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Hydrodynamic thermoelectric transport in Corbino geometry
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We study hydrodynamic electron transport in Corbino graphene devices. Due to the irrotational character of
the flow, the forces exerted on the electron liquid are expelled from the bulk. We show that in the absence of
Galilean invariance, force expulsion produces qualitatively new features in thermoelectric transport: (i) it results
in drops of both voltage and temperature at the system boundaries and (ii) in conductance measurements in
pristine systems, the electric field is not expelled from the bulk. We obtain thermoelectric coefficients of the
system in the entire crossover region between charge neutrality and high electron density regime. The thermal
conductance exhibits a sensitive Lorentzian dependence on the electron density. The width of the Lorentzian
is determined by the fluid viscosity. This enables determination of the viscosity of electron liquid near charge
neutrality from purely thermal transport measurements. In general, the thermoelectric response is anomalous: It
violates the Matthiessen’s rule, the Wiedemann-Franz law, and the Mott relation.
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I. INTRODUCTION

Hydrodynamic electron transport in graphene devices has
been the subject of active experimental [1–9] and theoretical
research [10–25] over the past few years, see Refs. [26–28]
and references therein. In most electron systems, the hy-
drodynamic flow corresponds to the flow of charge. The
peculiarity of electron hydrodynamics in graphene is that at
charge neutrality, the hydrodynamic flow carries no charge
and corresponds to pure heat transport [15–17]. The accurate
control of electron density in graphene devices enables inves-
tigation of the full crossover between the entropy-dominated
and charge-dominated regimes of hydrodynamic transport.

In large graphene monolayer samples, Refs. [1,2] in-
vestigated this crossover and elucidated the anomalous
thermoelectric response in a Dirac fluid. In this case, the
crossover width is determined by the bulk inhomogeneities
of the device [20–22]. Recently experimental [29–33] and
theoretical [34–37] efforts focused on hydrodynamic electron
transport in the Corbino geometry. The interest in this geom-
etry is that even in a pristine system the hydrodynamic flow
generates energy dissipation associated with viscous stresses.
This enables determination of intrinsic dissipative properties
of the electron liquid from transport measurements.

Another peculiarity of the Corbino setup is related to
the purely potential character of the flow. In this case, in
Galilean-invariant liquids the Bernoulli law holds despite the
presence of dissipative stresses [38,39]. In linear transport,
this corresponds to spatially uniform pressure in the liq-
uid. In particular, for charged Galilean-invariant liquids, this
manifests in expulsion of the electric field from the interior
of the system [36]. This effect has been probed in recent

local imaging experiments [40]. Furthermore, magnetometry
and scanning probe techniques, in general, allow direct vi-
sualization of the viscosity-dominated electronic flow profile
[41–43]. High-quality electron magnetotransport measure-
ments in graphene Corbino devices have been also reported
[44].

These advances motivate theoretical description of hydro-
dynamic electron transport in Corbino devices in the full
crossover between the regimes of charge neutrality and high
electron density. An important aspect of these systems is
the absence of Galilean invariance of the electron liquid.
Below we develop such a theory and describe thermoelec-
tric response of the system as a function of electron density
and temperature. We show that in the absence of Galilean
invariance, uniformity of pressure and expulsion of force
from the bulk leads to qualitatively new consequences. In
Galilean-invariant liquids [39], force expulsion corresponds
to expulsion of the electric field from the bulk flow and pro-
duces a voltage jump at the system boundary. In the absence
of Galilean invariance, it produces discontinuities not only
in voltage but also in temperature at the system boundary.
This temperature jump may not be attributed to the Kapitza
boundary resistance, which occurs at interfaces between liq-
uid helium and solids [45,46], or, more generally, between two
media with mismatched acoustic impedances at low tempera-
tures [47]. In particular, for a thermal resistance measurement
in the present case, the temperature of the liquid is ether higher
(for centripetal flow) or lower (for centrifugal flow) than the
temperatures of both contacts. This is in striking contrast with
the Kapitza resistance situation, where the heat flux across the
boundary flows from the medium with higher temperature to
that with lower temperature. This difference can be traced to
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FIG. 1. (a) A schematic setup for the graphene Corbino device subject to a mixed thermoelectric bias with the temperature difference �T
and voltage V applied between the electrodes that generate heat current IQ and electric current I . Panels (b) and (c) show sketches for the spatial
profile of the electric potential (blue) and temperature (red) at different densities for purely electrical and thermal bias, respectively. Voltage
drop occurs entirely in the bulk at charge neutrality and at the boundary for large density limit, and conversely for the temperature drop. Note
the existence of spatial regions where temperature/potential of the liquid is lower than that of both contacts.

the fact that entropy production in the present case occurs
inside flowing liquid rather than the contacts. As a result,
the positive-definite thermal resistance of the system cannot
be written as a sum of positive-definite contributions of the
boundaries.

The appearance of a temperature jump at the boundary
leads to another qualitative difference with Galilean-invariant
systems: In a linear conductance measurement, the electric
field is no longer expelled from the flow, even in pristine
systems. The reason is that in a general situation, force ex-
pulsion does not require vanishing of the electric field, only
that the force due to the electric field must be compensated
by the force caused by the temperature gradient. Since the
conductance is measured at zero temperature difference, the
temperature drop at the system boundary must be compen-
sated by temperature gradients in the bulk. Because of the
force expulsion, this produces electric field in the bulk flow.

The thermoelectric properties of the systems arise from two
modes of charge and entropy transport, namely, the hydrody-
namic flow and transport relative to the liquid. The respective
contributions to resistance have different dependence on the
electron scattering time, one being proportional to it whereas
the other is inversely proportional. This signifies the break-
down of Matthiessen’s rule in the hydrodynamic regime. For
the resulting thermoelectric response, we find strong vio-
lation of the Wiedemann-Franz law and enhanced Seebeck
coefficient when compared to the usual Lorenz number and
semiclassical Mott formula of single-particle transport, re-
spectively.

II. HYDRODYNAMIC DESCRIPTION

We consider radial charge and heat transport in a Corbino
device, which is contacted by the inner electrode of radius r1

and the outer electrode of radius r2, as illustrated in Fig. 1(a).
We assume that small electric current I and heat current IQ are
induced in the device by voltage V and temperature difference
�T between the electrodes. The hydrodynamic regime arises
when the rate of momentum-conserving electron-electron col-
lisions exceeds the rate of extrinsic processes leading to
momentum and energy relaxation. In linear response, both the
particle and the entropy currents are conserved. Denoting the
net electron current by In and the entropy current by Is, we

write the continuity equation of particle and entropy currents
in the form

�xu − ϒ̂ �X = �I
2πr

, �I =
(

In

Is

)
, (1)

where u(r) is the radial hydrodynamic velocity and r ∈
[r1, r2] is the radial coordinate. Here we introduced the two-
component column vector of particle and entropy currents,
�I , the column vector of particle and entropy densities, n
and s, �xT = (n, s) (with the superscript T indicating the
transposition), and the corresponding column vector of ther-
modynamically conjugate forces �XT (r) = (−eE,∇T ) [48].
In the latter, eE represents the electromotive force (EMF).
The matrix ϒ̂ characterizes the dissipative properties of the
electron liquid. In the absence of Galilean invariance, it is
given by

ϒ̂ =
(

σ/e2 γ /T
γ /T κ/T

)
(2)

and consists of the thermal conductivity κ , the intrinsic
conductivity σ , and the thermoelectric coefficient γ , see
Refs. [12–15]. For Galilean-invariant liquids, we have σ =
γ = 0. Equations (1) should be supplemented by the Navier-
Stokes equation, which for a steady-state linear response flow
expresses local force balance. The radial force per unit area
caused by the temperature gradient and EMF can be expressed
in the column vector notations as �xT �X [22], and for the radial
flow we have

(η + ζ )�̂u = �xT �X , �̂ = 1

r

d

dr

(
r

d

dr

)
− 1

r2
. (3)

Here η and ζ are, respectively, the shear and bulk viscosities,
which appear in the expression for the viscous stress tensor:


i j = η(∂iu j + ∂ jui ) + (ζ − η)δi j∂kuk . (4)

For single-layer graphene, the bulk viscosity ζ is expected to
be negligible due to scale invariance of 2D electron systems
with linear dispersion and Coulomb interactions [49,50].

Equations (1) and (3) determine the spatial dependence of
the flow velocity, electric field, and temperature gradients in
the interior of the Corbino disk in terms of the particle and
entropy currents �I . Expressing the vector �X of electromotive
and thermal gradient forces in terms of the radial velocity
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and currents using Eq. (1) and substituting the result into the
Navier-Stokes Eq. (3), we obtain the following:

�̂u − u

l2
= − 1

2πr(η + ζ )
(�xT ϒ̂−1 �I ). (5)

Here we introduced the length scale l defined by

l−2 = �xT ϒ̂−1�x
η + ζ

= s2
[

σ
e2 + n2κ

s2T − 2nγ

sT

]
(η + ζ )

[
σ
e2

κ
T − γ 2

T 2

] . (6)

The general solution of Eq. (5) is given by the sum of a linear
combination of modified Bessel functions of the first and
second kinds, I1(r/l ) and K1(r/l ), and the particular solution
of the inhomogeneous equation, which has the form

u(r) = 1

2πr
�xT ϒ̂−1 �I
�xT ϒ̂−1�x . (7)

The latter describes the flow in the bulk of the Corbino disk,
namely, at distances greater then l away from the boundaries.
The exponentially decaying and growing solutions of a homo-
geneous equation, K1(r/l ) and I1(r/l ), describe the deviations
from the bulk flow Eq. (7) near the inner and outer boundaries
and contribute to the thermoelectric resistance of the contacts.

The thermoelectric resistance matrix R̂ can be obtained by
equating the Joule heat,

P = �IT R̂�I, �IT = (I, IQ), (8)

to the rate of energy dissipation in the bulk flow. Here I = eIn

and IQ = T Is are the electric and heat currents. We are inter-
ested in the bulk contribution to the thermoelectric resistance
matrix. To this end, we neglect the deviations of the flow
from the bulk flow Eq. (7), which contribute to the contact
resistance. The total resistance matrix is obtained by adding
to it the resistance matrices of the contacts. Keeping in mind
the divergenceless character of the bulk flow, we can express
the latter in the form

P = 1

2η

∫ ∑
i j


2
i j d2r +

∫
�XT ϒ̂ �X d2r. (9)

In this expression, the first term accounts for the viscous
dissipation generated by the hydrodynamic transport mode
[first term on the left-hand side of Eq. (1)]. The second term
describes the entropy production due to the transport in the
relative mode [second term on the left-hand side of Eq. (1)],
i.e., charge and energy transport relative to the liquid.

We begin by considering the contribution of the relative
transport mode to the dissipation rate. The EMF and tem-
perature gradients corresponding to the bulk flow u(r) in
Eq. (7) can be obtained by multiplying Eq. (1) by a row vector
�χT = (s,−n) from the left. As expected, the result,

�X (r) = − �χ
2πr

�χT �I
�χT ϒ̂ �χ , (10)

obeys the vanishing force density condition, �xT �X = 0, or
more explicitly,

−neE + s∇T = 0. (11)

This corresponds to uniform pressure in the bulk [38,39].
Substituting the expression Eq. (10) into Eq. (9) we obtain the
rate of energy dissipation due to the relative transport mode.

The viscous contribution to the dissipation rate in Eq. (9) is
evaluated by substituting the velocity Eq. (7) into the viscous
stress tensor. For a radial flow, there are only two nonvanish-
ing components of the stress tensor. In cylindrical coordinates,
these are [51]


rr = 2η
∂u

∂r
, 
φφ = 2η

u

r
. (12)

After a simple calculation we find the dissipated power P in
the form of Eq. (8) with the elements of the resistivity matrix
given by

R11 = 1

2πe2

[
2η

s2

κ
2
(
r−2

1 − r−2
2

)
(ς + nκ/s)2

+ ln p

ς + nκ/s

]
, (13a)

R22 = 1

2πT 2

[
2η

s2

ς2
(
r−2

1 − r−2
2

)
(ς + nκ/s)2

+ (n/s)2 ln p

ς + nκ/s

]
, (13b)

R12 = 1

2πeT

[
2η

s2

ςκ

(
r−2

1 − r−2
2

)
(ς + nκ/s)2

− (n/s) ln p

ς + nκ/s

]
, (13c)

and R21 = R12. Here we introduced two dimensionless quan-
tities

ς = σ

e2
− nγ

sT
, κ = nκ

sT
− γ

T
, (14)

and also aspect ratio of the disk p = r2/r1 > 1.
The first terms in square brackets in Eq. (13) represent

the contributions to the thermoelectric resistance of the hy-
drodynamic transport mode. It is easy to see that they are
proportional to the electron-electron relaxation time. This re-
flects the Gurzhi effect [52–54]—decrease of resistivity with
increasing relaxation rate. The second terms in Eq. (13) cor-
respond to the contribution of the relative transport mode and
are inversely proportional to the relaxation time. The opposite
scaling of these additive contributions to the resistance with
the relaxation rate implies violation of Matthiesen’s rule.

Note that although the resistance matrix can be written as a
sum of two contributions, which depend on the inner and outer
radii, these contributions are not positive-definite. Therefore,
the resistance matrix cannot be interpreted as a sum of contact
resistances. This reflects the fact that the entropy production
occurs in the bulk of the flow. The integrated dissipation is
given by a difference of functions evaluated at r1 and r2.
Another point is that the contribution of the relative mode,
namely, the logarithmic terms, are associated with the drop of
voltage and temperature in the bulk. In contrast, the contribu-
tion of the hydrodynamic mode is related to the voltage and
temperature drops at the contacts.

III. TRANSPORT COEFFICIENTS

Since the dissipated power is also expressed as P = �IT �X ,
where �X = (V,�T/T )T are the applied voltage and tempera-
ture difference, the inverse matrix of R̂, Ĝ ≡ R̂−1, relates the
linear response of current �I to the applied voltages, i.e., �I =
Ĝ �X . Therefore, Ĝ is the macroscopic conductance matrix.
These general results are applied below to common setups
used in thermoelectric measurements.
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A. Thermal resistance

The thermal resistance Rth, is obtained by setting the
electric current I to zero. The computed dissipation P
in Eq. (8) is given by P = R22I2

Q. Employing thermody-
namic relations, one finds the entropy production rate Ṡ =
IQ�T/T 2 = RthI2

Q/T 2 and the dissipated power P = T Ṡ =
RthI2

Q/T . Therefore, the thermal resistance is Rth = TR22.
Using Eq. (13b), we get

Rth = 1

2πT

[
2η

s2r2
2

ς2(p2 − 1)

(ς + nκ/s)2
+ (n/s)2 ln p

ς + nκ/s

]
. (15)

At charge neutrality n → 0, the second term vanishes. We
also note that the thermoelectric coefficient vanishes at the
Dirac point, γ → 0, due to approximate particle-hole sym-
metry. Therefore, at the charge neutrality point, the thermal
resistance is determined by the viscosity of the electron liq-
uid, Rth = Aη/T s2, where A = (p2 − 1)/πr2

2 is the geometric
coefficient. For a graphene monolayer, η ∼ s ∼ (T/v)2, up to
an additional logarithmic renormalizations of viscosity [10].
Therefore, we conclude that Rth ∝ 1/T 3. In the opposite limit
of high density n � s, the thermal resistance is dominated by
the bulk term, which reduces to Rth = ln p/(2πκ ).

To elucidate the physical origin of the viscous contribution
to the thermal resistance, it is instructive to derive it from an
alternative consideration. The radial viscous tresses arising in
the liquid exert additional radial force on the contacts, which
must be compensated by excess pressure. This pressure dif-
ference may be related to the voltage and temperature drop at
the contacts by the thermodynamic identity dP = ndμ + sdT
[48]. Let us focus, for the sake of clarity, on the charge neutral-
ity point, n = 0. In this case, we find from the force expulsion
condition Eq. (11) that the temperature of the liquid must be
uniform in the bulk, T (r) = Tl , whereas the pressure jumps at
the boundary with the contacts are given by

s(Ti − Tl ) = 
rr (ri ), (16)

where Ti is the temperature of the ith contact. Using u(r) from
Eq. (7) at In = 0 and calculating 
rr from Eq. (12) at both
boundaries, we obtain

Tl − Ti = − ηIs

πs2

1

r2
i

. (17)

The net temperature drop is consistent with Eq. (15) for n →
0. Note that the temperature of the liquid, Tl is either higher
or lower than the temperatures of both leads, depending on
the direction of the heat flow. As explained above, this is a
consequence of the bulk character of entropy production. A
similar consequence of force expulsion occurs in charge trans-
port away from charge neutrality. The voltage drop between
the contacts and the electron liquid has the same sign at both
boundaries. This behavior is illustrated in Figs. 1(b) and 1(c),
showing voltage and temperature distributions for varying
density at different biasing setups. These predictions may be
tested via high-resolution thermal imaging and scanning gate
microscopies [55,56].

B. Electrical resistance

To find the electric resistance R, we set the net temperature
drop �T to zero and find that R−1 is the 11 -matrix element
of Ĝ, i.e., R−1 = G11 = R22/DetR̂. Using the matrix elements
of R̂ in Eq. (13), we obtain

R−1 = 2πe2

ln p

ς2

ς + nκ/s
+ πe2n2r2

2

η(p2 − 1)
. (18)

The second term here is inversely proportional to the shear
viscosity of the liquid. It represents the contribution of the
hydrodynamic transport mode to the electrical conductance.
The first term is determined by the intrinsic transport coeffi-
cients of the electron liquid and represents the contribution of
the relative transport mode to the conductance. The additivity
of these contributions to the conductance is in stark contrast
to Matthiessen’s rule. Violation of the latter is one of the
hallmarks of hydrodynamic transport.

For Galilean-invariant liquids, where ς = 0, the first term
in Eq. (18) vanishes. However, in a generic conductor, the
Galilean invariance is expected to be broken by the under-
lying crystalline lattice, and this term does not vanish. In
particular, in graphene near charge neutrality, n/s 	 1, this
term is particularly pronounced. Precisely at charge neutrality,
the second term vanishes and device resistance is deter-
mined by the intrinsic conductivity of the electron liquid,
R = ln p/(2πσ ). In contrast, at high density, n/s � 1, the
viscous term prevails. Neglecting the first term, we recover
the result of Ref. [36], R = η(r−2

1 − r−2
2 )/π (en)2. However,

even in the high density regime, the presence of the first term
in Eq. (18) implies that the electric field does not vanish in the
bulk flow in pristine systems with broken Galilean invariance.
The appearance of the electric field in the bulk is caused by the
temperature drop at the system boundary. Since the electrical
conductance is measured at zero net temperature difference,
the latter must be compensated by the temperature gradients
in the bulk. Due to the force balance condition Eq. (11), these
gradients induce the EMF in the bulk.

C. Lorenz ratio

Let us now determine the Lorenz ratio L = R/(T Rth). In
the Corbino geometry, it exhibits a very sensitive density
dependence near charge neutrality. To determine this depen-
dence, we focus on the entropy-dominated regime. Retaining
the leading order terms n/s 	 1 in Eq. (13), we find

L = 1

e2

(
s�

n2 + �2

)2

, �2 = σ

e2

2η

r2
2

(
p2 − 1

ln p

)
. (19)

Since � is inversely proportional to the system size, the width
of the peak at charge neutrality is significantly smaller than s.
Therefore, in the above expression for �, all quantities may be
evaluated at charge neutrality.

It is apparent that at zero doping, n → 0, the Lorenz
ratio may greatly exceed the Wiedemann-Franz value of
LWF = π2/3e2. For a graphene monolayer, their ratio may
be estimated as L/LWF ∝ (r1/λT )2, where λT ∼ v/T is the
thermal de Broglie wavelength. For a typical micron size of
the disk, one concludes that L can be as high as L/LWF �
10 at temperatures T > 50 K where electron hydrodynamic
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FIG. 2. Density dependence of transport coefficients for a graphene monolayer Corbino disk with the aspect ratio r2/r1 = 3 is illustrated for
different temperatures: (a) the Lorenz ratio, next to the Wiedemann-Franz value LWF = π 2/3e2 (dashed line), (b) electric resistance normalized
to Rσ = ln p/(2πσ ), and (c) thermal conductance normalized to GT = 2πT/ ln p, (d) thermopower in units of SQ = π 2/3e (in units h̄ = kB =
1).

behavior is observed. This behavior is illustrated in Fig. 2(a).
Furthermore, since the intrinsic conductivity is only weakly
(logarithmically) temperature dependent, the width of the
peak is primarily governed by the fluid viscosity η. For the
Dirac liquid, it scales linearly with the temperature, � ∝ T .

D. Thermoelectric effects

Lastly, we can determine the Seebeck coefficient
S = −(V/�T )I=0 and Peltier coefficient � = (IQ/I )�T =0.
They are connected by the Onsager relation S = �/T =
R12/TR22. A direct calculation yields the thermopower in the
form

S = 1

e

sn

n2 + �2
, (20)

At high density, it reduces to the ratio of entropy density to
charge density S = s/(ne), which is the value in the ideal
hydrodynamic limit [15,57]. We note that the maximal ther-
mopower, Smax = s/2� is achieved at rather small densities,
n = �, and can substantially exceed the prediction by the
Mott formula in the single-particle picture of transport. In
Figs. 2(b)–2(d), we illustrate the predicted density depen-
dence of the transport coefficients for graphene monolayer
devices at different temperatures.

For completeness, we consider two additional aspects of
this transport problem. As any realistic sample has some de-
gree of disorder, we include frictional forces in the analysis
of hydrodynamic flow. This treatment is presented in Ap-
pendix A, where we use the model of long-range disorder
potential which is applicable to high mobility graphene sam-

ples. In Appendix B, we discuss electron transport in Corbino
geometry in the ballistic regime, which may be realized in
clean samples at low temperatures where the hydrodynamic
description breaks down.

IV. SUMMARY

We obtained the thermoelectric resistance matrix of
Corbino devices in the hydrodynamic regime, Eq. (13). It
is comprised from the contributions of two transport mech-
anisms. The contribution of the hydrodynamic transport
mechanism is described by the first terms in the square brack-
ets in Eq. (13). It corresponds to drops of temperature and
voltage, which are localized at the sample boundaries, and
arises from the dissipation caused by the viscous stresses in
the bulk flow. Therefore, it cannot be written as a sum of
two positive-definite contributions of the two boundaries. The
contribution to the thermoelectric resistance of charge and
heat transport relative to the electron liquid is described by
the second terms in the square brackets in Eq. (13). It accounts
for the voltage and temperature gradients in the bulk flow. In
the absence of Galilean invariance, the electric field inside the
liquid does not vanish in linear resistance measurements.

We applied these results to determine the thermal resis-
tance, Eq. (15), electrical resistance, Eq. (18), the Lorentz
ratio, Eq. (19), and the Seebeck coefficient, Eq. (20). All
transport coefficients exhibit a sensitive dependence on the
electron density with the characteristic scale n ∼ �, which
is governed by the liquid viscosity and the sample size, see
Eq. (19). The hydrodynamic effects are manifested in strongly
enhanced Lorenz ratio and thermoelectric power.

FIG. 3. The left panel, (a), shows energy dependence of partial transmission coefficients for different eigenmodes of quantization. The
central panel, (b), displays the Lorenz ratio for a Corbino disk as a function of the chemical potential as computed from Eq. (B3) at two
different temperatures of the ballistic regime T < ET . The right panel, (c), shows temperature dependence of the normalized Lorenz ratio at
the neutrality point μ → 0.

125302-5



LI, LEVCHENKO, AND ANDREEV PHYSICAL REVIEW B 105, 125302 (2022)

ACKNOWLEDGMENTS

We gratefully acknowledge illuminating discussions with
Gregory Falkovich, Shahal Ilani, Philip Kim, Artem Ta-
lanov, and Jonah Waissman of various physical phenomena
relevant to this work. This research was supported by
the National Science Foundation Grant No. DMR-1653661
(S.L.), by the U.S. Department of Energy, Office of Sci-
ence, Basic Energy Sciences Program for Materials and
Chemistry Research in Quantum Information Science un-
der Award No. DE-SC0020313 (A.L.), and by the MRSEC
Grant No. DMR-1719797 (A.V.A). This project was initi-
ated during the workshop “From Chaos to Hydrodynamics
in Quantum Matter” at the Aspen Center for Physics, which
is supported by National Science Foundation Grant No.
PHY-1607611.

APPENDIX A: DISORDER EFFECTS

To establish a closer connection to realistic graphene
Corbino devices, we discuss the impact of disorder scattering
in the bulk of the flow. One of the main sources of disorder
is believed to be due to charged impurities in the substrate
on which graphene flake is deposited [58]. These impurities
induce spatial fluctuations in the chemical potential, leading
locally to regions of positive and negative charge density. This
regime is commonly referred to as charge puddles. For boron
nitride encapsulated graphene devices, scanning probes reveal
that the correlation radius of these fluctuations is somewhere
in the range ξ ∼ 100 nm and local strength is in the range of
∼5 meV [59]. In the Corbino geometry, provided the length
scale separation, l 	 ξ 	 r2, one can average the flow of the
electron fluid over the spatial inhomogeneities. This leads to
an appearance of the effective friction force

F = −ku, k = 〈(sδn − nδs)2〉
2s2

1

ς + nκ/s
, (A1)

which needs to be added in the Navier-Stokes Eq. (3). This
form of the friction coefficient k was obtained in Ref. [22],
where δn(r) and δs(r) denote local fluctuations of the particle
and entropy densities, respectively, and 〈. . .〉 denotes spatial
average. Accounting for F in Eq. (3) and repeating the same
steps of derivation, it is easy to see that the special solution for
u(r) is now replaced by

u(r) = 1

2πr

(
1

1 + kl2/η

) �xT ϒ̂−1 �I
�xT ϒ̂−1�x . (A2)

As friction in part obstructs expulsion of the force from the
bulk of the flow, we need to include an additional contribution
to the energy dissipation of the form

PF = k
∫

u2(r)d2r. (A3)

When computing both terms in Eq. (8), one finds that thermal
resistance (at neutrality) is modified to

Rth = 2η(r−2
1 − r−2

2 ) + k ln p

2πT s2

(
1

1 + kl2/η

)2

+ ln p

2πκ

(
kl2/η

1 + kl2/η

)2

. (A4)

We note here that in contrast to Eq. (15), the bulk contri-
bution no longer vanishes in the limit n → 0. The form of
the friction coefficient is also simplified at neutrality, where
k = (e2/σ )〈δn2〉/2. To estimate it, we notice that in the linear
screening approximation the equilibrium density modulation
is related to the external potential as δn(q) = −νqU (q)/(q +
a−1), where a = 1/(2πe2ν) is the Thomas-Fermi screening
radius and ν ∼ T/v2 is the thermodynamic single-particle
density of states. In the hydrodynamic regime, correlation ra-
dius of disorder ξ exceeds the Thomas-Fermi screening radius
a. Therefore, k ∼ (e2/σ )〈U 2〉/(ξ 2e4), where we assumed that
the spectral density of disorder potential does not have strong
divergence at q → 0 (e.g., encapsulation-induced disorder).
Thus the friction term diminishes the contribution of the rela-
tive mode in the hydrodynamic regime since kl2/η ∝ 1/T 4,
which decays rapidly with an increase of temperature. We
also note that the temperature dependence of the friction
contribution to resistance from PF decays faster with tem-
perature than the viscous term since k/(T s2) ∝ 1/T 5. The
scattering off short-ranged quenched disorder gives an ad-
ditional temperature independent contribution to the friction
coefficient k. All other resistive coefficients can be modified
accordingly.

APPENDIX B: BALLISTIC REGIME

For completeness, we briefly discuss thermoelectric matrix
in the ballistic regime, which may be realized in clean sys-
tems at low temperatures, T < ET , with ET = v/r1 being the
characteristic Thouless energy of a Corbino disk. Adopting
the Landauer-Büttiker description [60], all transport charac-
teristics can be derived from the energy dependence of the
transmission coefficient T (ε). For electrons traversing the
monolayer graphene Corbino disk, the transmission coeffi-
cient can be computed analytically from the solution of the
Dirac equation in cylindrical coordinates. It takes the form
[61,62]

T (ε) =
∑

j

T j, T j = 16λ2

π2r1r2

1

�2+(ε) + �2−(ε)
, (B1)

where λ = v/|ε| is the electron wavelength and the sum goes
over the odd integers j = n + 1/2 with n ∈ Z. The functions
in the denominator capture geometrical resonances and are
given by

�±(ε) = Im
[
H(1)

j−1/2(r1/λ)H(2)
j∓1/2(r2/λ)

± H(1)
j+1/2(r1/λ)H(2)

j±1/2(r2/λ)
]
, (B2)

with H(1,2)
n (z) the Hankel function of the (first, second) kind.

For instance, in this formalism, the Lorenz ratio can be then
computed as follows:

L = L0L2 − L2
1

e2T 2L2
0

, Ln =
∫

dε

T

(ε − μ)nT (ε)

cosh2
(

ε−μ

2T

) / (B3)

For the contrast to the results of hydrodynamic theory, we
plot numerical results for Eq. (B3) in Fig. 3. The Lorenz ratio
exhibits oscillations as a function of chemical potential that re-
flects geometrical resonances in the transmission coefficient.
Exactly at neutrality, the Lorenz ratio for Dirac fermions stays
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above LWF and shows moderate growth with an increase of
temperature. For T/ET > 5, the curve gradually saturates to
the constant L/LWF ≈ 2.37. This regime is not shown in the

plot as it is beyond the validity of single-particle description,
since we expect a crossover to the collision-dominated regime
to occur at T ∼ ET .
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