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Complete crystal-field calculation of Zeeman hyperfine splittings in europium
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Computational crystal-field models have provided consistent models of both electronic and Zeeman-hyperfine
structure for several rare-earth ions. However, a computational crystal-field calculation of Eu3+incorporating
the lattice electric quadrupole and nuclear Zeeman interactions has not been performed. Here, we include these
terms in a computational model to fit the crystal-field levels and the Zeeman-hyperfine structure of the 7F0 and
5D0 states in three Eu3+sites: the C4v and C3v sites in CaF2and the C2 site in EuCl3 · 6H2O. Close fits are
obtained for all three sites which are used to resolve ambiguities in previously published parameters, including
quantifying the anomalously large crystal-field-induced state mixing in the C3v site and determining the signs of
Zeeman-hyperfine parameters in all three sites. We show that this model allows accurate prediction of properties
for Eu3+important for quantum information applications of these ions, such as relative transition strengths. The
model could be used to improve crystal-field calculations for other non-Kramers singlet states. We also present
a spin Hamiltonian formalism without the normal assumption of no J mixing, suitable for other rare-earth ion
energy levels where this effect is important.
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I. INTRODUCTION

Crystals containing rare-earth ions are now extensively
studied for quantum information applications, particularly
quantum memories. These applications almost always require
precise knowledge of the hyperfine structure of the rare-earth
ion in the optical ground and excited states employed. In
memory protocols such as the gradient echo memory [1] or the
atomic frequency comb protocol [2], hyperfine structure infor-
mation is used to spectrally prepare the memory by pumping
population at specific frequencies into nonresonant hyperfine
states. Knowledge of the hyperfine structure is also used to
predict the locations of ZEFOZ (zero first order Zeeman) [3]
points where hyperfine transitions are protected from dephas-
ing caused by magnetic fluctuations, and to identify fields
at which � transitions with favorable oscillator strengths for
quantum memories can be obtained [4,5].

Hyperfine structure is typically determined from experi-
mental data recorded over a range of magnetic fields, which is
then fitted to a spin Hamiltonian that parameterizes any elec-
tronic contributions to the nuclear structure. This approach
has been used very successfully, for instance, for predicting
ZEFOZ points in Eu3+:Y2SiO5 to extend the coherence time
by six orders of magnitude [6]. However, there are both limita-
tions and drawbacks to using spin Hamiltonians. They cannot
be applied when the electronic contributions to the nuclear
structure are not constant, for instance, for Kramers rare-earth
ions over a large range of magnetic fields. The experimen-
tal data can also contain many lines, particularly for ions
with high nuclear spin or in crystals with multiple magnetic
subsites, which can be difficult to fit to a spin Hamiltonian,
especially in the case of low symmetry where there are many

free parameters. Finally, the spin Hamiltonian often provides
little physical insight into the ion or the site.

An alternative is to use a full crystal-field model for the
whole 4 f configuration of the rare-earth ion, including in-
teractions that generate hyperfine structure. These types of
models have been successfully applied for several different
hosts doped with Kramers and non-Kramers rare-earth ions,
including Pr3+ [5,7–10], Er3+ [11–14], Ho3+ [7,15–21], Tb3+

[22,23], and Tm3+ [4,10]. However, a complete crystal-field
calculation of Eu3+Zeeman-hyperfine structure has not been
demonstrated. Terms that are omitted from computational
crystal-field calculations of other ions due to their relatively
small contributions become important in the commonly stud-
ied J = 0 crystal-field levels in Eu3+. These are the electric
quadrupole contribution from the lattice field gradient, and the
nuclear Zeeman. The qualitative contribution of these terms
to the Zeeman-hyperfine structure in Eu3+is well-established
[24–27], but accurate estimates of their exact size in differ-
ent sites have largely been lacking. Here, we implement a
crystal-field model with all contributions included, and apply
the model to three different Eu3+sites: the C4v and C3v sites
in CaF2, and the C2 site in EuCl3 · 6H2O. We also extract spin
Hamiltonian parameters from the crystal-field fit and discuss
how crystal-field models can be used to resolve ambiguities in
the spin Hamiltonian.

II. THEORETICAL BACKGROUND

A. crystal-field Hamiltonian

Here, we first present the full crystal-field Hamiltonian
for the 4 f configuration with expressions for each individual
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term. Most of these expressions have been covered in detail,
[4,5,28–30], but here we give all terms in a unified notation.

The complete Hamiltonian appropriate for modeling the
4 f N configuration is

H = HFI + HCF + HZ + HHFS. (1)

The terms in Eq. (1) represent the free-ion, crystal-field,
electronic and nuclear Zeeman, and hyperfine interactions,
respectively. Note we have grouped terms of comparable
magnitude, however, the hyperfine interactions also generate
splittings in the free-ion and can be considered to be free-ion
interactions.

The free-ion Hamiltonian HFI (excluding the hyperfine in-
teractions) can be expressed as [31]

HFI = Eavg +
∑

k=2,4,6

F k fk + ζ4 f ASO + αL(L + 1)

+ βG(G2) + γ G(R7) +
∑

i=2,3,4,6,7,8

T iti

+
∑

i=0,2,4

Mimi +
∑

i=2,4,6

Pi pi. (2)

In this equation, Eavg describes the spherically symmetric
part of the Hamiltonian which shifts the entire configuration,
F k and ζ4 f describe the electrostatic and spin-orbit integrals,
respectively, and fk and ASO represent the angular parts of
the electrostatic and spin-orbit interactions, respectively. The
remainder of the terms are smaller and parametrize two-
[32,33] and three- [34] body interactions, as well as higher-
order spin-dependent effects [35,36]. Methods for calculating
matrix elements using reduced matrix elements tabulated by
Nielson and Koster [37] have been covered in detail [29].
Mean free-ion parameters have been tabulated for the rare-
earth ions [38], however it is necessary to allow Eavg, the
Slater parameters F k , and spin orbit parameter ζ4 f to vary
during fitting to experimental levels as these parameters have
the most significant effect on the calculated spectra.

The crystal-field Hamiltonian HCF can be written as

HCF =
∑

k=2,4,6

k∑
q=−k

Bk
qC(k)

q , (3)

where Bk
q are the crystal-field expansion coefficients, and C(k)

q
are spherical tensor operators using Wybourne’s normaliza-
tion of the spherical harmonics Ykq [28]. The Bk

q with nonzero
q may be complex in low symmetries, and in that case the real
and imaginary parts must be considered as independent, real
parameters. Table IV in Ref. [39] lists the nonzero parameters
for each of the crystallographic point groups. We note that
there are a variety of conventions in the literature for labeling
the real and imaginary parts [40].

In the presence of an external magnetic field B, the Zeeman
Hamiltonian HZ is [24]

HZ = HeZ + HnZ , (4)

with HeZ = μBB · (L + gsS), (5)

HnZ = − gnμN B · I, (6)

where HeZ is the electronic Zeeman interaction and HnZ the
nuclear Zeeman interaction. L and S are the total electronic
orbital and spin angular momentum operators, gs is the elec-
tron spin g factor, μB is the Bohr magneton, μN is the nuclear
magneton, and gn is the nuclear g factor. Matrix elements for
these terms are given in Refs. [4,5].

Hyperfine structure arises from the interaction of nucleus
with the electronic states and with the field gradient gen-
erated by the lattice. Generally, only interactions involving
the nuclear magnetic dipole moment and electric quadrupole
moment are important [28]. The hyperfine Hamiltonian HHFS

is then expressed as

HHFS = HMD + HQ, (7)

where HMD and HQ are the contributions from magnetic dipole
and electric quadrupole moment interactions, respectively.

The coupling of the nuclear magnetic dipole to the orbital
and spin angular momenta of the electrons results in Ref. [33]

HMD = al

∑
i

Ni · I, (8)

Ni = li −
√

10(sC(2) )(1)
i , (9)

where li and si are the orbital and spin angular momenta of the
electron i, and I is the nuclear spin operator.

In our calculations, al is treated as a free parameter. It may
be estimated as [28]

al = 2μBgnμN
μ0

4π
(1 − R)

〈
r−3

e

〉
, (10)

where μ0 is the vacuum permeability, R is a shielding factor
due to closed electron shells [25,41,42], and 〈r−3

e 〉 is the aver-
age inverse-cube radius of the 4 f orbital.

The nuclear quadrupole moment couples to the 4 f elec-
trons and to the lattice:

HQ = H4 f
Q + H lat

Q . (11)

The coupling to the 4 f electrons may be written as [29]

H4 f
Q = EQ

1

2

(
(I + 1)(2I + 1)(2I + 3)

I (2I − 1)

) 1
2

U(2)
n · U(2)

e , (12)

where U are unit tensor operators. Here U(2)
e operates on the

electronic part of the wave function and U(2)
n operates on the

nuclear part.
We treat EQ as a free parameter, but it may be estimated

from

EQ = −e2Q

4πε0
(1 − R)

〈
r−3

e

〉
, (13)

where the nuclear quadrupole moment Q is introduced via

〈
I
∣∣∣∣r2

nC(2)
n

∣∣∣∣I 〉 = Q

2

(
(I + 1)(2I + 1)(2I + 3)

I (2I − 1)

) 1
2

, (14)

where rn is the nuclear radius.
The coupling of the nucleus to the electric field gradient

of the surrounding ions has the same form as the crystal-field
interaction. In the following, the N2

q are parameters, analogous
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to the B2
q, and the unit tensor (Un)(2)

q acts on the nuclear spin:

H lat
Q =

2∑
q=−2

N2
q (Un)(2)

q . (15)

Matrix elements for the lattice and 4 f quadrupole terms are
provided in Refs. [4,5].

Since the N2
q and B2

q both parametrize interactions with
the lattice, an approximate relationship between them may
be derived by assuming that both may be estimated from
the point-charge lattice potential [4,5], corrected by relevant
shielding factors: (1 − γ∞) for the nucleus, and (1 − σ2) for
the 4 f electrons. By including the relevant reduced matrix
elements, we may write

N2
q = −(1 − γ∞)

(1 − σ2)
〈
r2

e

〉 Q

2

(
(I + 1)(2I + 1)(2I + 3)

I (2I − 1)

) 1
2

B2
q. (16)

Here, 〈r2
e 〉 is the mean square radius of the 4 f orbital.

We do not expect this relationship to be exact, since the
crystal-field interaction is far from purely electrostatic, and
the shielding/antishielding factors R, γ∞, and σ2 do vary
between materials. In our calculations N2

q and EQ were free
parameters in the model bounded by known ranges of the
shielding/antishielding factors [43] and the ratio and signs of
the B2

q parameters.

B. Previous modeling of Zeeman-hyperfine structure

Although most previous crystal-field modeling for rare-
earth crystals has considered only HFI and HCF , several
workers have included certain of the hyperfine and Zeeman
terms. To understand when it is necessary to include the
various hyperfine and Zeeman terms it is useful to examine
relative sizes of the various contributions in different types of
electronic states.

For the Kramers doublets in ions such as Er3+, the true
doublet states directly allow for a large first order magnetic
dipole contribution to the hyperfine splittings, with minor
effects from the electron-nuclear 4 f quadrupole interaction.
Therefore accurate fits to crystal-field levels and hyperfine
structure can be achieved by incorporating only the mag-
netic dipole and 4 f quadrupole contributions. Crystal-field fits
have been demonstrated for Er3+in several materials including
LiYF4 [11,12], YPO4 [14], and both sites of Y2SiO5[13].

Similar to the Kramers doublets, the non-Kramers dou-
blets and pseudodoublets are also largely dependent on the
magnetic dipole interaction. In true doublets there is again
a large first order magnetic dipole term. In pseudodoublet
ground states (two singlets split by only a few cm−1) it is
the second order magnetic dipole interaction, commonly re-
ferred to as the pseudoquadrupole (see Sec. III B), that has
the largest contribution. Provided the crystal-field splitting
of the pseudodoublet ground state is accurately modeled,
satisfactory fits to the hyperfine splittings of transitions can
be achieved by calculating the magnetic dipole interaction,
with the 4 f quadrupole having only a minor effect on the
splittings [15]. Hyperfine structure of non-Kramers dou-
blets and pseudodoublets has been successfully calculated
using crystal-field models in several hosts, including CaF2

[7,8,15,23], SrF2 [8,23], LiYF4 [20,22], KY3F10 [18], CaWO4

[19], YAl3(BO3)4 [16], YPO4 [17], and both sites of Y2SiO5

[21].
For non-Kramers singlet states in J �= 0 multiplets, the

largest contribution to the hyperfine splittings can vary
depending on the magnitude of the splittings to nearby crystal-
field levels within the multiplet. If this splitting is large
(>100 cm−1), the level mixing is typically too small to al-
low for a significant pseudoquadrupole contribution. The
largest contribution is then the 4 f quadrupole, but the lattice
quadrupole may also need to be considered [5,9,10,44].

For non-Kramers singlets with J = 0, such as 7F0 and
5D0 in Eu3+, the situation is quite different. H lat

Q and HnZ

are the dominant sources of the hyperfine splittings as HeZ ,
HMD and H4 f

Q have zero matrix elements for J = 0 states. It is
only through J-mixing induced by the crystal field that these
terms contribute at all. In these cases, an accurate calculation
of the crystal-field energies is important, as the magnitudes
of the contributions are sensitive to the splittings of nearby
multiplets.

For the Zeeman terms, the true nuclear Zeeman is nearly
always considered unimportant as the enhancement of the nu-
clear moment due to the magnetic dipole (the pseudonuclear
effect, see Sec. III B) is several orders of magnitude larger than
the bare nuclear moment in most situations [45]. However,
the true nuclear Zeeman effect becomes important in J = 0
multiplets, where the pseudonuclear term is small, or in cases
where the crystal-field mixing results in a large pseudonuclear
Zeeman component for a magnetic field applied in only one
direction, such as Tm3+:Y3Al5O12 [4].

III. SPIN HAMILTONIAN THEORY

As described above, the first goal of this paper is to provide
accurate crystal-field models for Eu3+sites. The second goal,
addressed in this section, is to provide a direct relationship be-
tween the crystal-field model and the phenomenological spin
Hamiltonian models commonly used in experimental studies
of hyperfine structure of individual crystal-field levels. The
widely used existing expression [46] suitable for other non-
Kramers singlet states is inappropriate for the J = 0 levels
of Eu3+because it ignores J mixing effects. A crystal-field
derived expression both allows a physical interpretation of the
spin Hamiltonian parameters and resolves certain parameter
ambiguities that arise when fitting phenomenological models.

A. Phenomenological spin Hamiltonian

For an electronic singlet state, the appropriate phenomeno-
logical spin Hamiltonian contains operators for the nuclear
spin only:

Heff = (B · Z · B)1 + B · M · I + I · Q · I, (17)

where B is the magnetic field, I is the nuclear spin operator,
1 is the identity operator, Z is the quadratic Zeeman tensor,
M the linear Zeeman tensor, and Q the traceless enhanced
quadrupole tensor. These three symmetric tensors are unique
to that electronic state, and are only constrained by the site
symmetry. The most general form of these tensors (applicable
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to C1 symmetry) is

Z = RZ ·
⎡
⎣Zx 0 0

0 Zy 0
0 0 Zz

⎤
⎦ · RT

Z , (18)

M = RM ·
⎡
⎣gx 0 0

0 gy 0
0 0 gz

⎤
⎦ · RT

M, (19)

Q = RQ ·
⎡
⎣−E − 1

3 D 0 0
0 E − 1

3 D 0
0 0 2

3 D

⎤
⎦ · RT

Q, (20)

where Ri = R(ϕi, θi, ψi ) is an Euler rotation matrix. In C2

symmetry, the lowest symmetry studied here, ϕ = θ = 0 for
all tensors when the laboratory frame z is aligned with the C2

axis. For axial symmetries such as C4v and C3v , all tensors are
aligned, gx = gy, and E = 0.

Experimentally, the spin Hamiltonian parameters required
for the particular site symmetry are fit to hyperfine splitting
data for a variety of magnetic field values, typically obtained
using nuclear magnetic resonance, optically detected nuclear
magnetic resonance, or Raman heterodyne spectroscopy. Such
a fit furnishes a set of nonunique spin Hamiltonian parameters,
because the spin Hamiltonian is insensitive to certain trans-
formations. For instance, in C2 symmetry the Hamiltonian is
insensitive to the sign of Z, M, Q, gz, and D, and the sign of
E is ill-defined since it can be reversed by rotating the entire
spin Hamiltonian 90◦ about z.

Further, there are three possible sets of parameters corre-
sponding to different, equivalent choices of the quantization
axis of the quadrupole term. Any one set accurately fits the
spin Hamiltonian of a single electronic state, but problems
arise when trying to calculate parameters that depend on spin
Hamiltonians of two different electronic states. For example,
the relative optical transition probability Pi j of transitions
between different hyperfine states in ground (i) and excited
( j) levels calculated from the overlap of the nuclear wave
functions n as

Pi j = ∣∣〈n
gi

∣∣n
e j

〉∣∣2
, (21)

only holds true if the same quadrupole quantization axes have
been used for both spin Hamiltonians.

Further difficulty arises in materials with multiple magneti-
cally inequivalent subsites, which occur in materials where the
rare-earth site symmetry is lower than the crystal symmetry.
While the spin Hamiltonian of all subsites can be generated
from the spin Hamiltonian for one site using the symmetry
operations of the crystal, the same base subsite must be cor-
rectly chosen for every electronic level. When there is no
obvious relationship between spin Hamiltonian parameters in
different electronic states, identifying the same subsite can be
very difficult [47].

Additional measurements, such as the relative optical os-
cillator strength measurements described above, can resolve
some but not all of these ambiguities. A crystal-field-based
spin Hamiltonian, in contrast, can resolve all physically sig-
nificant spin Hamiltonian parameter ambiguities.

B. Crystal-field-based spin Hamiltonian

A spin Hamiltonian for a particular electronic state may be
extracted from the full crystal-field Hamiltonian by projecting
the crystal-field Hamiltonian into the spin Hamiltonian basis
[13,48]. For a general discussion of projecting Hamiltonians
into a smaller basis, see Ref. [49]. The projection approach al-
lows the direct calculation of the Z, M, and Q parameters with
all sign and rotational ambiguities removed, by comparing the
projected Hamiltonian with the spin Hamiltonian matrix. It is
also possible to use a perturbation-theory approach to approx-
imate the relationship between a crystal-field calculation and
the spin Hamiltonian.

The spin Hamiltonian for a non-Kramers singlet state, ig-
noring J mixing, is commonly written as [46,50]

H = − B · (
g2

Jμ
2
B�

) · B − B · (gnμN 1 − 2AJgJμB�) · I

− I · (A2
J� + TQ

) · I, (22)

where gJ is the Landé g value, and AJ is the hyperfine inter-
action parameter for that state. The lattice and 4 f quadrupole
contributions are combined into a single true quadrupole term
TQ and A2

J� accounts for the pseudoquadrupole contribution
arising from the magnetic dipole interaction. The contribu-
tions from other electronic states are encapsulated by the
tensor � which sums the interaction with all other states in
the multiplet:

�i j =
2J+1∑
n=1

〈0|Ji|n〉〈n|Jj |0〉
En − E0

, (23)

with |0〉 the singlet state of interest.
When dealing with only the hyperfine splittings, the first

term of Eq. (22) is ignored. This form is sufficient when
working within a single LSJ state, as the largest contributions
to the splittings come from interactions with crystal-field lev-
els within the same multiplet. Summation over the electron
configurations of a single multiplet allows for many of the
interactions to be related to the total angular momentum oper-
ator J, simplifying the form of the spin Hamiltonian; � can be
used to describe several effects that have the same symmetry
despite originating from different physical interactions.

For the J = 0 multiplets of Eu3+, the J mixing between
multiplets is crucial [50]. This prevents the electron configura-
tion summation being used to relate the hyperfine interactions
to J, hence preventing the construction of �. Instead, we now
sum over all possible electronic states |〉 = |τLSJMJ〉 of the
4 f N configuration for which the matrix elements of L + gsS
and N are nonzero.

The first correction is the pseudonuclear Zeeman. We re-
place � by

αi j =
∑
 ′

〈|Li + gsSi| ′〉〈 ′|Nj |〉
E ′ − E

, (24)

where we consider the mixing of levels by the electronic
Zeeman and magnetic dipole interactions. Accounting for the
pseudonuclear Zeeman effect, the nuclear g values can be
calculated as

gi = gnμN − 2algJμBαii (25)
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The second correction is the pseudoquadrupole. We replace �

by

Pi j =
∑
 ′

〈|Ni| ′〉〈 ′|Nj |〉
E ′ − E

, (26)

where we consider the second order contribution from the
magnetic dipole interaction. The D and E associated with the
pseudoquadrupole are then given by

Dpq = a2
l

(Pxx + Pyy

2
− Pzz

)
, (27)

Epq = a2
l

Pxx − Pyy

2
. (28)

We also separate the true quadrupole term TQ into its two con-
tributions, the lattice Tlat and 4 f quadrupole T4 f , with forms
equivalent to Eq. (20). These then have D and E parameters
related to the hyperfine parameters N2

q and EQ by

Dlat = 3N2
0

I (2I − 1)

(
I (2I − 1)

(I + 1)(2I + 1)(2I + 3)

) 1
2

, (29)

Elat =
√

2

3

N2
2

N2
0

Dlat, (30)

for the lattice contribution, and

D4 f = 3EQ

I (2I − 1)

〈
ψ

∣∣∣∣∣
∑

i

(Cei )
(2)
0

∣∣∣∣∣ψ
〉
, (31)

E4 f =
√

2

3

〈
ψ

∣∣∑
i (Cei )

(2)
2

∣∣ψ 〉
〈
ψ

∣∣∑
i (Cei )

(2)
0

∣∣ψ 〉D4 f , (32)

for the 4 f contribution. Here, |ψ〉 is the wave function for the
state in question, accounting for crystal-field mixing.

The spin Hamiltonian for any J-mixing dependent system
is then given by

H = − B · (gnμN 1 − 2al gJμBα) · I

− I · (
a2

l P + Tlat + T4 f
) · I.

(33)

Due to the J-mixing dependence of the interactions, the
principal axes of the quadrupole terms of Eq. (33) are not
necessarily aligned. Instead, each contribution takes the form
of Eq. (20) with a unique set of D, E , and Euler angles. The
contributions are summed in a common frame to form a total
quadrupole tensor, with principal axes given by Dtot and Etot,
which are not necessarily aligned with the principal axes of
any of the individual quadrupole terms. This is in contrast to
the nuclear Zeeman tensor which has principal axes that are
aligned with the pseudonuclear Zeeman contribution as the
pure nuclear Zeeman is isotropic.

IV. METHOD

Crystal-field calculations were performed using M. F.
Reid’s F-shell empirical program suite in conjunction with
S. Horvath’s pycf program for low symmetry crystal-field
parameter fitting [51]. A truncated set of matrix elements was
used to reduce computation time following the approach of

Carnell et al.[52] by first diagonalizing the free-ion Hamil-
tonian Eq. (2) using estimates of the free-ion parameters [31],
and then using a truncated set of eigenvectors of this diagonal-
ization to generate free-ion and crystal-field matrix elements
in the intermediate coupled basis. We chose to truncate the
matrix elements at 30 free-ion multiplets out of the total 295,
resulting in 272 crystal-field levels out of the total 3003, with
energies up to ∼33 000 cm−1.

For each of the Eu3+ centers analyzed, first the free-ion
parameters Eavg, F k , and ζ4 f along with the crystal-field pa-
rameters Bk

q required for the site symmetry were fitted to
available crystal-field energy levels (see Table I in Ref. [39]).
This was done to ensure a satisfactory fit to the crystal-field
levels before including the hyperfine interactions as adding the
nuclear spin means a sixfold increase in the number of states
and in the computation time. Next, the crystal-field parameters
were refitted using the previous parameters as initial values at
the same time as fitting the hyperfine parameters al , EQ, and
N2

q . Whilst the lattice quadrupole parameters N2
q have a fixed

relationship to the crystal-field parameters B2
q, theoretically

requiring the addition of only a single scaling parameter to
account for shielding effects, we instead used free parameter
for each q term. This was done to avoid propagating error
from the crystal-field parameters onto the hyperfine structure,
which is discussed in Sec. VI. Instead, bounds were placed
on N2

q such that the appropriate sign and approximate relative
magnitudes were correctly imposed by the B2

q parameters.
For this second round of fitting, the fitting data were the

crystal-field energy levels, and the hyperfine splittings of the
7F0 state and the 5D0 state (when available) calculated for 100
magnetic field directions defined on a spiral:

B =
⎡
⎣B0

√
1 − t2 cos(6πt )

B0

√
1 − t2 sin(6πt )

B0t

⎤
⎦, (34)

where B0 = 400 mT. We fitted to hyperfine splittings and
not absolute frequencies so that any error in the energy of
the crystal-field levels was not propagated into the hyperfine
errors. This way, the hyperfine splittings could still be fitted
even if there was a deviation of the crystal-field levels away
from the experimental values.

In crystal-field theory, there always exist sets of crystal-
field parameters that produce equivalent fits to energy level
structure for a given site, but different wave functions and
ordering of MJ levels within the multiplets. These sets do not
produce the same Zeeman-hyperfine splittings, so this data
is needed to constrain the crystal-field values. To avoid the
fit getting stuck in a local minimum within the crystal-field
parameter set two methods were employed; a basin-hopping
algorithm [53,54] was used to allow the fit to jump be-
tween equivalent sets, and the weighting of the hyperfine
and crystal-field levels was chosen such that both contributed
approximately equally to calculated error.

The fit was accomplished using the multi-Hamiltonian
method [51] where a crystal-field Hamiltonian is generated
for each magnetic field step then diagonalized concurrently. In
this method, the parameters can be fitted using experimental
data for both the zero-field crystal-field levels and Zeeman-
hyperfine splittings simultaneously.
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TABLE I. Fitted crystal-field parameters ( cm−1) for the three
Eu3+sites studied here. Where a parameter is blank, that parameter
does not occur for the site symmetry.

Parameter CaF2:C4v CaF2:C3v EuCl3 · 6H2O

Eavg 64154 64232 63887
F2 83479 83317 82962
F4 60024 59405 59580
F6 42506 42658 42801
ζ 1333 1337 1333
B2

0 680 2122 70
B2

2 – – 241 + 196i
B4

0 −852 1697 −334
B4

2 – – 335 + 465i
B4

3 – −2095 –
B4

4 −994 – −316 − 175i
B6

0 1317 −657 700
B6

2 – – 308 − 396i
B6

3 – −913 –
B6

4 −1311 – 727 − 432i
B6

6 – 1366 −269 + 175i
al 0.0405 0.0433 0.0386
EQ −0.0490 −0.0497 −0.0408
N2

0 −0.00619 −0.0111 −0.000853
N2

2 – – −0.00466 − 0.00225i

V. RESULTS

We studied three different 151Eu
3+

sites of different symme-
try for which sufficient crystal-field and hyperfine data exists
in the literature. These were the C4v and C3v sites in CaF2, and
the C2 site in EuCl3 · 6H2O. Table I lists the fitted crystal-field
values for each site.

A. Eu3+:CaF2 C4v center

In the C4v site of CaF2, Eu3+substitutes for Ca2+, with
charge compensation arising from an interstitial neighboring
F− ion. There are values in the literature for the Zeeman-
hyperfine splittings of the 7F0 and 5D0 states [55], the energy
levels [56], and the fitted crystal-field parameters [56]. Here,
we refitted the crystal-field parameters in the full model using
the published experimental energy levels [56]. Fitted crystal-
field parameters are given in Table I, and experimental and
calculated spin Hamiltonian parameters given in Table II. The
refitted crystal-field parameters are within ∼10% of the values
given in Ref. [56]. This small change is expected as our fit
gives equal weight to the Zeeman-hyperfine splittings, which
are most strongly influenced by the positions of the crystal-
field levels in the 7F1 and 7F2 multiplets. Figure 1 shows
the comparison between experimental and fitted hyperfine
structure for the 7F0 and 5D0 states. The Zeeman structure is
displayed for fields in a circle in the xz plane:

B =
[

B0 cos(2πt )
B0 sin(2πt )

]
. (35)

The C4v site of CaF2 is a good illustration of the established
qualitative understanding of hyperfine structure in the J = 0
levels of Eu3+, which we briefly summarize. The zero field

TABLE II. Spin Hamiltonian parameters for the
151Eu

3+
:CaF2C4v site calculated from crystal-field fitting compared

to experimental spin Hamiltonian parameters [55]. In that work,
signs of the g-values could not be determined, so we list them with
“±” here.

7F0
5D0

Calc Expt Calc Expt

Dpq(MHz) 0.198 – 0.00265 –
D4 f (MHz) 10.968 – 0.661 –
Dlat(MHz) −13.562 – −13.708 –
Dtot(MHz) −2.395 −2.415 −13.045 −13.05
gx(MHzT−1) −0.936 ±0.212 9.646 –
gy(MHzT−1) −0.936 ±0.212 9.646 –
gz(MHzT−1) 5.075 ±4.657 9.761 –

hyperfine structure in these levels arises from the combination
of the lattice quadrupole interaction and effects due to the ad-
mixture of J = 2 crystal-field levels into the 7F0 and 5D0 wave
functions by the crystal field [24,57]. This mixing is only large
in the ground state as the separation of the J = 2 levels (the
7F2 multiplet) is much smaller than in the excited state (the
5D2 multiplet). This is clear from the fitted wave functions of
the 7F0 and 5D0 states (ignoring contributions <1%):

(7F0) = − 0.99|7F0, 0〉 + 0.12|7F2, 0〉, (36)

(5D0) = + 1.00|5D0, 0〉. (37)

This mixing gives rise to the 4 f contribution to the spin
Hamiltonian quadrupole term, which is only significant in the
7F0 state. However, since this term is of opposite sign to the
lattice quadrupole term, the result is smaller quadrupole tensor
in the 7F0 state.

FIG. 1. (a) Calculated zero field splittings of the Eu3+:CaF2C4v

site with experimental splittings given in brackets. (b) Calculated
(blue) and experimental (orange) Zeeman splittings of the 7F0 ± 3

2 →
± 1

2 (top) and ± 5
2 → ± 3

2 (bottom) hyperfine transitions for a mag-
netic field of 400 mT rotated in the xz plane. Experimental points are
calculated from published experimental spin Hamiltonian parameters
[55].
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For this C4 site, Fig. 1(a) shows that the agreement between
experimental and calculated zero field splittings is excellent.
The quantitative parameter results (Table II) also agree well
with the qualitative description above. In the 5D0 state, the lat-
tice contribution to the quadrupole term is over 95%, whereas
in the ground state, roughly equal magnitude, opposite sign
4 f and lattice contributions result in a quadrupole <20% of
the excited state. In both states, the pseudoquadrupole contri-
bution to the quadrupole tensor is near negligible. This term
arises from interactions with �MJ = 0, 1 levels. For J �= 0
states, the pseudoquadrupole can be significant since these
interactions exist within the multiplet. However, for the J = 0
levels, the large separations to the interacting 7F1 and 5D1

states largely suppress this term.
While the zero field structure of the J = 0 levels is deter-

mined by mixing with J = 2 multiplets, the Zeeman structure
in a magnetic field is understood to be determined by the
small amount of mixing with the J = 1 multiplets. This mix-
ing allows for nonzero matrix elements for the electronic
Zeeman interaction between the nuclear states [45]. While
in J �= 0 states this pseudonuclear Zeeman term typically
entirely dominates the bare moment, the large spacing to the
J = 1 multiplets means the contribution is much smaller for
J = 0 states [24]. Again, the contribution is typically only
significant in the 7F0 state due to the smaller separation to 7F1,
and again, it is of similar size and opposite sign to that of the
true nuclear Zeeman effect. This means g-values are typically
smaller in the 7F0 state compared to the 5D0 state. Depending
on the proximity of the 7F1 levels, the pseudonuclear Zeeman
contribution can be large enough that the sign of the g-values
is reversed relative to the bare nuclear magnetic moment.

We see from Fig. 1(b) and Table II that, as expected, in
5D0 the predicted g-values are only slightly reduced from the
bare moment of 10.58 MHz T−1 by the small amount of mix-
ing with 5D1. In the ground state, the g values are substantially
reduced by the mixing. The predicted values in this level do
differ from the experimental numbers. This discrepancy can
be attributed to the ∼5% deviation of the calculated crystal-
field splittings of the 7F1 from the experimental values, since
the pseudonuclear term is highly sensitive to the separation
of the 7F1 and 7F0 levels. Nevertheless, the agreement is
sufficient to resolve the sign ambiguity in the experimental
g values: gx,y is negative, and gz is positive.

B. Eu3+:CaF2:O2− C3v center

In the C3v site of CaF2, denoted the G1 center,
Eu3+substitutes for Ca2+ with charge compensation arising
from a substitutional O2− in a neighboring F− site. Zeeman-
hyperfine splittings for this site are available for both the
7F0 ground and 5D0 excited states [27,43,58–61], but despite
these extensive hyperfine studies, the observed crystal-field
levels are restricted to few 7FJ and 5DJ multiplets [27]. Fit-
ting a set of crystal-field parameters to the available energy
levels is further complicated by the very strong crystal field
caused by the nearby oxygen atom [58] which makes as-
signment of the 7F1 and 7F2 levels difficult [27,58]. As there
has been no prior crystal-field fits to the G1 center and the
ordering of the 7F1,2 levels is unknown, we estimated a set
of initial crystal-field parameters by hand using the 5D1 and

TABLE III. Spin Hamiltonian parameters for the
151Eu

3+
:CaF2C3v site calculated from crystal-field fitting compared

to experimental spin Hamiltonian parameters [61].

7F0
5D0

Calc Expt Calc Expt

Dpq( MHz) 0.610 – 0.00809 –
D4 f ( MHz) 31.988 – 2.170 –
Dlat( MHz) −24.344 – −24.573 –
Dtot( MHz) 8.256 8.26 −22.395 −22.23
gx( MHzT−1) −9.658 −8.998 9.504 9.527
gy( MHzT−1) −9.658 −8.998 9.504 9.527
gz( MHzT−1) 8.948 9.739 9.751 10.056

5D2 splittings. This set was then refined by fitting to all of
the available crystal-field and Zeeman-hyperfine data for the
site. The ordering of the 7F1 and 7F2 levels could then be
inferred from the crystal-field calculation, demonstrating that
the unusually large crystal field causes an overlap of the 7F1

and 7F2 multiplets. Fitted crystal-field parameters are given
in Table I, and experimental and calculated spin Hamiltonian
parameters given in Table III. Figure 2 demonstrates the very
good agreement between fitted and experimental splittings,
with Zeeman structure calculated using Eq. (35).

Unlike the C4v center, the C3v center does not conform
well to the normal picture for J = 0 energy level structure
because the unusually large crystal field causes considerable
mixing between multiplets. In the 5D0 state, the quadrupole
interaction D = −22.395 MHz is still primarily due to the
lattice quadrupole Dlat = −24.573 MHz, but the contribution
from the 4 f quadrupole D4 f = 2.170 MHz is double that for
the C4v center. This is due to the large B2

0 = 2122 cm−1 term
mixing the 5D0 with the 5D2 state despite these multiplets be-
ing separated by ≈4000 cm−1. The calculated wave functions

(7F0) = + 0.92|7F0, 0〉 − 0.35|7F2, 0〉 + 0.11|7F4, 0〉
+ 0.10|7F4,−3〉 − 0.10|7F4, 3〉, (38)

(5D0) = − 1.00|5D0, 0〉 + 0.04|5D2, 0〉, (39)

demonstrate the considerable mixing compared to the C4v site.
In the 7F multiplet, the crystal-field splittings of the 7F1

and the 7F2 states generated by the B2
0 and B4

q terms are so
large that, as described above, the multiplets are no longer
separated and the ordering of states is not obvious. In par-
ticular, a doublet state of 7F2 at 758 cm−1 is lower in energy
compared to the singlet state of 7F1 at 865 cm−1 (see Table I in
Ref. [39]). The low lying 7F2 mixes strongly with 7F0 resulting
in a large 4 f quadrupole contribution D4 f = 31.988 MHz.
This is larger than the lattice quadrupole contribution Dlat =
−24.344 MHz, resulting in a total quadrupole interaction of
Dtot = 8.256 MHz. This reversal of the sign of the quadrupole
interaction results in a reversal of the ordering of the nuclear
spin states compared to the 5D0 state.

The g values of the C3v site do follow a similar pattern to
the C4v case. In the excited state, the g values are only slightly
reduced from the bare moment with good agreement between
calculation and experiment. Despite the strong crystal field,
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FIG. 2. (a) Calculated zero field splittings of the Eu3+:CaF2C3v

site with experimental splittings given in brackets. (b) Calcu-
lated (blue) and experimental (orange) Zeeman splittings of the
5D0 ± 3

2 → ± 1
2 (top) and ± 5

2 → ± 3
2 (bottom) hyperfine transitions

for a magnetic field of 400 mT rotated in the x-z plane. (c) Cal-
culated (blue) and experimental (orange) Zeeman splittings of the
7F0 ± 3

2 → ± 5
2 (top) and ± 1

2 → ± 3
2 (bottom) hyperfine transitions

for a magnetic field of 400 mT rotated in the xz plane. Experimental
points are calculated from published experimental spin Hamiltonian
parameters [61].

the splittings between the 5D0 and 5D1 states are still large.
The influence of the large crystal field is seen more strongly
in the ground state. The large splitting within the 7F1 state
pushes the MJ = ±1 doublet far closer to the 7F0 state. The
resulting large mixing via the magnetic dipole interaction
results in a pseudonuclear Zeeman effect almost twice the
size of the bare moment in the x and y directions. Conversely,
since the 7F1 singlet state is pushed up, the z component of
the pseudonuclear Zeeman effect is small (<2 MHz T−1) as
it arises from mixing with this term. The result is gx,y and gz

values of similar magnitude but opposite sign, agreeing well
with the experimental values. Differences in the calculated
and experimental 7F0 g-values are due to inaccuracies in the
fitted crystal-field levels as the mixing of states is proportional
to the splitting as evidenced in Eq. (24).

Previous works have attempted to explain the large
pseudonuclear Zeeman contribution observed in 7F0 of the
C3v center [27,61]. This was done without the use a crystal-
field calculation and it was thought that J mixing of 7F2 into
7F0 would not exceed 1%. Based on this assumption it was
concluded that J mixing could not explain the observed de-
viations of the electronic Zeeman and magnetic dipole matrix
elements from their free-ion values. However, by performing a

TABLE IV. 151 EuCl3 · 6H2Ospin Hamiltonian parameters cal-
culated from crystal-field fitting compared to experimental spin
Hamiltonian parameters [69]. Note that we have transformed the
spin Hamiltonian parameters of Ref. [69] into the standard electron
paramagnetic formalism: the zyz Euler rotation convention, Eq. (A1).
Further, we have chosen the opposite set of equivalent spin Hamilto-
nian E , gx and gy parameters to match the crystal-field fit as described
in the text.

7F0
5D0

Calc Expt Calc Expt

Dpq( MHz) 0.0550 – 0.000239 –
Epq( MHz) 0.0938 – 0.000725 –
γpq(◦) −68.33 – −68.33 –
D4 f ( MHz) 2.109 – 0.0497 –
E4 f ( MHz) 4.275 – 0.199 –
γ4 f (◦) −68.01 – −68.01 –
Dlat( MHz) −1.866 – −1.875 –
Elat( MHz) 9.263 – 9.284 –
γlat (◦) 12.89 – 12.89 –
Dtot( MHz) 0.29718 0.35692 −1.82529 −1.85868
Etot( MHz) 5.29024 5.29026 9.08941 9.08595
γQtot (◦) 5.43 2.93 12.76 13.22
gx( MHzT−1) 4.115 ±4.029 9.690 9.666
gy( MHzT−1) −1.723 ∓1.504 9.647 9.293
gz( MHzT−1) 2.857 3.006 9.686 10.025
γM (◦) 21.81 22.69 19.30 3.1

complete crystal-field calculation, we have been able to show
that J mixing is far larger than previously thought, close to
13%, which is sufficient to explain the observed pseudonu-
clear Zeeman effect.

C. EuCl3 · 6H2O C2 center

EuCl3 · 6H2O is a stoichiometric crystal in which the
Eu3+ion occupies a single site of C2 symmetry. Several papers
over many years have studied the electronic and Zeeman-
hyperfine structure [62–68], and it has more recently been
investigated for quantum information applications [69–71].

The nonaxial site symmetry means that additional crystal-
field terms must be included: 15 crystal-field parameters
compared to the 5 (6) for the C4v (C3v) sites. The large number
of crystal-field parameters caused previous workers to fit the
EuCl3 · 6H2Ocrystal field in the higher C2v symmetry [63],
but it is precisely the additional crystal-field terms that gen-
erate the correctly shaped spin Hamiltonian quadrupole and
Zeeman tensors. The quadrupole and Zeeman tensors arising
from each of the interactions described in Sec. III B are no
longer axial, and the principal axes of these tensors need only
coincide along the C2 direction. Here, we use a selection of
the energy levels from Ref. [63] along with some new 7FJ

levels determined from fluorescence measurements to fit the
site (see Table I in Ref. [39]) using C2 symmetry and the
method described in Sec. IV. Fitted crystal-field parameters
are given in Table I, and experimental and calculated spin
Hamiltonian parameters given in Table IV. The fitted crystal-
field parameters are notably different to the those of Ref. [63].
This is due to a combination of the lowering of symmetry from
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FIG. 3. (a) Calculated zero field splittings of the EuCl3 · 6H2OC2

site with experimental splittings given in brackets. (b) Calculated
(blue) and experimental (orange) Zeeman splittings of the 5D0 B →
A (top) and C → B (bottom) hyperfine transitions for a magnetic
field spiral of 400 mT. (c) Calculated (blue) and experimental
(orange) Zeeman splittings of the 7F0 E → D (top) and F → E
(bottom) hyperfine transitions for a magnetic field spiral of 400 mT.
Experimental points are calculated from published experimental spin
Hamiltonian parameters [69].

C2v to C2 and the use of different fixed free-ion parameters.
Despite the low symmetry, the agreement between experimen-
tal and calculated hyperfine splittings is excellent, as shown
in Fig. 3. To display the Zeeman splitting in this nonaxial site,
we have calculated the structure for the magnetic field spiral
in Eq. (34).

Again, the excited state quadrupole is dominated by the
lattice term, where the additional parameter E accounts for
the asymmetry of this nonaxial site. The calculated wave
functions

(7F0) = (−0.11 − 0.99i)|7F0, 0〉 + (0.05 + 0.04i)|7F2, 2〉
+ (−0.04 + 0.05i)|7F2,−2〉, (40)

(5D0) = (−0.34 − 0.94i)|5D0, 0〉, (41)

show the strong mixing of the MJ = ±2 7F2 levels into 7F0 due
to the large B2

2 crystal-field parameter. Similarly, there is no
mixing of the MJ = 0 7F2 level into 7F0 by the much weaker
B2

0 crystal-field parameter. As the rank two crystal-field pa-
rameters are directly related to D and E , this explains the
large asymmetry of the spin Hamiltonian quadrupole contri-
butions. There is close agreement between the experimental
and calculated values for both the principal axes values and

orientation of the tensor. The ground state has comparable 4 f
and lattice quadrupole contributions. These two terms have
different orientations of the principle axes, leading to the
overall quadrupole tensor in the ground state being misaligned
from the excited state by 10 ◦, in reproducing the rotation seen
in the experimental data. The fit also resolved the ambiguity
in the sign of E : as described in Sec. III B, in a C2 site the sign
of E is poorly defined in a spin Hamiltonian model because
a reversal of sign can be compensated for by rotating the M
tensor to redefine the orientation of the x and y axes. However,
the sign of E has physical significance in the crystal-field
model, and the fit shows that, indeed, the sign of E is negative
and the experimental spin Hamiltonian parameters need to be
transformed E → −E , (gx, gy) → (gy, gx ), γ → γ ± 90◦.

The excited state g values are again, only slightly reduced
from the bare moment. The larger, 10 ◦, discrepancy with the
experimental orientation of the Zeeman tensor is unsurpris-
ing: given the tensor is nearly isotropic, its orientation is not
well defined in either the experimental data or the theoreti-
cal calculation. In the ground state, the agreement between
experimental data and calculation is close, with the nonaxial
symmetry giving rise to three unique g values. From the point
of view of the crystal field, this occurs because the additional
crystal-field parameters split the MJ = ±1 doublet. The ma-
trix elements of Lx + 2Sx and Nx are large between 7F0 and the
MJ = +1 singlet of 7F1, and the matrix elements of Ly + 2Sy

and Ny are large between 7F0 and the MJ = −1 singlet of 7F1.
As the MJ = −1 singlet is the lowest lying 7F1 state with a
gap of 301 cm−1, the pseudonuclear contribution is largest for
fields applied in the y direction, resulting in a large negative
contribution to the g value, sufficient to reverse the sign of the
term. Similarly, the smaller x contribution from the MJ = +1
singlet 428 cm−1 away results in a gx value closer to the bare
moment, with gz taking a value between these two extremes.
Previous work [69] was only able to determine that gx and gy

had opposite signs; this fit resolves this sign ambiguity.
The Zeeman-hyperfine splittings were also calculated for

153Eu
3+

by scaling the hyperfine and nuclear Zeeman param-
eters by the ratio 153Eu / 151Eu of the electric quadrupole
moment Q (Q(153Eu) = 2.412 b and Q(151Eu) = 0.903 b
[72]) and nuclear magnetic moment gn (gn(153Eu) = 1.5330
and gn(151Eu) = 3.4717 [73]). This is not sufficient to match
the experimental hyperfine structure, since there is an isotope
shift in the crystal-field levels which slightly O(1%) alters the
electronic contributions to the hyperfine levels. This shift is
∼220 MHz on the 7F0 → 5D0 transition but can be expected
to be much larger on J �= 0 transitions. To account for these
differences, we fine-tuned the full set of crystal-field parame-
ters to obtain the fitted values in Table V.

Relative oscillator strengths between 7F0 and 5D0 may
be calculated using Eq. (21) (Table VI), or the equivalent
expression for the full crystal-field Hamiltonian. Since both
electronic states are singlets, the relative intensities are de-
termined by the overlap of the nuclear spin states between
the ground and excited states. This calculation provides an
independent test of the model with data that was not used
in the fitting process. Since experimental oscillator strengths
are not directly available, we instead compared the excitation
spectrum these values generate for the 7F0 → 5D0 transition
with the experimental spectrum for Eu 35Cl3 ·6H2O in Fig. 4.
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TABLE V. 153 EuCl3 · 6H2O spin Hamiltonian parameters cal-
culated from crystal-field fitting compared to experimental spin
Hamiltonian parameters [69]. Note that we have transformed the
spin Hamiltonian parameters of Ref. [69] into the standard electron
paramagnetic formalism: the zyz Euler rotation convention, Eq. (A1).
Further, we have chosen the opposite set of equivalent spin Hamilto-
nian E , gx and gy parameters to match the crystal-field fit as described
in the text.

7F0
5D0

Calc Expt Calc Expt

Dtot( MHz) 0.813097 0.791815 −4.815367 −4.80
Etot( MHz) 13.648917 13.660932 23.209892 23.21
γQtot (◦) 3.21 2.93 12.19 13.22
gx( MHzT−1) 1.878 ±1.794 4.315 4.269
gy( MHzT−1) −0.422 ∓0.673 4.298 4.105
gz( MHzT−1) 1.381 1.359 4.315 4.428
γM (◦) 23.08 22.69 20.47 3.1

The simulated spectrum has only three free parameters: the
overall amplitude, the isotope shift (which is too small to
be accurately reproduced by the crystal-field model), and a
parameter accounting for absorption. Given this, the very
good agreement confirms the calculated oscillator strengths
are accurate.

VI. DISCUSSION

We have shown crystal-field theory can be used to ac-
curately calculate Zeeman-hyperfine splittings of the J = 0
levels in several different Eu3+impurity centers as long as
the nuclear Zeeman and lattice electric quadrupole terms are
included in the calculation. In particular, the lattice contri-
bution to the nuclear quadrupole energy can be accurately
calculated as shown by the 5D0 splittings in each material,
including calculating the rotation about the symmetry axis
(in low symmetry) for both the lattice and 4 f contributions.
The crystal-field mixing of the 7F2 and 7F1 levels into 7F0 is
also well reproduced, allowing accurate determination of the

TABLE VI. Oscillator strengths of the EuCl3 · 6H2O 7F0 → 5D0

nuclear state transitions. State labels follow those of Fig. 3. Calcu-
lated values are given by the overlap of the crystal-field nuclear wave
functions and experimental values are taken from [69].

151Eu
3+ 153Eu

3+

Calc Expt Calc Expt

F → C 0.9608 0.9300 0.9446 0.9302
F → B 0.0341 0.0608 0.0483 0.0609
F → A 0.0050 0.0091 0.0071 0.0089
E → C 0.0378 0.0687 0.0541 0.0686
E → B 0.9322 0.8766 0.9031 0.8771
E → A 0.0299 0.0547 0.0428 0.0544
D → C 0.0013 0.0013 0.0013 0.0013
D → B 0.0336 0.0626 0.0486 0.0620
D → A 0.9650 0.9362 0.9501 0.9367

FIG. 4. Simulated and experimental spectra of the 7F0 → 5D0

nuclear state transitions of 151Eu3+ and 153Eu3+ in EuCl3 · 6H2O.
Simulated spectra were calculated using the function �( f ) =
A0α( f )e−α( f )A1 which accounts for absorption of the light in this
optically thick sample before reaching the point in the crystal from
which emission was collected. We used a Lorentzian line shape α

with FWHM line width 0.0122 GHz and an 153Eu3+transition offset
of 0.220 GHz.

hyperfine structure of this state. In the C3v case, we showed
that the large deviation of the magnetic dipole and electronic
Zeeman matrix elements from their free-ion values [61] is
indeed due to an extraordinarily large J mixing of the 7F2

and 7F4 levels into 7F0 , resolving an open question in the
literature.

The model fit the hyperfine structure of each material re-
markably well despite, in some cases, how few crystal-field
levels were available to constrain the fits. In fact, this is
the result of a unusual property of the low lying levels in
Eu3+: certain crystal-field levels have reduced matrix ele-
ments 〈||U (k)||〉 which are large for particular k-values
and small or near-zero for all other k, allowing those levels to
be used to constrain the corresponding crystal-field parameter.
In Eu3+, 7F1 is sensitive to B2

q, 7F2 is sensitive to B4
q, and

7F3 / 7F4 are sensitive to B6
q, along with 5L6 to a lesser extent.

Whilst there are similar relationships between parameters and
individual multiplets and crystal-field parameters in other ions
(see Ref. [38] for a full list), Eu3+is particular as these special
levels are low-lying, so are readily observed in fluorescence
spectra of the 5D0 level. Further, their assignment is rarely
ambiguous due to the true singlet nature of 7F0 and 5D0 levels,
and the large separations 7FJ and 5DJ levels. It is only in
particularly unusual cases such as the CaF2C3v site that 7F
multiplets overlap. For these reasons, Eu3+might be a good
dopant choice when trying to work out the crystal-field fitting
parameters of a new host material: since parameters vary
only slowly across the rare-earth series [31] parameters from
Eu3+could be used as an initial guess for other rare-earth
dopants for which assigning observed energy levels is more
difficult.

We have emphasized, and demonstrated, that crystal-field
fits can resolve spin Hamiltonian ambiguities. However, this
requires considerable care to be taken during the fitting pro-
cess, because there are ambiguities in the crystal-field fit itself
when fitting to only the energies of crystal-field levels. There
are two types of ambiguity that manifest in crystal-field fitting
[74,75]. The first are rotations of the crystal-field parameters
about the symmetry axis, which occur in centers with imag-
inary components. The rotational ambiguity arises when the

125141-10



COMPLETE CRYSTAL-FIELD CALCULATION OF ZEEMAN … PHYSICAL REVIEW B 105, 125141 (2022)

relationship between the crystal field and the experimental
crystallographic axes is unknown. It is only by constraining
the crystal-field parameters through measurements that de-
pend on the true orientation of the crystal, such as Zeeman
splittings, that we can resolve this ambiguity. The second
ambiguity is complete re-orientations of the symmetry axis
which can yield as many as six numerically equivalent crystal-
field parameter sets [75]. This is typically only an issue at
orthorhombic and lower symmetries [74,76] with multiple
nonzero crystal-field parameters of every rank. Whilst the
calculated splittings are equivalent for these different sets, the
calculated wave functions will differ. Therefore it is possible
to determine the correct set of crystal-field parameters by
comparing wave function dependent quantities, such as oscil-
lator strengths and Zeeman splittings, to experimental values.

In Eu3+, wave function-dependent information can be ob-
tained with relative ease. This includes the ordering of the 7F1

MJ levels, and the ordering of the 5D0 MI hyperfine states at
zero-field. In high symmetry where the only nonzero rank two
crystal-field parameter is B2

0, the 5D0 hyperfine state ordering
is sufficient due to the relationship between the splittings and
the lattice quadrupole [Eq. (16)]. However, in lower symmetry
the introduction of additional B2

q parameters means there is
insufficient information from just this ordering, and knowl-
edge of the ordering of the 7F1 levels is needed as well. This
can be achieved by measuring the polarized absorption or
fluorescence of the 7F1 ←→ 5D0 transition, or by measuring
the 7F0 nuclear Zeeman g values. Once the ordering of the
7F1 levels is known, these can be used to determine the sign
and magnitudes of B2

q as there is a straightforward relationship
between the ordering of the states and the parameters [38]. Re-
stricting the rank two parameters to a single set then restricts
the other crystal-field parameters. Solving the crystal-field
parameters sets ambiguities simultaneously solves the spin
Hamiltonian sign ambiguities.

Comparison of the experimental and calculated crystal-
field highlights a well-known limitation of the standard,
one-electron crystal-field model used here: the model omits
two-electron perturbation correlation effects (referred to as
the correlation crystal field) [38]. These additional effects
are known to be important for correctly predicting orderings
and splittings of the 5DJ states of Eu3+[77], and, indeed,
we see larger deviations between experimental and calculated
parameters for those levels (Table I of Ref. [39]). Additionally,
omitting these effects can cause a change in the free-ion pa-
rameters Fk , artificially pushing the 7FJ states down in energy.
This is the likely source of the discrepancies of the calcu-
lated 7F0 and 7F1 levels in EuCl3 · 6H2O, with each shifted
downward by significantly more than the standard deviation
σ = 15 cm−1. It is not normally practical to include the corre-
lation crystal field because doing so requires a large number of
additional parameters, up to 637 for the lowest site symmetry

[78]. Therefore effects that would otherwise be accounted
for by the correlation crystal field are instead absorbed by
the single-electron crystal field. This results in crystal-field
parameters that are not necessarily a true representation of the
crystal-field potential.

We made one modification to the model to minimize the
effect of this small distortion of the crystal-field parameters.
Eq. (16) shows that the lattice electric quadrupole N2

q param-
eters should have a fixed dependence on the single-electron
crystal-field B2

q parameters. Instead, we allowed the lattice
quadrupole parameters N2

q to vary semi-independently of B2
q,

which avoids propagating the distortion of the crystal-field
parameters through to the hyperfine structure. In this way, the
N2

q parameters are more representative of the true crystal field
than the B2

q parameters. This ensures a satisfactory fit to both
the hyperfine and crystal-field structure, whilst maintaining
consistency between the crystal-field and quadrupole parame-
ters.

VII. CONCLUSIONS

We have calculated Zeeman-hyperfine splittings of Eu3+in
three crystallographic centers, the C4v and C3v sites of CaF2as
well as the C2 site of EuCl3 · 6H2O, using a complete crystal-
field model, with excellent agreement between experimental
and calculated values. This was achieved by including the
lattice quadrupole interaction and nuclear Zeeman interaction
in the complete crystal-field calculation; an important step for
accurate calculations of hyperfine splittings for non-Kramers
singlet states. We have also demonstrated accurate crystal-
field calculations of oscillator strengths in low symmetry (C2)
by using all parameters required for the exact symmetry of the
site.
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APPENDIX

The zyz Euler rotation convention used is given by

R(ϕ, θ, ψ ) =
⎡
⎣ cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

⎤
⎦×

⎡
⎣cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦

×
⎡
⎣ cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

⎤
⎦. (A1)
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[43] A. P. Radliński and A. J. Silversmith, Phys. Rev. B 34, 86

(1986).
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