice the validity of the approach also for quenches
starting from the false vacuum (g)–(h).

quenched and h⊥ remains constant, Eq. (4) leads to the sim-
ple expression

∫ π

0
dk
2π

nk = (h‖h⊥σ̄ )2/[16(1 − h2
⊥)3]. Hence,

the bond is made explicit and it is linearly improved in the
weak-longitudinal field. Conversely, at higher densities, the
single-meson physics breaks down due to collisions among
mesons. We shall focus on the dilute regime, where the stan-
dard quasiparticle prediction for the entanglement entropy can
be readily generalized to the confined model by replacing the
term 2tv(k) with dt (k) given in Eq. (5). In the case of an
infinite system divided in two semi-infinite halves A ∪ B =
(−∞, 0] ∪ (0,+∞), the von Neumann entropy is given by
the formula

SA(t ) =
∫ π

0

dk

2π
dt (k)[−nk log nk − (1 − nk ) log(1 − nk )].

(6)

In Fig. 2 we test the semiclassical prediction in Eq. (6)
against tensor network simulations for different quench pa-
rameters, finding a very good agreement in the regime of weak
longitudinal field h‖ � 1. Notice that the applicability of our
analysis holds also for negative longitudinal fields, namely
when mesons are true-vacuum excitations in a false vacuum
sea, see Figs. 2(g)–2(h). In this case, the linear potential
changes sign and becomes repulsive, but the lattice induces
Bloch oscillations preventing the domain walls to be repelled
infinitely far apart (see also Ref. [51]). By increasing the value
of the longitudinal field, deviations from Eq. (6) eventually
undermine the approximation of isolated mesons, see Ap-
pendix E for further details. However, we observe a failure of
the semiclassical approximation far before this limiting case.
Indeed, in Eq. (5) dt (k) is treated as a continuum variable
and, a consequence, Eq. (6) is expected to hold only in the
limit dmax � 1. Needless to say, a simple theory outclassing
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this semiclassical treatment and including quantum effects is
highly desirable.

A. Quantum effects beyond the quasiparticle picture

Computing the entanglement of many-body systems is
an extremely hard task with very few notable exceptions
where analytical derivations are possible, including e.g. crit-
ical models [52,53] and noninteracting systems [54]. While
in Ref. [33], conformal invariance has been exploited for
similar purposes, we rather borrow methods usually applied
to noninteracting models. Let us consider a system of spinless
fermionic operators ĉ j , ĉ†

j , which will eventually be chosen
as the Jordan-Wigner fermions of the Ising chain (1), see Ap-
pendix C. The distinctive feature of a noninteracting system
is the applicability of Wick’s theorem, which holds for any
Gaussian state. Gaussian states are fully characterized by their
quadratic correlations

C =
(〈ĉ j ĉ

†
j′ 〉 〈ĉ j ĉ j′ 〉

〈ĉ†
j ĉ

†
j′ 〉 〈ĉ†

j ĉ j′ 〉
)

. (7)

From the knowledge of C, one can easily construct the corre-
lation matrix CA restricted to the subsystem A and evaluate the
entanglement entropy as SA = −Tr[CA logCA] [54]. Notice
that the trace is over the lattice sites of A, thus the dimension
of the vector space scales linearly with the size of A, rather
than exponentially as the dimension of the Hilbert space de-
scribing the subsystem. Therefore, the entanglement entropy
is obtained in a matter of seconds on a laptop.

Notably, the initial state in Eq. (3) is Gaussian. We now
argue that the dilute regime is compatible with a Gaussian-
preserving dynamics. Indeed, since Eq. (3) describes an
incoherent superposition of paired fermions that evolve in-
dependently, it is expected to capture dilute mesons provided
the single-meson dynamics is properly described by a nontriv-
ial time-dependent wave function Kt (k). The wave function
Kt (k) is obtained from the Schrödinger equation i∂t |ψt 〉 =
Ĥoff-diag|ψt 〉 by projecting onto the two-particle subspace. The
details of this derivation are lengthy but straightforward and
can be found in Appendix A. The resulting equation is conve-
niently written in real space as

i∂tWt ( j) = 2h‖σ̄ | j|Wt ( j) +
∑

∈Z

[Tj−
 − T− j−
]Wt (
), (8)

where Wt ( j) is an antisymmetric wave function related to
Kt (k) as Wt ( j) = ∫

dk
2π

e−ik jKt (k) and Tj = ∫
dk
2π

e−ik j2ε(k)
is the kinetic energy term. Notice that in the regime of
weak transverse field ε(k) � 2 − 2h⊥ cos k, Tj reduces to a
first neighbor hopping and the Schrödinger equation (8) can
be exactly diagonalized [7]. For finite transverse fields, the
one-body problem can be easily tackled numerically. For
completeness, it should be mentioned that additional small
short-range interactions are present in Eq. (8), see Appendix A
for details. In Fig. 2 we compare tensor network simulations
against the quantum prediction obtained in Gaussian approxi-
mation, finding an excellent agreement. Technical details on
the numerical calculations and the comparison with tensor
network simulations are reported in Appendix C.

FIG. 3. (Left) Rényi-2 and (right) von Neumann entropy dynam-
ics for the long-range Ising model (9) with different exponent α on
different rows. The system is initially prepared in a ferromagnetic
state with all spins up. The quantum prediction in Gaussian approx-
imation (full line) is compared with numerical data (dashed line)
obtained with global subspace expansion time-dependant variational
principle [55].

IV. CONFINED SPIN CHAINS IN EXPERIMENTS

Recent experimental platforms of trapped ions show clear
signature of confined physics [5]. In this setups, the confine-
ment is induced by the long-range interactions of the Ising
Hamiltonian [56]

Ĥ = −
∑
i< j

1

|i − j|α σ̂ z
i σ̂ z

j − h⊥
∑

i

σ̂ x
i . (9)

For small transverse field h⊥, the fundamental excitations of
the model (9) are domain walls, analogously to the short-
range Ising chain in Eq. (1) we previously discussed. In view
of Eq. (9), a pair of domain walls experiences an attractive
potential that for 1 < α � 2 indefinitely grows as the dis-
tance between the particles increases. In this way, a confining
mechanisms is induced. For α > 2, the intrakink interaction is
bounded, but it still supports deep bound states with meson-
like dynamics for α not too large. The methods discussed
previously for the Hamiltonian (1) can be easily generalized
to the long-range Ising model (9). In Fig. 3, we initialize the
system in a product state of all spins up and we let it evolve
with the Hamiltonian (9) for small h⊥. Due to its experimental
relevance [41–47], we also show the results for the Rényi S(2)

A ,
which, analogously to the von Neumann entropy, is accessible
from correlation functions (7) (see Appendix D). In contrast
with the longitudinal case, the long-range Hamiltonian (9) in-
duces meson-meson and boundary-meson interactions beyond
short-range terms, harming the approximation of dilute, thus
noninteracting, mesons. As a consequence of interactions,
mesons become mobile causing an additional linear drift of
the entanglement over the single-meson physics result. As
expected, the drift is more evident as α is smaller, see Fig. 3.
Further details on the state preparation and on the breakdown
our approximations are left to Appendices D and E.

V. CONCLUSIONS

We provide an analytical study of the entanglement dy-
namics in confined spin chains based on a minimal set of
ingredients. Precisely: (i) mesons are incoherently excited
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and noninteracting, hence squeezed states remain a good
approximation also at late times and (ii) Gaussian correla-
tors are evolved according to the dynamics projected in the
two-fermion sector. Although our results have been explic-
itly worked out only for Ising spin chains with short- and
long-range interactions, it is clear that our methods apply in
general, as e.g., in confining spin ladders [57,58], Potts models
[59,60], and tricritical Ising [61]. Natural future directions
address the breakdown of the single-meson approximation
and the effect of moving—and hence scattering— mesons
on the entanglement dynamics. Particularly appealing is the
semiclassical limit, where entangled particles move along
classical trajectories in the spirit of [48–50,62]. Quantifying
how the mesons scatter would eventually allow us to under-
stand whether these confining models thermalize.
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APPENDIX A: THE ISING CHAIN IN A WEAK
LONGITUDINAL FIELD: THE FORM FACTOR APPROACH

We consider the pure transverse field Ising chain

Ĥtrans = −
∑
j∈Z

(
σ̂ z

j+1σ̂ j + h⊥σ̂ x
j

)
, (A1)

which can be exactly diagonalized in terms of noninteracting
spinless fermions as we now briefly review. For simplicity, we
shall describe the Ising model on a lattice of N sites, assuming
periodic boundary conditions of the chain and eventually we
take the thermodynamic limit where N → ∞. First, we intro-
duce fermionic creation and annihilation operators ĉ†

j , ĉ j by
means of a Jordan-Wigner transformation of the ladder Pauli
operators as

σ̂ x
j + iσ̂ y

j

2
= exp

(
iπ

∑
i< j

ĉ†
i ĉi

)
ĉ†

j . (A2)

With this transformation, it is possible to divide the Ising
Hamiltonian (A1) in two terms Ĥ±

trans according with the parity
operator P̂ = ∏

j σ̂
x
j (notice that P̂ has eigenvalues P = ±1

and it commutes with the transverse Hamiltonian)

Ĥtrans = 1
2 (1 + P̂)Ĥ+

trans + 1
2 (1 − P̂)Ĥ−

trans. (A3)

In this form, the Ising Hamiltonian becomes quadratic in
the fermionic operators and translationally invariant in each

of the two parity sectors. Notice that the terms Ĥ±
trans dif-

fer only for the boundary terms: The parity sector P =
+1 (P = −1) is characterized by antiperiodic (periodic)
boundary conditions for the fermionic operators and it in-
duces a quantization of momenta in half-integer (integer)
multiples of 2π/N . Nevertheless, these boundary effects be-
come negligible in the thermodynamic limit and will be
thus omitted in what follows. Hence, in both parity sec-
tors the Hamiltonian can be diagonalized in the momentum
space as

Ĥ±
trans =

∫
dk ε(k)γ̂ †

±(k)γ̂±(k) + const. (A4)

with single-particle energy

ε(k) = 2
√

(h⊥ − cos(k))2 + sin2 k. (A5)

The new set of operators γ̂± is defined by the Bogoliubov
rotation (

ĉ j

ĉ†
j

)
=

∫
dk√
2π

Uθk

(
γ̂±(k)

γ̂
†
±(−k)

)
(A6)

where

Uθk =
(

cos θk i sin θk

i sin θk cos θk

)
(A7)

and θk is the Bogoliubov angle

θk = − 1

2i
log

(
h⊥ − eik

(cos k − h⊥)2 + sin2 k

)
. (A8)

With our conventions for the Fourier transform, the
new modes obey standard anticommutation relations
{γ̂±(k), γ̂ †

±(q)} = δ(k − q) for any value of θk . In each
of the two parity sectors, the Hilbert space is understood as
a Fock space built on the vacua |0±〉 that are annihilated by
the respective mode operators γ̂±(k)|0±〉 = 0. For h⊥ < 1,
the model undergoes spontaneous symmetry breaking in
the thermodynamic limit. This can be easily understood in
the classical limit h⊥ → 0, where there are two degenerate
ground states |GS↑〉 = |... ↑↑↑ ...〉 and |GS↓〉 = |... ↓↓↓ ...〉.
Through linear combinations of these two vacua, one
forms P-symmetric and antisymmetric pairs, which are
then identified with the vacua |0±〉 = (|GS↑〉 ± |GS↓〉)/

√
2

with opposite value of magnetization σ̄ = ±1. At finite
h⊥, the degenerate ground states are not simple product
states any longer and the longitudinal magnetization gets
renormalized to the value σ̄ ≡ 〈GS↑| ∑N

j=1 σ̂ z
j /N |GS↑〉 =

−〈GS↓| ∑N
j=1 σ̂ z

j /N |GS↓〉 = (1 − h2
⊥)1/8 [7].

1. The form factor approach to the longitudinal field

We now wish to consider the effect of the longitudinal field
h‖ in Eq. (1) on the low energy excitations above one of the
degenerate vacua. For the sake of concreteness, we choose the
ground state with positive magnetization |GS↑〉. As a first step,
one builds the proper excitation basis on the Fock space of
the transverse part, by considering the symmetric combina-
tion of the Fock spaces with opposite parity. More precisely,
let |({ki}N

i )±〉 be a multiparticle state in the P = ±1 sec-
tors, then one defines |{ki}N

i=1〉 = 1√
2
(|({ki}N

i )+〉 + |({ki}N
i )−〉).
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In this notation, the state with no excitations is the desired
ground state, i.e., |0〉 ≡ |GS↑〉. Notice that the analysis at
finite-system size N is more involved due to the different

quantization conditions of the even and odd parity sectors.
The action of the confined Ising Hamiltonian in Eq. (1) on
this basis is

Ĥ |{ki}N
i=1〉 =

(
N∑

i=1

ε(ki )

)
|{ki}N

i=1〉 + h‖
∞∑

M=1

1

M!

∫ π

−π

dMq

(2π )M
2πδ

(
M∑

j=1

q j −
N∑

i=1

ki

)
|{q j}M

j=1〉〈{q j}M
j=1|σ̂ z

0 |{ki}N
i=1〉. (A9)

In this expression, the form factors 〈{q j}M
j=1|σ̂ z

0 |{ki}N
i=1〉 that

appear were previously determined in Ref. [7]. By a repeated
use of Wick theorem, one can be express the latter in terms of
the following two particle form factors:

〈k1k2|σ̂ z
0 |0〉 = σ̄F (k1, k2|); (A10a)

〈0|σ̂ z
0 |k1, k2〉 = σ̄F (|k1, k2); (A10b)

〈k1|σ z
0 |k2〉 = σ̄F (k1|k2), (A10c)

where

F (k1, k2|) = −F ∗(|k1, k2)

= 1

1 − exp[i(k1 + k2)]

ε(k1) − ε(k2)√
ε(k1)ε(k2)

(A11)

and

F (k1|k2) = 1

1 − exp[i(k1 − k2)]

ε(k1) + ε(k2)√
ε(k1)ε(k2)

. (A12)

Notice that F (|k1, k2) is always finite while F (k1|k2) develops
a kinematic singularity for k1 = k2 that has to be properly
regularized by a symmetric shift in the imaginary axis

2

1 − exp[i(k1 − k2)]
→

[
2

1 − exp[i(k1 − k2)]

]
reg

= 1

1−exp[i(k1−k2)] + i0+ + 1

1−exp[i(k1−k2)] − i0+ .

(A13)

2. The dynamics in the two particle sector

The singular part of F (k1|k2) is responsible for the long-
range confinement, as it is clarified by the dynamics in the
two-fermion sector that we now analyze. Hence, we now focus
on the matrix elements of the form 〈q1, q2|Ĥ |k1, k2〉. In par-
ticular, the matrix element of the longitudinal Pauli operators
reads

σ̄−1〈q1q2|σ̂ z
0 |k1, k2〉 = F (q1, q2|)F (|k1, k2)

+ F (q1|k2)F (q2|k1)

− F (q1|k1)F (q2|k2). (A14)

We further specialize to the zero-momentum sector where
one sets (k1, k2) = (k,−k) and similarly (q1, q2) = (q,−q),
due to momentum conservation. In this case, we obtain
F (|k,−k) = iv(k)/ε(k), while the singularity in Eq. (A13)
requires a more careful treatment. The calculation are lengthy
but straightforward, hence we report below the final re-
sult only (see Ref. [7] for further details). We define the
two-body interaction in the momentum space as V (q, k) ≡
σ̄−1〈q,−q|σ̂ z

0 |k,−k〉 and we divide the regular part from the
singular part as

V (q, k) = V reg(q, k)

+
[

2

1 − exp[i(q + k)]

]
reg

[
2

1 − exp[i(−q−k)]

]
reg

−
[

2

1 − exp[i(q − k)]

]
reg

[
2

1 − exp[i(−q+k)]

]
reg

.

(A15)

The double pole singularity is responsible for the lin-
ear confinement, while V reg(q, k) is not singular and gives
rise to a short-range interaction. Next, we introduce the
wave function K(k) and we write the two-body state
as

|ψ2−fermions〉 = 1

2

∫ π

−π

dk K(k)|k,−k〉, (A16)

where the notation is chosen to match the expansion of the
squeezed state in Eq. (3). Furthermore, due to the long-range
nature of confinement, it is convenient to move to coordi-
nate space by defining the real-space wave function W ( j)
as

W ( j) =
∫

dk

2π
e−ik jK(k). (A17)

Hence, projecting the Schrödinger equation to the two-
particles state and by evaluating the action of the Hamil-
tonian in Eq. (1) on the wave function W ( j), one
obtains

i∂tW ( j) = 2h‖σ̄ | j|W ( j) +
∑

>0

[
Tj−
 − T− j−
 − Tj+
 + T− j+
 + h‖σ̄

2
V reg

j,


]
W (
), (A18)

with Tj = ∫ π

−π
dk
2π

e−ik j2ε(k) and

V reg
j,
 =

∫
dkdq

(2π )2
e−ik jeiq
V reg(k, q). (A19)

Notice that V reg
j,
 is a short-range interaction, which vanishes

whenever j and 
 are large, regardless their relative difference.
While in principle both the linear potential and the short term
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interactions are of order O(h‖), the long-ranged nature of the
first makes V reg

j,
 negligible in most of practical cases.

APPENDIX B: STATE PREPARATION THOROUGH A
QUANTUM QUENCH

In this section, we characterize the state obtained after a
quantum quench in the transverse and the longitudinal mag-
netic field. Let |ψ0〉 be the initial state, set as the ground state
of the model for a certain value of transverse field h̄⊥ at zero
longitudinal coupling. To begin with, we express |ψ0〉 in the
basis of the postquench fermions, which amounts to solve
the quench in the transverse field [38]. From Eq. (A6), one
can relate the pre- and postquench modes ˆ̄γ (k) and γ̂ (k) re-
spectively by a simple rotation ˆ̄γ (k) = cos(θh⊥

k − θ
h̄⊥
k )γ̂ (k) +

i sin(θh⊥
k − θ

h̄⊥
k )γ̂ †(−k). Imposing that ˆ̄γ (k)|ψ0〉 = 0, one ob-

tains a simple equation for the postquench modes, which has
the following solution

|ψ0〉 = 1√
N

exp

[∫ π

0
dk K (k)γ̂ †(k)γ̂ †(−k)

]
|0〉, (B1)

where K (k) = −i tan(θh⊥
k − θ

h̄⊥
k ) and N is a normalization

factor. However, as anticipated in Sec. II, the activation of
a longitudinal magnetic field has nontrivial consequences on
the state that we now address by computing the renormalized
initial state

|ψ̃0〉 � T exp

[
−i

∫ th⊥

0
dτ Ĥ (I )

off-diag(τ )

]
|ψ0〉. (B2)

In the limit of small quench where K (k) is small, the initial
state (B1) can be expanded as

|ψ0〉 ∝ |0〉 +
∫ π

0
dk K (k)|k,−k〉 + . . . (B3)

and, at leading order in h‖ � 1, one obtains from (B2)

|ψ̃0〉 = 1√
N

(
|0〉 +

∫ π

0
dk K (k)|k,−k〉

− i
∫ th⊥

0
dτ Ĥ (I )

off-diag(τ )|0〉 + . . .

)
. (B4)

In principle, Ĥ (I )
off-diag(τ )|0〉 can couple to a sector with an arbi-

trary even number of fermions, however in the small quench
limit h⊥ � 1 the most important contribution comes from
the two-particle sector. This can be argued on the basis of
two facts: (i) as we will see, the cross ratio of a particles
pair creation is associated with the form factors F (k1, k2|)
in Eq. (A11), which for small transverse field scale as ∼h⊥,
hence couplings to the sector with 2n fermions are of or-
der ∼hn

⊥; (ii) any process is multiplied by the inverse of
the energy of the final state, which means that couplings to
sectors with more fermions are further suppressed. Motivated
by this reasoning, we now wish to compute the quantity∫ th⊥

0 dτ 〈k1, k2|Ĥ (I )
off-diag(τ )|0〉. As a further approximation, it is

expected that for h‖ � 1 fermions are locally created on a
much shorter time scale compared to the one over which the
confining force shows appreciable effects. Therefore, we write
the Hamiltonian in the interaction picture as Ĥ (I )

off-diag(τ ) �

FIG. 4. Comparison of the tensor network simulations (sym-
bols) with the single-meson prediction obtained for two different
initial wave function: (i) the wave function K (k) = −i tan(θ h̄⊥

k −
θ

h⊥
k ) for the transverse field quench with no additional corrections

(dash-dot line); (ii) the wave function K(k) = −i tan(θ h̄⊥
k − θ

h⊥
k ) −

ih‖σ̄v(k)/ε2(k) in Eq. (4), obtained with a renormalized initial state
(full line). The figure clearly shows that only a properly renormal-
ized initial state |ψ̃0〉 gives a good description of the entanglement
dynamics.

eiτHtrans Ĥoff-diage−iτ Ĥtrans , neglecting the term of confinement.
Under this program, we finally obtain the expression

− i
∫ th⊥

0
dτ 〈k1, k2|Ĥ (I )

off-diag(τ )|0〉

� − i
∫ th⊥

0
dτh‖σ̄eiτ (ε(k1 )+ε(k2 ))

[∑
j

ei(k1+k2 ) j

]
F (k1, k2|)

ε(k)th⊥�1= −i2πδ(k1 + k2)h‖σ̄
v(k)

ε2(k)
. (B5)

In the last passage, the large time limit is performed in
the distribution sense. Plugging this result in Eq. (B4),
we obtain |ψ̃0〉 � 1√

N (|0〉 + ∫ π

0 dk K(k)|k,−k〉 + . . . ) with

a renormalized wave function K(k) = −i tan(θh⊥
k − θ

h̄⊥
k ) −

ih‖σ̄v(k)/ε2(k) [cf with Eq. (4)].
Finally, we can ri-exponentiate the state |ψ̃0〉 to obtain the

squeezed form

|ψ̃0〉 � 1√
N

exp

[∫ π

0
dk K(k)γ̂ †(k)γ̂ †(−k)

]
|0〉. (B6)

Notice that Eq. (B6) reduces to the linearized result above
after a series expansion to the first order. Higher order terms
in the squeezed form (B6) are justified from the physical
assumption that pairs of fermions are incoherently created
across the system. In Fig. 4, we put to test our quantum
prediction in Gaussian approximation obtained with the renor-
malized state (B6) and that for an initial state obtained from
the wave function K (k) = −i tan(θ h̄⊥

k − θ
h⊥
k ) of a transverse

field quench. The comparison of the curves with tensor net-
work simulations undoubtedly shows the relevance of the
longitudinal field corrections on the initial state for a correct
description of the entanglement dynamics.
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APPENDIX C: COMPUTATION OF ENTANGLEMENT
FROM GAUSSIAN CORRELATIONS

By approximating the time-evolved state |ψt 〉 with a
squeezed state, it is possible compute the entanglement en-
tropy with the help of well known formulas for free Fermi
gases [54]. In order to do this, we first diagonalize the
two-particle problem in the zero-momentum sector and sub-
sequently we solve the Schrödinger equation (A18). Since we
explicitly used the translational invariance of the two-particle
state, we found more convenient to work with a finite-size
system having N sites and periodic boundaries. Hence, we
compute the correlation matrix in Eq. (7)

C =
∫

dk

2π

eik( j− j′ )

1 + |Kt (k)|2 Uθk

(
1 Kt (k)

K∗
t (k) |Kt (k)|2

)
U †

θk
,

(C1)

where we used 〈γ̂ †(q)γ̂ (k)〉 = δ(k − q)|K(k)|2/(1 +
|K(k)|2), 〈γ̂ (q)γ̂ (−k)〉 = δ(k − q)K(k)/(1 + |K(k)|2) and
we replaced the integration over momenta with a Fourier
series.

It is convenient to organize the correlations in the matrix
form

C =
(
1 − D O

O† D

)
, Di, j = 〈ĉ†

i ĉ j〉, Oi j = 〈ĉiĉ j〉 (C2)

from which the entanglement entropy can be conveniently
computed. Following Ref. [54], one notices that if the density
matrix ρ̂ is Gaussian, then the reduced density matrix ρ̂A is
also Gaussian and it is uniquely identified by the reduced cor-
relation matrix CA. For the sake of concreteness, let us assume
the subsystem A is an interval j ∈ {1, ..., L}, but of course
the method is more general. As a next step, one considers a
Bogoliubov rotation from the fermionic fields ĉ j , ĉ†

j to modes

f̂ j , f̂ †
j that diagonalize the reduced density matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉ1

ĉ2

...

ĉL

ĉ†
1

ĉ†
2

...

ĉ†
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̂1

f̂2

...

f̂L

f̂ †
1

f̂ †
2

...

f̂ †
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C3)

where U is a 2L × 2L matrix. In order to preserve the canon-
ical commutation relations of the new fermionic modes, U
must be unitary. We fix U by requiring that the correlation
matrix CA is brought in the diagonal form

U †CAU =
(
1 − � O

O† �

)
(C4)

with � a L × L diagonal matrix. Hence, ρ̂A is also diagonal in
the new fermionic basis

ρ̂A ∝ exp

(
L∑

i=1

log

(
�ii

1 − �ii

)
f̂ †
i f̂i

)
. (C5)

From this result, the von Neumann and Rényi entropies of
density matrices of the form (C5) are easily obtained as

SA = −TrA(ρ̂A log ρ̂A)

= −
∑

i

{
�ii log �ii + (1 − �ii ) log(1 − �ii )

}
= −TrA[CA logCA] (C6)

and

S(n)
A = 1

1 − n
log(TrA ρ̂n

A) = 1

1 − n

∑
i

log[�n
ii + (1 − �ii )

n].

(C7)
Crucially, we assume periodic boundary conditions on the

fermion basis when computing (C1), which imply a quan-
tization of momenta as k = 2πn/N . This introduces some
subtleties in the computation of the von Neumann and Rényi
entropies, as we now discuss. As already mentioned in Ap-
pendix A, choosing periodic boundary conditions amounts
to the choice of the parity sector with P = −1. Namely, the
ground state correlation functions [obtained setting K = 0 in
Eq. (C1)] are not those of |GS↑〉, but rather those of the an-
tisymmetric combination |0−〉 = 1√

2
(|GS↑〉 − |GS↓〉). Before

considering excited states and dynamics, it is instructive to
compare the entanglement entropy obtained from the states
|GS↑〉 and |0−〉. More precisely, let us consider a bipartition
A ∪ B where A is an interval of length L < N and let S−

L (resp.
S↑

L ) be the entanglement entropy (which can be either Von
Neumann or Rényi, the forthcoming argument holds in both
cases) of such a bipartition on the state |0−〉 (resp. |GS↑〉).
With simple symmetry arguments between up and down spins,
it is then easy to show that

S−
L = S↑

L + log 2. (C8)

As a simple check, one can set h⊥ = 0 and obtain Eq. (C8)
from the two degenerated ground states, which now take the
form of product states with all spins up or down. As a next
step, we consider the excitations and their dynamics. It is
important to stress that, depending on the initial choice of
the ground state (|GS↑〉 or |GS↓〉), one obtains very different
excitations and, consequently, a different dynamics. However,
by noticing that the Schrödinger equation (A18) describes the
dynamics of excitations over the state |GS↑〉, it is easy to see
that using Kt in Eq. (C1), we are not evolving |0−〉, but we
are rather separately evolving |GS↑〉 with the Hamiltonian
(1) and |GS↓〉 with a flipped sign in the longitudinal field
h‖ → −h‖. Therefore, the identity Eq. (C8) remains valid also
at finite times. We then use the methods explained in Sec. III A
to compute S−

A at all times from the correlation matrix in
Eq. (C1), and we obtain S↑

A by subtracting the constant offset
log 2. At this point, we have the entanglement entropy of a
finite interval L embedded in a system with periodic boundary
conditions. On the other hand, we performed tensor network
simulations to compute the half-size entanglement entropy of
a finite system with open boundary conditions. To compare
the two, we notice that the entanglement entropy obeys the
area law, from which it follows that

Shalf-sys; OBC = 1
2 lim

L→∞
S↑

L . (C9)
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In practice, saturation is obtained as soon as L exceeds the
maximum meson size dmax = 4h⊥/(|h‖|σ̄ ).

APPENDIX D: CONFINEMENT IN THE LONG-RANGE
ISING CHAIN

The dynamics of entanglement in the long-range Ising
chain in Eq. (9) can be obtained with the same strategy
employed for the tilted Ising chain in Eq. (1). Following
Ref. [56], we focus on the regime of weak transverse field
h⊥ � 1, where the excitations of the model (9) are identified
by domain walls. Restricting to the two domain walls sub-
space, the effective Hamiltonian is given by

Ĥeff| j1, j2〉 = − h⊥[| j1 + 1, j2〉 + | j1 − 1, j2〉 + | j1, j2 + 1〉
+ | j1, j2 − 1〉] + U (| j1 − j2|)| j1, j2〉, (D1)

where | j1, j2〉 ≡ | ↑ ... ↑ j1↓ .. ↓ j2−1↑ j2 ...〉 and, from here-
after, we consider an ordered set of coordinates with hard
core constraint j1 < j2 for the wave function. The two-kink
interaction is

U ( j) = 4 jζ (α) − 4
∑

1�
<n

∑
1�r�


1

rα
, (D2)

with ζ (α) the Riemann-zeta function. Notice that the poten-
tial U ( j) diverges at large distances whenever 1 < α < 2.
We are now interested to the dynamics of a ferromagnetic
state with Hamiltonian (9) in the presence of a small, but
finite, transverse field h⊥. Equivalently, we consider a small
homogeneous quench in the transverse field. Therefore, one
first considers the dynamics in the zero-momentum sector
by defining | j〉 = ∑

j′ | j, j + j′〉. Similarly to the case of the
Ising chain in a tilded field, we introduce the wave unction
Wt ( j) of two domain walls in the zero-momentum sector,
satisfying the Schrödinger equation

i∂tWt ( j) = − 2h⊥[Wt ( j + 1) + Wt ( j − 1)] + U ( j)Wt ( j).

(D3)

In the last expression, one should restrict to j > 0 with the
condition Wt ( j = 0) = 0, due to the aforementioned choice of
coordinates. In particular, a convenient way to automatically
encode the hard core constraint is to consider an antisymmet-
ric extension of the wave function to negative coordinates,
i.e. imposing that Wt (− j) = −Wt ( j). When performing this
operation, the potential is then symmetrically extended as
U (− j) = U ( j). In other words, we are building a fermionic
extension of the original wave function that is very useful for
our scopes, as we now discuss. Let �n( j) be the normalized
eigenfunctions in the antisymmetric sector of energy En, thus
satisfying the time-independent Schrödinger equation

En�n(t ) = − 2h⊥[�n( j + 1) + �n( j − 1)] + U ( j)�n( j).

(D4)

For fixed initial conditions, the wave function evolves as
Wt ( j) = ∑

n e−iEnt cn�n( j) with time independent coefficients
cn. However, in the case at hand, such coefficients be-
come time dependent cn → cn(t ) since domain walls are
dynamically created from the fully-polarised state due to the
transverse field. To compute cn(t ), we proceed similarly to

the short range Ising case and split the Hamiltonian (9) as
Ĥ = Ĥdiag + Ĥoff-diag, where Ĥoff-diag is obtained by subtract-
ing from −h⊥

∑
i σ̂

x
i the projected component acting within

the sector with a conserved number of domain walls. Then,
we move to the interaction picture and consider first or-
der perturbation theory by computing the matrix element of
−i

∫ t
0 dτ Ĥ (I )

off-diag(τ ) between the polarised state |... ↑↑↑ ...〉
and the eigenfunctions �n, reaching the simple expression

Wt ( j) =
∑

n

e−iEnt cn(t )�n( j) (D5)

with coefficients

cn(t ) = h⊥
1 − eitEn

En

√
2�n(1). (D6)

The energies En and eigenfunctions �n are obtained numer-
ically by solving Eq. (D4). As a last step, we now wish to
build the many-body wave function. In particular, we look for
an effective description in terms of fermionic Gaussian states
such that the formulas of Appendix C for the entanglement
remain still valid. However, in the long range setting, this
requires to consider fictitious fermionic degrees of freedom
instead of the standard fermionic excitations of the model (i.e.,
those obtainable through a Jordan-Wigner transformation).
More precisely, for small transverse field |h⊥| � 1, we notice
that the fundamental excitations of the long range model are
domain walls, similarly to those arising in the short-range
Ising model discussed previously. Therefore, one can intro-
duce fictitious fermionic degrees of freedom for the long range
problem as the domain wall excitations in the short-range
Ising model, and use these fictitious fermionic degrees of free-
dom to apply the strategy of Appendix C for the calculation
of the entanglement. Following this program, we write the
two-body state in momentum space as a squeezed state of
mode operators γ̂ (k)

|ψ̃0〉 ∝ exp

[∫ π

0
dk K(k)γ̂ †(k)γ̂ †(−k)

]
|0〉, (D7)

where K(k) is defined as the Fourier transform of the real
space wave function Wt ( j). Finally, the real space correlation
functions of the fictitious fermions must be computed. To this
end, one can simply use the expression in Eq. (C1) for the
Ising model with the Bogoliubov angle θk = − 1

2i log(−eik ),
which is nothing else than the limit h⊥ → 0 of Eq. (A8). From
this result, one can obtain the entanglement entropy with the
techniques of Appendix C.

APPENDIX E: BREAKDOWN OF THE
SINGLE-MESON DESCRIPTION

In Sec. III, we derived an analytical prediction for the
entanglement dynamics of confined spin chains under the
assumption of small quenches, which physically corresponds
to mesons that are well-separated and thus noninteracting.
This approximation is found in excellent agreement with the
numerical data for a wide set of quench parameters, see Fig. 2.
Nevertheless, corrections appear when the typical distance
among mesons becomes comparable with their size or with
the interaction range, as we now discuss. To begin with, we
consider such deviations in the short-range Ising model with
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FIG. 5. (a) Large quench in the transverse field: h̄⊥ = 0 → h⊥ =
0.5, at h‖ = 0.1. Inset: exact density of quasiparticles nk (full line)
significantly deviates from its approximation (dashed-dot line) in
the dilute regime. In this regime, both analytical predictions for the
Von Neumann entropy (quasiparticle picture–dashed line; quantum
Gaussian treatment–full line) fail to predict the observed numerical
behavior (symbols) at finite times. (b) Example of Schwinger mecha-
nism: h̄⊥ = 0.5 → h⊥ = 0.25 and strong confinement h‖ = 0.4. The
analytical predictions (quasiparticle picture–dashed line; quantum
Gaussian treatment–thick full line) significantly deviates from the
numerical data (thin full line). The difference δSA between the numer-
ical data and the quantum prediction clearly shows a linear growth of
entanglement due to the spontaneous creation/annihilation of new
particles.

tilted magnetic field [see Eq. (1)], where the assumption of
well-separated mesons is easier to fulfill than in the long
range case. For this model, inter-mesons interactions are pos-
sible only through contact, therefore corrections are present
only when the typical size of the meson, here estimated with
the semiclassical maximum size dmax = 4h⊥/(h‖σ̄ ), becomes
comparable with the average spacing, the latter being the
inverse of the meson density ntot = ∫ π

0
dk
2π

nk . In Fig. 5(a)
we consider a large quench with dmaxntot � 0.3. Semiclassi-
cally, pairs of fermions are originated at the same point in
space, hence the size of mesons starts from zero and increases
with time. Consequently, we observe an initial agreement
with great accuracy between the tensor network data and the
single-meson prediction, but the two drift away for t > t∗,
with t∗ � 4 with this choice of parameters. The regime of
dilute meson can be better attained by either diminishing the
density ntot or either reducing the size of mesons dmax by
increasing the longitudinal field. However, a too strong lon-
gitudinal field leads as well to a breakdown the single-meson
approximation due to the Schwinger effect, through which
the initial mesons decay in couples of lighter mesons at a
constant rate. In Fig. 5(b), we probed such quasiparticles pro-
duction by considering a quench with strong confinement. We

FIG. 6. (a) Single spin flip energy profile of a finite-size chain
with N = 150 sites for different values of α. For α � 2, the profile
significantly deviates from a flat one and leads to a non-negligible
boundary-meson interaction term. In each of the curves, we subtract
the max value of the energy for a better comparison. (b) Rényi-2
entropy dynamics for the long-range Ising model [see Eq. (9)] with
exponent α � 2 obtained with variational methods (dashed line). The
emergence of meson-meson and meson-boundary interactions pro-
duces a linear drift, which is not captured by the quantum prediction
in single-meson approximation (full line). In each of the right panels,
we set the transverse field h⊥ such that h⊥/U (1) � 1.

observe a linear growth of the deviation from the stable meson
approximation.

We now refer to Fig. 6 for the long range case, where
finite-size corrections to the single-meson predictions are par-
ticularly visible for small exponents α � 2. As an example,
in Fig. 6(a), we consider the energy of an isolated spin flip
in a system of finite length L = 150. The finite size of the
system induces a nontrivial potential landscape and the meson
(or, more precisely, the deep bound state for α > 2) is ini-
tially created at rest and later accelerated due to the effective
inhomogeneous potential. This causes a scattering of the ex-
citations, which results in a linear growth of entanglement on
intermediate time scales, see Fig. 6(b). Such finite size effects
are suppressed at larger α, see Fig. 3.

Although, strictly speaking, α > 2 does not induce con-
fining dynamics, we experienced that setting 2.5 � α � 3 is
a good compromise between having deep bound states and
relatively small boundary effects on the sizes we analyzed.
Furthermore, we notice that, even in the ideal scenario of an
infinite system, similar long-tailed interactions will show up
among mesons (or bound states). Hence, we conclude that
the dilute regime is attained when the distance among the
excitations is large compared to the α–dependent interaction
range. In Fig. 6(b) we consider the entanglement growth after
transverse field quenches for values of α smaller than those
considered in Sec. IV. In particular, corrections with respect to
our predictions are more relevant as α is reduced, in agreement
with the phenomenology we depicted.
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