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Pseudogauge field driven acoustoelectric current in two-dimensional hexagonal Dirac materials
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Using a diagrammatic scheme, we study the acoustoelectric effects in two-dimensional (2D) hexagonal
Dirac materials due to the sound-induced pseudogauge field. We analyze both uniform and spatially dispersive
currents in response to copropagating and counterpropagating sound waves, respectively. In addition to the
longitudinal acoustoelectric current, we obtain an exotic transverse charge current flowing perpendicular to
the sound propagation direction owing to the interplay of transverse and longitudinal gauge field components
jT ∝ ALA∗

T . In contrast to the almost isotropic directional profile of the longitudinal uniform current, a highly
anisotropic transverse component jT ∼ sin(6θ ) is achieved that stems from the inherited threefold symmetry of
the hexagonal lattice. However, both longitudinal and transverse parts of the dispersive current are predicted to
be strongly anisotropic ∼ sin2(3θ ) or cos2(3θ ). We quantitatively estimate the pseudogauge field contribution to
the acoustoelectric current that can be probed in future experiments in graphene and other 2D hexagonal Dirac
materials.
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I. INTRODUCTION

The passage of a sound wave through an electronic sys-
tem creates an oscillating electric field which accelerates
the charge carriers and generates an electric current. The
acoustoelectric effect (AE) is the dc current that arises to sec-
ond order in the sound-induced electric field. This intriguing
nonlinear phenomenon was first predicted by Parmenter [1]
and later discussed by Weinreich [2]. The effect has been
observed in different classes of materials such as semicon-
ductors, quantum wires, two-dimensional (2D) electron gas,
and heterostructures [3–11]. More recently, it has been rec-
ognized that the coupling between the surface acoustic wave
(SAW) and electrons in 2D Dirac materials provides an excit-
ing opportunity to investigate charge transport driven by the
strain fields associated with the propagating SAW [12–19].
In particular, the AE effect of single-layer graphene has
been investigated experimentally, and the AE current has
been shown to be tunable by the application of a gate
voltage [18].

Traditionally, the magnitude of the sound-induced uni-
form direct current is obtained from the Weinreich’s
relation [3,20–22]

jAE = −μ�sIs

vs
, (1)

where �s is the sound attenuation, Is is the sound intensity, vs

is the sound velocity, and μ is the mobility of the carriers. The
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mobility has opposite sign in electron and hole doped systems.
The sound attenuation in conventional (piezoelectric) semi-
conductors is estimated as �s = K2

p�(σ/σm)/[1 + (σ/σm)2],
where K2

p is related to the piezoelectric constant, � is the
sound frequency, and σ is the longitudinal conductivity of
the system, with σm being a characteristic conductivity con-
stant [23].

A longitudinal sound wave, with a displacement amplitude
uL and wave vector Q, can induce a scalar potential V =
(�P − i�DQ)uL [24], where �D and �P stand for two dis-
tinct contributions, namely, the deformation and piezoelectric
couplings, respectively. Notice that the deformation potential
contribution is relatively less relevant in the long-wavelength
limit. The SAW on the piezoelectric substrate generates a
direct AE current in graphene [25] and is predicted to induce
valley acoustoelectric current in transition metal dichalco-
genides (TMDs) [26]. However, in Dirac materials there is
a third contribution to the AE current that can be formally
modeled as the acoustic analog of the photogalvanic effect
in response to the sound-induced vector potential A [27–35]
(pseudogauge phonons). We refer to this additional contribu-
tion as the acoustogalvanic effect [36]. Similarly, in 3D Dirac
materials a sound-induced orbital magnetization is predicted
to arise in the second-order response to a sound-induced vec-
tor potential [37].

Despite many studies on the piezoelectric mechanism of
the AE effect in a 2D electron gas and in graphene [12–19] the
analysis of the acoustoelectric effect in 2D hexagonal Dirac
materials is not yet complete. In particular, the relevance of
the gauge phonon for the AE effect in graphene has not been
discussed to the best of our knowledge. Our aim in this paper
is to fill this gap by utilizing the diagrammatic second-order
response method. We discuss the AE effect originating from
both scalar and vector potentials. The scalar potential is dy-
namically screened, while the pseudogauge potential is not
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FIG. 1. Schematic experimental setup demonstrating the gener-
ation of the acoustogalvanic (AG) currents due to the second-order
response to the pseudogauge potential induced by the surface acous-
tic wave (SAW) propagating in the 2D hexagonal Dirac material
placed on a piezoelectric substrate. Interdigital transducers (IDTs)
convert electric signals into the SAW with frequency � propagating
along Q with an elliptic polarization of the displacement fields,
u = uLQ̂ − iuz ẑ. Here, jAG

T and jAG
L refer to the longitudinal and

transverse AG currents, respectively, and θ is an angle obtained by
the phonon wave vector with the x direction (zigzag orientation on
the hexagonal lattice).

screened because it does not generate a charge current in the
linear response.

The conventional AE current, i.e., the current generated
by the piezoelectric and deformation potentials, flows par-
allel to the direction of propagation of the SAW, i.e., it is
purely longitudinal: jAE

L ||Q. However, the acoustogalvanic
(AG) current contains both longitudinal ( jAG

L ) and transverse
( jAG

T ) components which are parallel and perpendicular to the
sound wave vector, respectively; see the schematic view in
Fig. 1. We obtain a nontrivial dependence of the AG current
on the sound propagation direction that stems from the im-
plicit threefold symmetry of the 2D hexagonal Dirac material
crystal. We quantitatively analyze the frequency, Fermi en-
ergy, and angular dependence of the AG current components.
Furthermore, in addition to the spatially uniform AG current
jAG
L,T , we study the spatially dispersive current [38,39] js−AG

L,T ,
which exhibits a distinctive dependence on the frequency, the
Fermi energy, and the propagation angle. The calculated AG
current is in good agreement with experimental measurements
in graphene [18]. Our calculations are done with the Green’s
function method, which facilitates the further investigation
of the impact of many-body interactions on the AE effect
by systematic many-body perturbation theory and ab initio
approaches.

II. METHOD

A Rayleigh SAW [40] propagating in the xy plane is an
elliptically polarized wave in the xz plane:

u(r, t ) = 1
2 (uLQ̂ − iuz ẑ)ei(Q·r−�t ) + c.c., (2)

which is propagating on the surface of a piezoelectric sub-
strate along with the phonon wave vector Q = Q(cos θ, sin θ ),
with θ being an azimuthal angle. Here, θ = 0 corresponds
to the x̂ direction with a zigzag orientation on the hexagonal
lattice in our convention, and the SAW dispersion follows the

relation � = vsQ. Note that uL and uz stand for the longitudi-
nal and normal displacement amplitudes, respectively. Here,
we systematically study the direct charge current induced by
the sound wave.

We consider the total Hamiltonian of the system which
encapsulates three main mechanisms that contribute to the
AE current originating from different sources of the Dirac
electron’s coupling to acoustic phonons

H = vF σ̂ · (p + eA(τ )(r, t )) + V (r, t ). (3)

Here, vF is the Fermi velocity, p is the momentum of an
electron, σi refers to the Pauli matrices, and V = �D(uxx +
uyy) + �PuL is a scalar deformation potential that describes
the coupling of acoustic phonons to electrons in 2D hexagonal
Dirac materials, such as graphene, where ui j = (∂iu j + ∂ jui +
∂ih∂ jh)/2 stands for the strain tensor components in terms of
the displacement vector u = (ux, uy, h) having h ≡ uz as the
normal component of the displacement. The substrate induced
piezoelectric potential scales with phonon displacement field
uL, while the deformation potential scales with iQuL. There-
fore, at low frequency, the more relevant mechanism is the
interlayer coupling of electrons of graphene to the piezoelec-
tric induced polarization in the substrate.

Acoustic deformation also generates a pseudogauge field
A(τ ) with τ = ± indicating two time-reversal counterparts
at two valleys with opposite chiralities. In order to com-
ply with the overall time-reversal symmetry, such a gauge
field requires opposite sign for two chiralities: A(τ ) = τA =
τA0(uxx − uyy,−2uxy) [27–34], where A0 = h̄β/ea, in which
a is the lattice constant and the dimensionless parameter
β ∼ 1 is the Grüneisen’s parameter indicating the strength of
the electron-phonon coupling. Using Eq. (2) and neglecting
second-order terms in uz, the sound-induced dynamical vector
potential reads

A(r, t ) = 1
2 (ALQ̂ + AT θ̂)ei(Q·r−�t ) + c.c., (4)

where the vector potential is given in terms of
longitudinal and transverse components (AL, AT ) =
iA0(QuL )(cos(3θ ),− sin(3θ )). Note that θ̂ = ∂θ Q̂ is the
azimuthal unit vector transverse to Q̂ in the momentum space.
Unlike the displacement field of the surface acoustic phonon,
the sound-induced gauge field is not an elliptically polarized
wave. The vector field stemming from the out-of-plane
displacement is proportional to the u2

z due to ∂xh∂yh, and
therefore its impact on the AG current is less relevant.

The time- and space-dependent strain induces a scalar
potential and pseudogauge field leading to the effective elec-
tromagnetic fields E = −∂rV − ∂t A and B = ∂r × A. In the
second-order response to sound-induced fields, the acousto-
electric current or the rectification current formally follows

J (2)
λ (r, t ) =

∑
τ

∑
q1,q2

∑
ω1,ω2

∑
μ,ν

χ
(2)
λμν (q1, ω1, q2, ω2)

× Aμ(q1, ω1)Aν (q2, ω2)e−i(ω1+ω2 )t ei(q1+q2 )·r,
(5)

where χ
(2)
λμν is the nonlinear acoustoelectric response function.

Note that J (2) = (n(2), j (2) ) is the four-vector of nonlin-
ear density n(2) and current j(2) and A = (V sc, τAsc) is an
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FIG. 2. Feynman diagrams for the acoustogalvanic response function in 2D hexagonal Dirac materials. (a) stands for the full nonlinear
response function χ

(2)
abc with finite phonon wave vector q. (b), (c), and (d) are the corresponding diagrams for Xabc, Yabdc, and Zabcd suscepti-

bilities, respectively. Solid circles indicate the electron-phonon coupling vertex, and empty circles stand for the coupling of electrons to the
electromagnetic (EM) fields (photons). Circles with a cross are for a current vertex with vanishing momentum and energy transfer to fermions.
Wavy lines are external phonons, dashed lines are the output EM wave, and solid lines are the fermionic propagators with corresponding wave
vector and Matsubara energies.

effective four-vector potential, where V sc and Asc are the
self-consistent sound-induced scalar and vector potentials,
respectively. The second-order current generated by the inter-
play of scalar and vector potentials, τV scAsc, cancels out due
to opposite contributions of two valleys τ = ±.

Diagrammatic theory of the nonlinear response function

We consider a 2D Dirac material whose low-energy Hamil-
tonian reads H(k) = h̄vF (τkxσx + kyσy), where τ = ± for the
valley index (K, K ′), vF is the Fermi velocity, and σi’s are
the Pauli matrices in the pseudospin basis. The electron’s
coupling to the acoustic phonon thus is simply captured by
setting h̄k → h̄k + eτA(r, t ). Following the standard Kubo’s
formalism, the second-order current in the Dirac material can
be obtained by evaluating the correlation function of three
current operators ĵ = −(e/h̄)∂k̂H = −evF (τ σ̂x, σ̂y). Accord-
ingly, the nonlinear susceptibility reads [see the corresponding
Feynman diagram in Fig. 2(a)]

χ
(2)
abc(q1, iq1n, q2, iq2n) = 1

2

∑
P

1

S

∑
k

1

β

∑
ikn

tr[ ĵaĜ(k, ikn) ĵb

× Ĝ(k + q1, ikn + iq1n) ĵc (6)

× Ĝ(k+ q1+ q2, ikn+ iq1n + iq2n)],

where Ĝ(k, ikn) = [ikn − Ĥ(k)]−1 is the fermionic Green’s
function in the Matsubara frequency domain. Note that

∑
P

stands for the intrinsic permutation symmetry for the ex-
change (b, q1, iq1n) ↔ (c, q2, iq2n), ikn is the fermionic and
iqin is the bosonic (phononic) Matsubara energy, S is the
area of the system, β = 1/(kBT ) with T being the electronic
temperature, and kB is the Boltzmann constant. The trace op-
eration tr[· · ·] sums over all discrete degrees of freedom such
as spin, pseudospin, and valley indices. Performing the above
summation over the fermion wave vector and keeping q finite
is a formidable task. However, we proceed in a perturbative
manner by expanding the Green’s function up to the linear
order in q, the phonon wave vector:

Ĝ(k + q, ikn + iqn) = Ĝ(k, ikn + iqn)

+ q · ∂kĜ(k, ikn + iqn) + O(q2). (7)

Using the relation ĜĜ−1 = Î with Î being the identity ma-
trix, we have ∂kĜ = −Ĝ∂kĜ−1Ĝ. Therefore, by definition, we

obtain

∂ka Ĝ = Ĝ

(
− h̄ ĵa

e

)
Ĝ. (8)

Accordingly, we arrive at the following relation for the expan-
sion of the Green’s function:

Ĝ(k + q, ikn + iqn) = Ĝ(k, ikn + iqn)

− h̄

e

∑
a

qaĜ(k, ikn + iqn) ĵa

× Ĝ(k, ikn + iqn) + O(q2). (9)

Utilizing the above equation, we expand the second-order
response function up to leading order in qi:

χ
(2)
abc(q1, iq1n, q2, iq2n)

≈ 1

2

∑
P

{
Xabc(iq1n, iq2n) − h̄

e

∑
d

q1dYabdc(iq1n, iq2n)

− h̄

e

∑
d

(q1d + q2d )Zabcd (iq1n, iq2n)

}
, (10)

where Xabc, Yabdc, and Zabcd are diagrammatically depicted in
Figs. 2(b)–2(d), respectively. In the following, we write the
formal expressions of these correlation functions in terms of
the Green’s function Ĝ and the current operator ĵ. The rank-3
tensor response function Xabc reads

Xabc(iq1n, iq2n)

= 1

S

∑
k

1

β

∑
ikn

tr[ ĵaĜ(k, ikn) ĵb

× Ĝ(k, ikn + iq1n) ĵcĜ(k, ikn + iq1n + iq2n)]. (11)

The rank-4 response function Yabdc is given by

Yabdc(iq1n, iq2n) = 1

S

∑
k

1

β

∑
ikn

tr[ ĵaĜ(k, ikn) ĵb

× Ĝ(k, ikn + iq1n) ĵd Ĝ(k, ikn + iq1n) ĵc

× Ĝ(k, ikn + iq1n + iq2n)], (12)
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and similarly the other rank-4 response function Zabcd follows

Zabcd (iq1n, iq2n)

= 1

S

∑
k

1

β

∑
ikn

tr[ ĵaĜ(k, ikn) ĵb

× Ĝ(k, ikn + iq1n) ĵcĜ(k, ikn + iq1n + iq2n) ĵd

× Ĝ(k, ikn + iq1n + iq2n)]. (13)

In inversion symmetric materials, any second-order ho-
mogeneous tensor vanishes identically. Therefore we have
Xabc = 0 in a gapless Dirac system. In centrosymmetric Dirac
materials, the second-order nonlinear current is finite only
with the nonlocal driving field wave vector (q 
= 0). The wave
vector associated with acoustic phonons is much larger than
that of photons resulting in a stronger phonon-drag process
compared with the photon-drag effect. In gapped Dirac ma-
terials such as gapped graphene and single-layer TMDs, the
inversion symmetry is broken, and one can naturally expect a
nonvanishing Xabc if it is not forbidden by rotational symme-
tries.

To evaluate the Y and Z response functions, we first
perform the Matsubara summation on ikn, and then we imple-
ment the analytical continuation iq1n → h̄ω1 + iδ and iq2n →
h̄ω2 + iδ with δ → 0+. Finally, we analytically evaluate the
summation over fermion wave vector k in a continuum limit,∑

k → S
∫

d2k/(2π )2. The details of the derivation for the Y
and Z response functions are given in Appendix A.

Following the perturbative treatment for long-wavelength
sound waves, we can estimate the nonlinear response function
in the leading order in phonon wave vector qi

χ
(2)
abc(q1, ω1, q2, ω2) = 1

2

∑
d

{q1dγabcd (ω1, ω2)

+ q2dγacbd (ω2, ω1)} + O(q2), (14)

where γabcd is a local rank-4 tensor and is defined as

γabcd (ω1, ω2) = −(h̄/e)[Yabdc(ω1, ω2) + Zabcd (ω1, ω2)

+ Zacbd (ω2, ω1)].

Note that the second-order response function vanishes at
the local approximation q = 0 owing to the inversion sym-
metry of the isotropic gapless Dirac fermionic system. In
addition, the above relation satisfies the intrinsic permutation
symmetry [41] χ

(2)
abc(q1, ω1, q2, ω2) = χ

(2)
acb(q2, ω2, q1, ω1). In

the space-time domain, the second-order rectification cur-
rent for the sound wave implies χ

(2)
abc(Q,�,−Q,−�) =

[χ (2)
abc(−Q,−�, Q,�)]∗, which leads to the property

γabcd (−�,�) = −γ ∗
abcd (�,−�). (15)

Therefore, with no need of explicit calculation, we ex-
pect the low-frequency scaling Re[γabcd (�,−�)] ∼ � and
Im[γabcd (�,−�)] ∼ 1. Furthermore, for different spatial in-
dices, there are 16 components of the rank-4 tensor quantities
in the 2D Dirac system. Considering the isotropic symmetry
of the Dirac Hamiltonian, there are just three nonvanishing
independent tensor elements, namely, γxxyy, γxyyx, and γxyxy,
and the remaining components can be expressed in terms of
those, such as γxxxx = γxxyy + γxyxy + γxyyx and other elements

on interchanging x ↔ y. After straightforward algebraic cal-
culations and following the Green’s function technique, we
obtain

γxxxx(ω1, ω2) = −γ0ε0

{
1

h̄ω1
+ 1

h̄ω�

}
sgn(εF )

× 4ε4
F(

(h̄ω1)2 − 4ε2
F

)(
(h̄ω� )2 − 4ε2

F

) , (16)

with γ0 = Nf e3v2
F /(π h̄ε0), where Nf = 4 stands for the valley

and spin degree of freedom and ε0 is a unit of energy. The
analytical expressions for other nonvanishing matrix elements
of γabcd , i.e., γxxyy, γxyxy, and γxyyx, are given in Appendix B.
Note that all frequencies contain an infinitesimal imaginary
part, i.e., ωi ≡ ωi + i0+, and εF is the Fermi energy. An
apparent observation from this result is that the AE current
changes sign and flows in the opposite direction in the electron
and hole doped systems. Furthermore, this expression clearly
states that the AE current vanishes when the Fermi energy
approaches zero. These results are in agreement with experi-
mental measurements of the AE effect in graphene [15,16,18].
The derived formulas are consistent with the literature for the
light-induced nonlinear phenomenon [42–44].

In the following sections, we show that the acoustoelectric
and acoustogalvanic currents can be expressed in terms of the
γabcd (ω1, ω2) response function and are induced by the scalar
and vector potentials, respectively.

III. ACOUSTOELECTRIC CURRENT DUE
TO SCALAR POTENTIALS

The rectified acoustoelectric current in response to the self-
consistent scalar potential reads

jAE
a = χ (2)

ann(Q,�,−Q,−�)V sc(Q,�)V sc(−Q,−�), (17)

where χ (2)
ann is a current-density-density correlation function.

The self-consistent potential is given as a summation of
bare external potentials and the induced one owing to the
long-range Coulomb interaction, i.e., the screening effect.
For instance, up to the second-order perturbation, the self-
consistent scalar potential reads

V sc(q, ω) = V (q, ω) + vqδn(1)(q, ω) + vqδn(2)(q, ω). (18)

Here, vq = 1/(2ε0κq) is the Fourier transform of the Coulomb
interaction in 2D, with ε0 being the vacuum permittivity
and κ being the dielectric constant of the surrounding en-
vironment [45]. Note that δn(1) and δn(2) are the linear
and second-order density fluctuations, respectively. Following
the standard random phase approximation (RPA) screening
analysis, we obtain the self-consistent density response func-
tions [44,46]

δn(1)(q, ω) = χ (1)
nn (q, ω)V sc(q, ω) (19)

and

δn(2)(q, ω) =
∑
q1,q2

∑
ω1,ω2

χ (2)
nnn(q1, ω1, q2, ω2)V sc(q1, ω1)

× V sc(q2, ω2)δ(q − q� )δ(ω − ω� ), (20)
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where χ (1)
nn and χ (2)

nnn stand for the first- and second-order
density response functions. By plugging Eqs. (19) and (20)
into Eq. (18), we obtain a self-consistent relation for V sc:

V sc(q, ω) = V (q, ω)

ε(q, ω)
+

∑
q1,q2

∑
ω1,ω2

vqχ
(2)
nnn(q1, ω1, q2, ω2)

ε(q, ω)

× V sc(q1, ω1)V sc(q2, ω2)δ(q − q� )δ(ω − ω� ),
(21)

where q� = q1 + q2 and ω� = ω1 + ω2. Note that the dielec-
tric function ε(q, ω) = 1 − vqχ

(1)
nn (q, ω) is given in terms of

the linear density response function χ (1)
nn . In the absence of

plasmon resonance at which the dielectric function vanishes,
the first term in the above relation is dominant, and thus we
neglect the nonlinear correction due to the second-order den-
sity response function. Therefore the rectified sound-induced
scalar potential reads

V sc(Q,�)V sc(−Q,−�) ≈ |V (Q,�)|2
|ε(Q,�)|2 . (22)

The linear density response function is related to the longitudi-
nal conductivity, i.e., χ (1)

nn (q, ω) = −i(q2/ω)σ (q, ω) [45,47],
and in the small-q limit the dielectric function simplifies
to

ε(q, ω) ≈ 1 + i
vsq

ω

σ (ω)

σm
. (23)

The characteristic conductivity is given by σm = 2ε0κvs =
σ0(2κ/πα)(vs/c), with a conductivity unit σ0 = e2/4h̄ and
α ≈ 1/137 being the fine structure constant. Noting that
V (Q,�) = (�P − iQ�D)uL, we find

jAE
a = χ (2)

ann(Q,�,−Q,−�)
|V (Q,�)|2

1 + (σ/σm)2
. (24)

Using the gauge invariance arguments, the second-order
response function (current-density-density) can be written
in terms of the current-current-current correlation function
as [47]

χann(Q,�,−Q,−�) =
∑

bc

QbQc

�2
χ

(2)
abc(Q,�,−Q,−�),

(25)

where χ
(2)
abc ∼ 〈 ĵa ĵb ĵc〉 is given as the correlation function of

three current operators that is diagrammatically depicted in
Fig. 2(a).

Specifically, the AE current in terms of the longitudinal
and transverse basis can be decomposed as jAE = jAE

L Q̂ +
jAE
T θ̂. Accordingly, we require to know the nonlinear response

function tensor elements in the longitudinal and transverse
coordinates, for which we utilize χ

(2)
abc = êa · χ (2) : êbêc with

(êL, êT ) = (Q̂, θ̂). For the scalar potentials, the associated re-
sponse will be χ

(2)
aLL, where the last two indices are decided

by the potential. The actual response in the small-q limit is
dictated as χ

(2)
aLL ∼ qLγaLLL. Accordingly, only the longitudi-

nal component contributes to the AE current due to the finite
γLLLL tensor element. Meanwhile, the transverse component
γT LLL vanishes due to the mirror symmetry constraint of the
2D Dirac system. More explicitly, using Eq. (14) and the
symmetry constraints of the γabcd tensor in the D6 point group,

we obtain χ
(2)
T T T = χ

(2)
T LL = χ

(2)
LT L = χ

(2)
LLT = 0 and

χ
(2)
LLL(Q,�,±Q,−�) = Q

γxxxx(�,−�) ± γxxxx(−�,�)

2
,

χ
(2)
LT T (Q,�,±Q,−�) = Q

γxyyx(�,−�) ± γxyyx(−�,�)

2
,

χ
(2)
T LT (Q,�,±Q,−�) = Q

γxyxy(�,−�) ± γxyxy(−�,�)

2
,

χ
(2)
T T L(Q,�,±Q,−�) = [

χ
(2)
T LT (Q,�,±Q,−�)

]∗
. (26)

IV. LONGITUDINAL AND TRANSVERSE
ACOUSTOGALVANIC CURRENT

For the current generated by the pseudogauge field (the
AG current), the scenario of screening is completely different
from the acoustoelectric current. This happens due to the
strain-induced vector potential, having opposite signs in two
different valleys that cannot generate a net charge current
in the linear response [48]. Accordingly, the self-consistent
pseudogauge field is equal to the external bare one: Asc = A.
Therefore the rectified current induced by the pseudogauge
field does not follow the conventional screening rule ∝ 1/[1 +
(σ/σm)2]. In the rest of this section, we discuss the unscreened
rectification current induced by the pseudogauge field, which
we call “acoustogalvanic current.”

For a monochromatic Rayleigh sound wave given by
Eq. (2), we prove that the AG current reads

j (2)
a (r) = jAG

a − 2 js−AG
a sin(2Q · r), (27)

where it consists of a uniform AG current component

jAG
a = χ

(2)
abc(Q,�,−Q,−�)Ab(Q,�)A∗

c (Q,�), (28)

as well as a spatially dispersive one

js−AG
a = χ

(2)
abc(Q,�, Q,−�)Ab(Q,�)A∗

c (−Q,�). (29)

Here, the spatially dispersive AG current is a direct current
induced by two counterpropagating surface acoustic waves
that are spatially modulated with a vanishing net current
after spatial integration. However, this modulation scales
with the sound wavelength λs = 2πvs/� that is comparable
to the typical source-drain distance �SD ∼ 100 μm. In this
context, this local current density can be practically probed
in experiments. Similar dispersive current has been recently
measured in the photogalvanic response of WTe2 com-
pounds [38,39]. By utilizing Eqs. (14) and (15), we simply
find that χ

(2)
abc(Q,�,−Q,−�) = ∑

d Qd Re[γabcd (�,−�)]
while χ

(2)
abc(Q,�, Q,−�) = i

∑
d Qd Im[γabcd (�,−�)]. Af-

terward, using Eq. (26), we write the current components
in the longitudinal and transverse coordinates. Accordingly,
the uniform and spatially dispersive components of the AG
currents are given by

jAG
L,T = j0Re[�L,T (�, εF , θ )] (30)

and

js−AG
L,T = j0Im[�L,T (�, εF , θ )], (31)
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FIG. 3. Fermi energy dependence of the longitudinal and transverse components of the AG current in 2D hexagonal Dirac materials such
as graphene. (a) and (b) indicate the longitudinal and transverse components of the uniform AG current, respectively. (c) and (d) illustrate the
longitudinal and transverse components of the spatially dispersive AG current, respectively. We set θ = 0 for the longitudinal and θ = π/12
for the transverse current plots. The plots are made for the sound frequency � = 50 MHz and the scattering rate η = η0 + 0.05|εF |.

where the dimensionless parameters �L,T are given as fol-
lows:

�L = γ̄xxxx(�,−�) cos2(3θ ) + γ̄xyyx(�,−�) sin2(3θ )
(32)

and

�T = [γ̄xyyx(�,−�) − γ̄xxxx(�,−�)] sin(6θ ), (33)

where γ̄abcd = γabcd/γ0 and j0 = γ0A2
0QIs/4I0. Note that the

sound intensity is given by Is = I0(QuL )2 with a character-
istic 2D sound intensity I0 = ρ2Dv3

s , where ρ2D is the mass
density of the 2D Dirac material. We should mention that
the spatially dispersive (nonuniform) direct current can be
also generated in response to the scalar potential; however,
it will be screened and fully isotropic and longitudinal. We
highlight Eqs. (30) and (31) as the central results of our
work for the acoustogalvanic currents in 2D hexagonal Dirac
materials. The two striking outcomes of our study are (i) the
existence of a transverse component of the acoustogalvanic
current and (ii) the existence of an anisotropic dispersive
component of that current. (Both contributions are shown
in Fig. 4 and discussed below.) We recall that the trans-
verse AE current is absent in the conventional 2D electron
gas [12].

V. NUMERICAL RESULTS AND DISCUSSION

Before presenting the quantitative results, it is worth high-
lighting four qualitative outcomes: (i) The AG current consists

of both longitudinal and transverse components which depend
on the direction of sound propagation θ . The longitudinal
AG current is the sum of two contributions j1 cos2(3θ ) and
j2 sin2(3θ ), while the transverse one scales as j3 sin(6θ ).
(ii) The j1 contribution stands for the longitudinal AG cur-
rent that is driven by the longitudinal pseudogauge field
AL. The dynamical longitudinal vector potential describes a
sound-induced pseudoelectric field E ∼ �AL that results in a
rectification current j1 ∼ EE∗. (iii) The j2 longitudinal cur-
rent is driven by a transverse pseudogauge field AT which
describes a pseudomagnetic field B ∼ QAT that results in a
rectification current j2 ∼ BB∗. (iv) The j3 transverse current
is driven by the interference of the longitudinal and transverse
components of the pseudogauge field ( j3 ∼ ALA∗

T + c.c.) and
thus scales as EB∗.

In Fig. 3, we illustrate the Fermi energy dependence of
the different components of the AG current at the sound
frequency � = 50 MHz and at maximum angular variation
θ = 0 for the longitudinal component and θ = π/12 for the
transverse component. Note that the uniform AG current is
proportional to the real part of �, while the spatially disper-
sive AG current is proportional to the imaginary part of �.
An immediate observation is that the AG current has opposite
signs in electron and hole doped systems: This is in agreement
with experimental results [18]. By comparing Eq. (30) with
Eq. (1), we notice that Re[�L] ∝ μ�s: Therefore the opposite
sign of Re[�L] in electron and hole doped systems is con-
sistent with the opposite signs of electron and hole mobility.
A similar analogy works also for the spatial dispersive case,
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FIG. 4. Angular dependence of the longitudinal AG current components in 2D hexagonal Dirac materials. (a) Longitudinal AG current
106 × jAG

L / j0, (b) transverse AG current 106 × jAG
T / j0, and (c) spatially dispersive longitudinal AG current 102 × jAG

L / j0. Note that the
spatially dispersive transverse current jAG

T holds the same anisotropic profile as in (b) but with stronger magnitude. As seen, the uniform
longitudinal current is quite isotropic, while the transverse and specially dispersive current components are highly anisotropic. We set the
Fermi energy εF = 200 meV and the sound frequency � = 50 MHz.

for which the attenuation (dissipation) parameter is propor-
tional to Im[�L]/μ. There are two Lorentzian maxima in the
absolute value of Re[�L] and Im[�L,T ] at the Fermi energy
εF ∼ ±η0. The case of Re[�T ] is slightly different, and the
maxima occur at εF ∼ ±η0/2, where η is discussed below.

When the frequency is low, which is the case for sound
waves, disorder must be taken into account, and therefore a
many-body analysis of the nonlinear response function χ

(2)
abc is

required. However, in the highly doped regime (|εF | 
 h̄ωi),
the disorder effect can be simply modeled by introducing a
phenomenological relaxation rate η via the replacement ωi →
ωi + iη.

In principle, the relaxation rate depends on the Fermi en-
ergy, and the character of this dependence is different for
different scattering mechanisms. At low temperature, im-
purity scattering is the dominant source of scattering. At
large doping and for short-range impurity scattering we have
η ∼ |εF |, while for long-range scattering from charged im-
purities we get η ∼ 1/|εF | [49–54]. For instance, in the
absence of charged impurity, we consider a more realis-
tic phenomenological form η = η0 + g|εF |, where η0 is the
constant relaxation rate at εF = 0 and g is a dimensionless
parameter characterizing disorder scattering strength. At high
doping |εF | 
 h̄�, the AG response function shows negative
slope owing to the larger scattering rate η. Qualitatively, the
longitudinal response drops as Re[�L,T ] ∼ 1/η2 ∼ 1/ε2

F and
Im[�L,T ] ∼ 1/η ∼ 1/|εF |.

The acoustogalvanic effect originates from the pseudo-
gauge field, which inherits the threefold symmetry of the
hexagonal lattice in 2D Dirac materials such as graphene
and the TMD families. This threefold symmetry manifests
itself in the angle-dependent factors in the second-order cur-
rent in response to the sound-induced pseudogauge field. The
transverse current is highly anisotropic and depends on the di-
rection of propagation of the wave as jT ∼ sin(6θ ) regardless
of other parameters. However, the longitudinal current con-
tains two terms, jL ∼ sin2(3θ ) and jL ∼ cos2(3θ ), weighted
by two different tensor elements of γabcd . In this regard, we de-
pict the polar plots of longitudinal and transverse AG currents

that illustrate the angular dependence of the sound propaga-
tion in Fig. 4. The uniform longitudinal AG current is almost
isotropic as seen in Fig. 4(a) owing to the fact that the sin2(3θ )
and cos2(3θ ) terms contribute almost equally. However, the
transverse AG current is highly anisotropic, consistent with
sin(6θ ) dependence as is evident in Fig. 4(b). As seen in
Fig. 4(c) the spatially dispersive longitudinal AG current is
strongly anisotropic because the sin2(3θ ) and cos2(3θ ) terms
contribute unequally.

Finally, we compare the amplitude of the AG current with
the experimental measurements of conventional AE current
in graphene [15,16,18,19]. For instance, the peak current
∼11 nA is measured at sound frequency � ∼ 32 MHz in a
graphene device with the width ∼3 mm leading the AE cur-
rent density jexp ∼ 3.6 nA/mm [18]. The maximum sound
intensity is reported to be Is ∼ 0.3 W/m [18]. We estimate the
2D mass density as ρ2D = dgrρ3D, where ρ3D = 2267 kg/m3

is the density of graphite and dgr ∼ 1 Å is the effective
thickness of the graphene layer. With sound velocity vs ∼
4 × 103 m/s, we find I0 = ρ2Dv3

s , and therefore we obtain
Is/I0 ∼ 2 × 10−5. Accordingly, for β ∼ 3, vF ∼ 106 m/s, and
lattice constant a ∼ 0.246 nm, we find j0 ∼ 5 × 106 nA/mm.
For θ = 0 (i.e., for a sound wave propagating in the zigzag
direction), with Fermi energy εF ∼ 50 meV and scattering
rate η ∼ 20 meV, we evaluate �L, and then we estimate the
uniform longitudinal AG currents | jAG

L | ∼ 3 nA/mm. Thus
the calculated uniform AG current jAG

L is on the order of the
measured value.

VI. SUMMARY

We have discussed the acoustogalvanic (AG) effect in
2D hexagonal Dirac materials using the Kubo’s formalism.
Apart from the self-consistently screened deformation po-
tential, sound propagation in Dirac materials induces pseudo
electromagnetic fields which are not subject to screening. We
have analyzed both the uniform and the spatially dispersive
components of the AG current. We identify an anisotropic
uniform current transverse to the sound propagation
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direction and a highly anisotropic profile of the spatial dis-
persive AG currents. The AG response changes sign in going
from electron to hole doped systems, which is consistent with
expectations for the standard AE effect. While our calcula-
tions have been performed for graphene, our formalism can be
easily adapted to other 2D materials such as transition metal
dichalcogenides and their heterostructures. Furthermore, our
results provide a direction to design future experiments
to explore fundamental aspects as well as applications of

transverse and spatially dispersive acoustoelectric currents in
graphene.

ACKNOWLEDGMENTS

This work was supported by Nordita and the Swedish Re-
search Council (VR 2018-04252). Nordita is supported in part
by Nordforsk. We thank E. Cappelluti for carefully reading the
manuscript and useful comments.

APPENDIX A: DETAILED CALCULATION OF γabcd TENSOR ELEMENTS USING KUBO’S FORMALISM

1. Calculation for the Yabdc quantity

According to Eq. (12), the fourth-rank tensor quantity Yabdc is given by [see the Feynman diagram in Fig. 2(c)]

Yabdc(iq1n, iq2n) = 1

S

∑
k

1

β

∑
ikn

tr[ ĵaĜ(k, ikn) ĵbĜ(k, ikn + iq1n) ĵd Ĝ(k, ikn + iq1n) ĵcĜ(k, ikn + iq1n + iq2n)], (A1)

where ĵ is the current vertex, Ĝ is the fermionic Green’s function, and β refers to the inverse of the temperature. To find the
solution, it is convenient to express the equation in the band basis which is represented by |k, λ〉, where λ ≡ ± having (+) sign
for the conduction band and (−) sign for the valence band. Using the relations,

〈λi| ĵα|λ j〉 = j
λiλ j
α , 〈λi|Ĝ|λ j〉 = δλiλ j

ikn − ε
λi
k

. (A2)

Here, the band dispersion for the 2D Dirac material is ελ
k = λh̄vF |k|, where λ = ± for the conduction and valence bands and vF

is the Fermi velocity. Considering Eq. (A2), we rewrite the tensor quantity in Eq. (A1) as follows:

Yabdc(iq1n, iq2n) = 1

S

∑
k

1

β

∑
ikn

∑
λi=±

jλ1λ2
a jλ2λ3

b jλ3λ4
d jλ4λ1

c

1

ikn − ε
λ2
k

1

ikn + iq1,n − ε
λ3
k

1

ikn + iq1,n − ε
λ4
k

1

ikn + iq1,n + iq2,n − ε
λ1
k

.

(A3)

To stratify it further, first we perform the Matsubara summations over the Green’s functions, which give

Yabdc(ω1, ω2) = 1

S

∑
k

1

β

∑
λi=±

jλ1λ2
a jλ2λ3

b jλ3λ4
d jλ4λ1

c

ω1 + ω2 − ε
λ1λ2
k

{
1

ω1 − ε
λ4λ2
k

(
nF (ελ2

k ) − nF (ελ3
k )

ω1 − ε
λ3λ2
k

+ nF (ελ3
k ) − nF (ελ4

k )

ε
λ4λ3
k

)

+ 1

ω2 − ε
λ1λ4
k

(
nF (ελ3

k ) − nF (ελ4
k )

ε
λ4λ3
k

+ nF (ελ3
k ) − nF (ελ1

k )

ω2 − ε
λ1λ3
k

)}
, (A4)

where nF (x) = [eβ(x−μ) + 1]−1 is the Fermi-Dirac distribution function and ε
λiλ j

k = ε
λi
k − ε

λ j

k is the difference between the
dispersions of two bands. It is to be noted that we here use the shorthand notation iq j,n = ω j + iδ = ω j . Now, we will calculate
the tensor quantities for different combinations of the Cartesian indices. First, the conductivity tensor Yxxyy(ω1, ω2) is given by

Yxxyy(ω1, ω2) = 1

S

∑
k

1

β

∑
λi=±

F1234
xxyy

ω1 + ω2 − ε
λ1λ2
k

{
1

ω1 − ε
λ4λ2
k

(
nF (ελ2

k ) − nF (ελ3
k )

ω1 − ε
λ3λ2
k

+ nF (ελ3
k ) − nF (ελ4

k )

ε
λ4λ3
k

)

+ 1

ω2 − ε
λ1λ4
k

(
nF (ελ3

k ) − nF (ελ4
k )

ε
λ4λ3
k

+ nF (ελ3
k ) − nF (ελ1

k )

ω2 − ε
λ1λ3
k

)}
, (A5)

where F1234
xxyy = jλ1λ2

x jλ2λ3
x jλ3λ4

y jλ4λ1
y is the form factor. The latter quantity is only a function of angle and is independent of the

wave vector; thus on performing the angular integration we get∫ 2π

0
dθF1234

xxyy =
∫ 2π

0
dθ

λ1e−iτφ(k) + λ2eiτφ(k)

2

λ2e−iτφ(k) + λ3eiτφ(k)

2

λ3e−iτφ(k) − λ4eiτφ(k)

2

λ4e−iτφ(k) − λ1eiτφ(k)

2

= π

4
(1 − λ2λ4 + λ1λ3). (A6)

It is evident from the expression for Yxxyy(ω1, ω2) that the quantity will yield a strong contribution for the degenerate case
λ3 = λ4. For this case, the integration over the wave vector and the summation over the band indices reduce the tensor quantity
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in the form

Yxxyy(ω1, ω2) = sgn(εF )
e4v2

F

8π h̄2

16ε2
F

( − ω1ω
2
2 + ε2

F (3ω1 + ω2)
)

ω1ω2
(
ω2

1 − 4ε2
F

)(
ω2

2 − 4ε2
F

) . (A7)

Similarly, the other elements give

Yxyyx(ω1, ω2) = e4v2
F

8π h̄2

sgn(εF )16ε2
F (ω2 − ω1)

(
ω1ω2 + ε2

F

)
ω1ω2

(
ω2

1 − 4ε2
F

)(
ω2

2 − 4ε2
F

) , (A8)

Yxyxy(ω1, ω2) = e4v2
F

8π h̄2

sgn(εF )16ε2
F

(
ω2

1ω2 − ε2
F (ω1 + 3ω2)

)

ω1ω2
(
ω2

1 − 4ε2
F

)(
ω2

2 − 4ε2
F

) . (A9)

2. Calculation for the Zabcd quantity

The rank-4 quantity Zabcd corresponds to the Feynman diagram in Fig. 2(d) and can be written as

Zabcd (iq1n, iq2n) = 1

S

∑
k

1

β

∑
ikn

∑
λi=±

tr[ ĵaĜ(k, ikn) ĵbĜ(k, ikn + iq1n) ĵcĜ(k, ikn + iq1n + iq2n) ĵd Ĝ(k, ikn + iq1n + iq2n)].

(A10)

In the band basis representation, it becomes

Zabcd (iq1n, iq2n) = 1

S

∑
k

1

β

∑
ikn

∑
λi=±

jλ1λ2
a jλ2λ3

b jλ3λ4
c jλ4λ1

d

× 1

ikn − ε
λ2
k

1

ikn + iq1,n − ε
λ3
k

1

ikn + iq1,n + iq2,n − ε
λ4
k

1

ikn + iq1,n + iq2,n − ε
λ1
k

. (A11)

Performing the Matsubara frequency summations and then doing the analytic continuation, we obtain

Zabcd (ω1, ω2) = 1

S

∑
k

∑
λi=±

jλ1λ2
a jλ2λ3

b jλ3λ4
c jλ4λ1

d

(ω1 − ε
λ3λ2
k )ελ1λ4

k

{
nF (ελ4

k ) − nF (ελ2
k )

ω1 + ω2 − ε
λ4λ2
k

− nF (ελ4
k ) − nF (ελ3

k )

ω2 − ε
λ4λ3
k

+ nF (ελ1
k ) − nF (ελ3

k )

ω2 − ε
λ1λ3
k

− nF (ελ1
k ) − nF (ελ2

k )

ω1 + ω2 − ε
λ1λ2
k

}
. (A12)

For different spatial indices combinations, this expression reduces to the following forms:

Zxxyy(ω1, ω2) = sgn(εF )
e4v2

F

8π h̄2

16ε2
F

(
ω�ω2

2 − ε2
F (3ω1 + 2ω2)

)

ω2ω�

(
ω2

� − 4ε2
F

)(
ω2

2 − 4ε2
F

) , (A13)

Zxyyx(ω1, ω2) = e4v2
F

8π h̄2

sgn(εF )16ε2
F

(
ω2ω

2
� + ε2

F (ω1 − 2ω2)
)

ω2ω�

(
ω2

� − 4ε2
F

)(
ω2

2 − 4ε2
F

) , (A14)

Zxyxy(ω1, ω2) = e4v2
F

8π h̄2

sgn(εF )16ε2
F (ω1 + 2ω2)

(
ε2

F − ω2ω�

)
ω2ω�

(
ω2

� − 4ε2
F

)(
ω2

2 − 4ε2
F

) . (A15)

APPENDIX B: EXPLICIT EXPRESSIONS OF γxxyy, γxyyx, AND γxyxy

The different forms of the fourth-rank tensor quantity which is defined in the form γabcd (ω1, ω2) = −(h̄/e)[Yabdc(ω1, ω2) +
Zabcd (ω1, ω2) + Zacbd (ω2, ω1)] are listed below:

γxxyy(ω1, ω2) = γ0
4ε0sgn(εF )ε2

F (2h̄ω1 + h̄ω2)
(
ε2

F − h̄ω1h̄ω�

)
h̄ω1h̄ω�

(
(h̄ω1)2 − 4ε2

F

)(
(h̄ω� )2 − 4ε2

F

) , (B1)

γxyyx(ω1, ω2) = γ0
2ε0sgn(εF )ε2

F

(
8ε4

F h̄ω2 + ε2
F h̄3

(
4ω3

1 + 8ω2
1ω2 + 4ω1ω

2
2 − 2ω3

2

) − h̄5ω1ω�

(
2ω3

1 + 3ω2
1ω2 − 2ω1ω

2
2 − ω3

2

))
h̄ω1h̄ω�

(
(h̄ω1)2 − 4ε2

F

)(
(h̄ω2)2 − 4ε2

F

)(
(h̄ω� )2 − 4ε2

F

) ,

(B2)

and

γxyxy(ω1, ω2) = γ0
2ε0sgn(εF )ε2

F

(
8ε4

F h̄(4ω1 + ω2) − 2ε2
F h̄3

[
10ω1

(
ω2

1 + ω2
2

) + 16ω2ω
2
1 + ω3

2

] + h̄5ω1ω
2
�

(
2ω2

1 + ω2
2 + ω1ω2

))
h̄ω1h̄ω�

(
(h̄ω1)2 − 4ε2

F

)(
(h̄ω2)2 − 4ε2

F

)(
(h̄ω� )2 − 4ε2

F

) .

(B3)
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