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Thermally enhanced Majorana-mediated spin transport in the Kitaev model
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We study how stable the Majorana-mediated spin transport in a quantum spin Kitaev model is against thermal
fluctuations. Using the time-dependent thermal pure quantum state method, we examine finite-temperature spin
dynamics in the Kitaev model. The model exhibits two characteristic temperatures, TL and TH , which correspond
to energy scales of the local flux and the itinerant Majorana fermion, respectively. At low temperatures (T � TL ),
an almost flux-free state is realized, and the spin excitation propagates in a similar way to that for the ground state.
Namely, after the magnetic pulse is introduced at one of the edges, the itinerant Majorana fermions propagate the
spin excitations even through the quantum spin liquid state region, and oscillations in the spin moment appear in
the other edge with a tiny magnetic field. When T ∼ TL , larger oscillations in the spin moments are induced in
the other edge, compared with the results at the ground state. At higher temperatures, excited Z2 fluxes disturb
the coherent motion of the itinerant Majorana fermions, which suppresses the spin propagation. Our results
demonstrate a crucial role of thermal fluctuations in the Majorana-mediated spin transport.

DOI: 10.1103/PhysRevB.105.125137

I. INTRODUCTION

Recently, spin transport has been attracting much inter-
est. One example is the spin current induced by a polarized
electric current in the ferromagnetic metals [1–8]. Another
example is the spin current in the magnetic insulators, where
magnons carry spins without the electric current [9–12]. In
both cases, the spin current flows in materials with mag-
netic orders. On the other hand, it has been revealed that
the spin transport is also realized in quantum spin liquids
(QSLs) [13–15], where no magnetic order is realized due to
strong quantum fluctuations [16–22]. One of the typical exam-
ples is provided by an antiferromagnetic S = 1/2 Heisenberg
chain. The anisotropic negative spin Seebeck effect in a can-
didate material, Sr2CuO3, indicates spin current mediated by
spinons [23], which are magnetic elementary excitations in
this system.

Another interesting playground for QSLs is given by the
Kitaev model [24], which is composed of direction-dependent
Ising interaction between S = 1/2 spins on the honeycomb
lattice. In the model, quantum spins are fractionalized into
itinerant Majorana fermions and local fluxes due to quantum
many-body effects. The itinerant Majorana fermions have
been observed as a half-quantized plateau in thermal quan-
tum Hall experiments [25,26] in the candidate α-RuCl3 [27].
Furthermore, it has been reported that the itinerant Majo-
rana fermions play a crucial role for spin transport without
spin oscillations [13–15]. It is known that Majorana and
flux excitations have distinct energy scales, which leads to
interesting thermodynamic properties such as double peaks
in the specific heat and a plateau in the entropy [28–32].
Therefore it is highly desired to clarify how stable such
Majorana-related phenomena are against thermal fluctuations.
This should be important to realize spintronics devices with
Majorana fermions.

To answer this question, we deal with the Kitaev model
with edges and consider the spin transport at finite tempera-
tures. By means of the time-dependent thermal pure quantum
(TPQ) state method [33–35], we examine the dynamics of the
system after the magnetic pulse is introduced at one of the
edges. Then, we discuss how thermal fluctuations affect the
Majorana-mediated spin transport.

The paper is organized as follows. In Sec. II, we introduce
the Kitaev model on the honeycomb lattice and explain the
time-dependent TPQ method. In Sec. III, we discuss how
stable the spin propagation in the Kitaev model is against
thermal fluctuations. A summary is given in the last section.

II. MODEL AND METHOD

We consider the Kitaev model on a two-dimensional hon-
eycomb lattice, which is given by the following Hamiltonian:

HK = −J
∑
〈i, j〉x

Sx
i Sx

j − J
∑
〈i, j〉y

Sy
i Sy

j − J
∑
〈i, j〉z

Sz
i Sz

j, (1)

where 〈i, j〉μ indicates the nearest-neighbor pair on the μ (=
x, y, z) bonds. The x, y, and z bonds are shown as green, red,
and blue lines in Fig. 1. Sμ

i is the μ component of an S = 1/2
spin operator at the ith site, and J is the exchange coupling
between the nearest-neighbor spins.

An important feature is that the Kitaev model has local
conserved quantities. The operator Wp is defined as

Wp = 26 · Sx
p1

Sy
p2

Sz
p3

Sx
p4

Sy
p5

Sz
p6

, (2)

where pi (i = 1, 2, . . . , 6) is the site in the plaquette p [see
Fig. 1(b)]. Since [HK ,Wp] = 0, [Wp,Wq] = 0 (p �= q), and
W 2

p = 1, the operator Wp is a Z2 local conserved quantity.
Each eigenstate of the Kitaev model is classified by the Hilbert
space specified by a set {wp}, where wp (= ±1) is the eigen-
value of Wp. Since the spin operator changes the sign of the
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FIG. 1. (a) Kitaev model with armchair edges. Green, red, and
blue lines indicate x, y, and z bonds, respectively. The bond length
is a/

√
3. The static magnetic field hR is applied in the right (R)

region, and no magnetic field is applied in the middle (M) region.
A time-dependent pulsed magnetic field is introduced in the left (L)
region. (b) Plaquette p with sites marked p1, p2, . . . , p6 shown for
the operator Wp.

corresponding eigenvalues wp for a certain state, the existence
of the local conserved quantity guarantees the absence of local
magnetic moments 〈Sμ

i 〉 and long-range spin-spin correlations
〈Cμ

i j〉 in the Kitaev model, where Cμ
i j = Sμ

i Sμ
j . The ground

state is realized in the space with wp = 1 for each plaquette,
which can be regarded as the flux-free space [24]. Besides the
flux degrees of freedom, the other remains: itinerant Majorana
fermions. It is known that gapless dispersion with the velocity
v [= (

√
3/4)aJ] appears in the itinerant Majorana excitation

in the flux-free space, where a is a lattice constant. It is also
known that finite energy is needed to create adjacent fluxes in
the system [24]. The energy scales of the itinerant Majorana
and the flux excitations are distinct from each other. In the
following, we discuss how the energy difference affects the
spin transport at finite temperatures.

To study the spin transport in the Kitaev model, we treat
the system with armchair edges, as shown in Fig. 1(a). We
note that qualitatively the same behavior discussed below can
be observed also for a system with zigzag edges. The system is
composed of L, M, and R regions, where the distinct magnetic
fields are applied in the z direction. In the L region on the
left edge, a time-dependent pulsed magnetic field hL(t ) is
introduced around t = 0. No magnetic field is applied to the
M region, while the static magnetic field hR is applied to the
R region. The model Hamiltonian is given as

H (t ) = H0 + H1(t ), (3)

H0 = HK − hR

∑
i∈R

Sz
i , (4)

H1(t ) = −hL(t )
∑
i∈L

Sz
i . (5)

We note that in the regions under the finite magnetic field,
the local operator Wp is no longer a conserved quantity. For
example, the local operator on the plaquette composed of sites
5, 12, 13, 14, 7, and 6 shown in Fig. 1(a) does not commute

with −hRSz
7. Therefore, in general, this leads to the finite

magnetizations in the R region.
In this paper, we examine the real-time dynamics in the

model at finite temperatures after the magnetic pulse is intro-
duced in the L region. The expectation value at time t for an
operator Ô is given as

〈Ô(t )〉 = 1

Z0
Tr[Ô(t )e−βH0 ], (6)

where β = 1/T , T is the temperature, Z0 (= Tr[e−βH0 ]) is
the partition function, and Ô(t ) = U †(t )ÔU (t ) with the time-
evolution operator U (t ). At zero temperature (T = 0), the
localized Z2 fluxes freeze into the flux-free state, and the
Majorana mean-field approach should work to evaluate the
expectation values [13,15,36–38]. On the other hand, at finite
temperatures, treating both excitations with distinct energy
scales should be hard with the above method. Thus we use
the TPQ state method [33,34], where local quantities are effi-
ciently evaluated without the trace calculations [39–45]. An
important point is that this numerical method takes several
energy scales into account on an equal footing and thereby
has been successfully used in several systems such as the
Heisenberg model on frustrated lattices [33–35,46–49] and
the Kitaev models [30,50–55].

In the TPQ method, the expectation value (6) is described
by means of the TPQ state as

〈Ô(t )〉 = 〈�T |Ô(t )|�T 〉 = 〈�T (t )|Ô|�T (t )〉, (7)

where |�T 〉 is the TPQ state at the temperature T and
|�T (t )〉 = U (t )|�T 〉. The time evolution of the physical quan-
tities can be evaluated by the time evolution of the TPQ
state [35].

Here, we briefly explain the TPQ method. A TPQ state at
T → ∞ is simply given by a random vector,

|�0〉 =
∑

ci|i〉, (8)

where {ci} is a set of random complex numbers satisfying∑
i |ci|2 = 1 and |i〉 is an arbitrary Hilbert basis. By multi-

plying a certain TPQ state by the Hamiltonian, the TPQ states
at lower temperatures are constructed. The kth TPQ state is
represented as

|�k〉 = (L − H0)|�k−1〉
||(L − H0)|�k−1〉|| , (9)

where L is a constant value, which is larger than the maxi-
mum eigenvalue of the Hamiltonian H0. The corresponding
temperature is given by

Tk = L − Ek

2k
, (10)

where Ek (= 〈�k|H0|�k〉) is the internal energy. Thermody-
namic quantities such as the entropy and specific heat can be
obtained from the internal energy and temperature.

We repeat this procedure until Tk = T and obtain the TPQ
state |�T 〉. Then, we calculate the time evolution of the TPQ
state |�T (t )〉 in terms of the Lanczos time-evolution meth-
ods [56–61]. We can efficiently obtain the expectation value
〈Ô(t )〉. When we discuss the real-time dynamics by applying
the pulsed magnetic field, it is useful to consider a change in
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the quantities as

�O(t ) = 〈Ô(t )〉 − 〈Ô〉0, (11)

where 〈· · · 〉0 is the expectation value for the static Hamilto-
nian H0.

When the TPQ method is applied to the finite cluster, the
obtained results are sensitive to its size and/or shape. This is
due to, at least, two effects. One of them is that low-energy
properties in the thermodynamic limit cannot be described
correctly in terms of finite clusters. Therefore the large system
size dependence of the physical quantities appears at low
temperatures although the TPQ method reproduces the correct
results at higher temperatures. The other is the random depen-
dence in the initial TPQ state. This should become negligible,
by taking a statistical average of the results for independent
TPQ states. Nevertheless, we sometimes meet with difficulty
in evaluating time-dependent quantities, since each TPQ state
is not an eigenstate of the Hamiltonian. Namely, ill oscilla-
tions appear in the physical quantities with respect to time
even without time-dependent perturbations, unless the quanti-
ties are conserved ones. Although this oscillation should be
neglected in the statistical average, the sample dependence
is somewhat large even at high temperatures. To avoid this
problem, we construct two time-dependent TPQ states from
the common TPQ state as |�T (t )〉 and |�0

T (t )〉 = U0(t )|�T 〉,
where U0(t ) is the time-evolution operator for the system de-
scribed by H0. Then, we calculate 〈Ô(t )〉0 = 〈�0

T (t )|Ô|�0
T (t )〉

instead of 〈Ô〉0 and evaluate the change in the quantities (11),
where unphysical oscillations should be canceled. This allows
us to obtain �O(t ) efficiently and to discuss correctly how the
external field affects the Kitaev system at finite temperatures.
We have confirmed that, in a 16-site cluster, our TPQ results
are in good agreement with the results obtained by the finite-
temperature exact diagonalization (not shown). Even in a large
cluster (N = 28), the TPQ results at the lowest temperature
T/J = 0.01 agree well with the results at zero temperature
obtained by the Lanczos method, which will be shown later.
Therefore we believe that the time evolution of physical quan-
tities can be examined quantitatively by means of the TPQ
method. In this paper, we mainly consider the Kitaev model
with N = 28, where N is the total number of sites. The model
is schematically shown in Fig. 1(a). The static magnetic field
in the R region is set to be hR = 0.01J , which is smaller than
the critical values hc [36,37,62]. Before discussing the time
evolution, we first demonstrate equilibrium quantities of the
Kitaev model. Applying the TPQ method to the Hamiltonian
H0 with hR/J = 0.01 on the 28-site cluster with armchair
edges, we obtain the entropy S, specific heat C, internal energy
E , and expectation value 〈Wp〉. The results are shown in Fig. 2.
We clearly find double peaks in the specific heat at TL/J ∼
0.019 and TH/J ∼ 0.36 and shoulder behavior in the entropy
around T/J ∼ 0.1. It is also found that E is largely changed
around TH , while 〈Wp〉 is changed around TL. These results are
consistent with the fact that TL and TH correspond to typical
energy scales of the local fluxes and the itinerant Majorana
fermions, respectively. The residual entropy originates from
the existence of the edge states in the cluster. As mentioned
above, low-temperature properties are sensitive to the cluster
since low-energy excitations depend on the size and/or shape.
Nevertheless, the spin fractionalization inherent in the Kitaev

FIG. 2. (a) Specific heat C (blue line) and entropy S (orange
line), and (b) internal energy E (blue line) and expectation values
of local conserved quantities 〈W 〉p (orange line) as a function of T/J
in the Kitaev system (N = 28) with the armchair edges described
by H0.

model can be captured even in the 28-site system with edges.
This allows us to discuss how thermal fluctuations affect the
spin propagation in the Kitaev model qualitatively.

III. RESULTS

Now, we study the real-time dynamics of the Kitaev system
at finite temperatures after the Gaussian magnetic pulse is
introduced in the L region. The form of the Gaussian pulse
is given as

hL(t ) = A√
2πσ

exp

[
− t2

2σ 2

]
, (12)

where A and σ are the strength and width of the pulse. Here,
we set σ = 2/J and A = 1. Taking the average over more than
100 independent TPQ states, we calculate the time evolution
of local physical quantities. It is known that the spin transport
through the Kitaev QSL region is mediated by the Majorana
fermions [13,15]. To avoid discussion of the reflection around
the right edge, we define the arrival time of oscillations trig-
gered by the magnetic pulse at x as t∗ = x/v, where x is the
coordinate of the ith site or the midpoint of the bond [see
Fig. 1(a)].

Figure 3 shows the change in the local magnetizations in
the L, M, and R regions at T/J = 0.01. We note that the
cluster treated here has translational and mirror symmetries
in the perpendicular direction to the x axis, and four sites with
a certain x coordinate are topologically equivalent. In the L
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FIG. 3. Real-time evolution of the changes in the local magneti-
zations �Sz

i in the system with hR/J = 0.01 after the introduction
of the pulsed magnetic field with A = 1 and σ = 2/J . Solid and
dashed lines represent the results at the temperatures T/J = 0.01
and T/J = 0, respectively. For clarity, �Sz

i (t ) for sites 11 and 14
are plotted on a scale multiplied by 10.

region (site 8), no magnetic field is applied at t → −∞, and
thus no magnetic moment appears. We find that the pulsed
magnetic field induces the magnetic moment �Sz

8(t ) at the
same time as the pulse is introduced. On the other hand, no
magnetic moments are induced in the M region (site 11). This
is consistent with the fact that the existence of local conserved
quantities guarantees the absence of the magnetic moments
even after the magnetic pulse is introduced. In the R region,
the tiny static magnetic field hR is applied, and the magnetic
moment appears with 〈Sz

14〉 ∼ 0.092 at t = −∞. We find that
the spin oscillation is induced at site 14 around t ∼ 3/J . This
means that the wave packet triggered by the magnetic pulse
in the L region reaches the R region through the M region
without spin oscillations. The peculiar spin transport is medi-
ated by itinerant Majorana fermions [13]. We also apply exact
diagonalization to this system and calculate the spin oscilla-
tion at zero temperature. The obtained results are shown as the
dashed lines in Fig. 3. We find that the spin oscillation for the
ground state is slightly different from that at T/J = 0.01. This
should imply that few excited fluxes influence the motion of
the itinerant Majorana fermions.

To clarify how the Majorana-mediated spin transport is
modified at finite temperatures, we first focus on the time
evolution of the nearest-neighbor spin-spin correlations Cμ

i j (t )
on the μ bond. This quantity is proportional to the bond
energy, and thereby the oscillation indicates the energy flow
for the Majorana-mediated transport [14]. Figure 4 shows the
real-time evolution of the change in the spin-spin correlations
in the M region. Note that in the M region the spin moments
〈Sz

i (t )〉 = 0 (not shown). We find that at T = 0, the oscil-
lations of �Cz

3,10(t ) and �Cz
11,18(t ) start at t ∼ −2.5J and

t ∼ −1.5J , respectively (see insets of Fig. 4). This difference
in time means that the energy injected by the magnetic pulse
in the L region in turn flows through the M region, which
is in contrast to there being no oscillations in the magnetic
moments (see Fig. 3). For both bonds, the oscillation is little
changed at T/J < 0.01. On the other hand, at T/J � 0.01, it

FIG. 4. (a) and (b) Real-time evolution of the change in the spin-
spin correlation in the M region at several temperatures. The results
at zero temperature are obtained by the exact diagonalization. Dashed
vertical lines represent the time t∗ for the corresponding bonds. The
insets of (a) and (b) are corresponding magnified graphs at −3 <

tJ < 1 with the same magnification.

is rapidly changed, and its intensity monotonically decreases
with increasing temperatures. This behavior seems a gen-
eral feature in the correlated systems, where the propagation
smears due to thermal fluctuations.

By contrast, different behavior appears in the change in
the magnetic moment in the R region. The results with sev-

FIG. 5. Real-time evolution of the change in the local magneti-
zation �Sz

14(t ) in the R region. The dashed vertical line represents
the time t∗

14.
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FIG. 6. The orange circles represent �Sz
14(t ) at t = t∗

14, and the
blue line represents the magnetic susceptibility of the N = 28 cluster
(see the inset). The orange arrow represents the result in the ground
state obtained by the exact diagonalization. The three dashed vertical
lines indicate TL/J , Tχ/J , and TH/J .

eral temperatures are shown in Fig. 5. At low temperatures
(T/J � 0.01), shoulder behavior in �Sz

14 appears around t =
t∗. Beyond T = TL, shoulder behavior smears, and the time
evolution becomes monotonic. The increase in |�Sz

14(t )| im-
plies that spin oscillations triggered by the magnetic pulse
are enhanced by thermal fluctuations. With further increasing
temperatures, its magnitude decreases and almost vanishes
when T � TH . This should originate from thermal fluctuations
for both Z2 fluxes and itinerant Majorana fermions.

Now, we discuss the oscillation of the local moment in
the R region in more detail, regarding |�Sz

14(t )| at t = t∗
14

as its representative magnitude. Figure 6 shows the temper-
ature dependence of the quantity (orange circles). It is found
that, at zero temperature, Majorana-mediated spin transport
appears with |�Sz

14(t∗
14)| ∼ 0.0022. This value changes little

when T/J � 0.01. With increasing temperatures, |�Sz
14(t∗

14)|
increases and takes a maximum around T/J ∼ 0.03. Further
increase in the temperature decreases the value monotoni-
cally due to thermal fluctuations. This nonmonotonic behavior
reminds us of the magnetic susceptibility of the bulk sys-
tem [63–68].

Then, we consider a 28-site Kitaev cluster with the periodic
boundary conditions along the x and y directions (see the inset
of Fig. 6). Applying the TPQ method to this cluster with the
tiny uniform magnetic field h (= 0.01J ) in the z direction,
we obtain the static susceptibility χ = ∑N

i Sz
i /(hN ). We show

the results with the solid line in Fig. 6. One can see that the
susceptibility behaves nonmonotonically against the temper-
ature and shows a broad peak around T = Tχ (∼ 0.027J ).
This nonmonotonic behavior originates from two competing
effects. One is the thermal fluctuation, which tends to suppress

the susceptibility. The other is the existence of the finite gap
of the Z2 fluxes. Due to the spin fractionalization, one spin is
represented by the flux and itinerant Majorana fermion.

The flux becomes thermally activated at finite tempera-
tures, in particular, around TL, which makes the spin sensitive
against the external field. Our results show that the tempera-
ture dependences of the magnetic oscillations induced by the
magnetic pulse and the susceptibility are essentially the same.
This implies that, also for the spin transport, the competition
between the thermal fluctuations and the thermal activation of
Z2 fluxes plays a role similar to the case of the susceptibility,
leading to a nonmonotonic temperature dependence.

IV. CONCLUSION

We have investigated how stable the Majorana-mediated
spin transport in a quantum spin Kitaev model is against
thermal fluctuations. The finite-temperature spin dynamics
has been examined by applying the time-dependent thermal
pure quantum state method to the Kitaev model. At low
temperatures (T � TL ), an almost flux-free state is realized,
and the spin excitation propagates similarly to that for the
ground state. When T ∼ TL, larger oscillations in the spin mo-
ments are observed, comparing with the results at the ground
state. At high temperature (T ∼ TH ), both itinerant Majorana
fermions and localized Z2 fluxes strongly fluctuate thermally,
which suppresses the spin oscillations. We have also con-
firmed that such a phenomenon appears even in the Kitaev
cluster with zigzag edges. Therefore our results demonstrate a
crucial role of thermal fluctuations in the Majorana-mediated
spin transport in the Kitaev model.

We have found the enhancement of the spin oscilla-
tion around T ∼ Tχ by considering the ferromagnetic Kitaev
model of a finite cluster. In future, it is important to elucidate
the case of the antiferromagnetic Kitaev model. In addition,
since the thermally activated fluxes also exist in Kitaev clus-
ters with different numbers of sites, thermally enhanced spin
transport should not be sensitive to the system size, but it
is also important to clarify how robust this nonmonotonic
behavior is against changes in the size and whether it survives
in more realistic setups with the Heisenberg terms and/or
disorders.
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