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We develop a formulation of the coherent potential approximation (CPA) on the basis of the Wannier
representation to advance a computationally efficient method for the treatment of homogeneous random alloys
that is independent of the applied first-principles electronic structure code. To verify the performance of this
CPA implementation within the Wannier representation, we examine the Bloch spectral function, the density of
states, and the magnetic moment in Fe-based transition metal alloys Fe-X (X = V, Co, Ni, and Cu) and compare
the results with those of the well-established CPA implementation based on the Korringa-Kohn-Rostoker
(KKR) Green’s function method. The Wannier-CPA and the KKR-CPA methods lead to very similar results.
The presented Wannier-CPA method has a wide potential applicability to other physical quantities and large
compound systems because of the low computational effort required.
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I. INTRODUCTION

Many substitutional alloys show a fascinating richness in
their physical properties depending on their composition. For
example, in spintronics, the spin Hall angle can be tuned by
alloying [1]. Another example is the possibility to induce
magnetism in semiconductors by the addition of impurities
[2].

The methods to calculate the electronic structure of sub-
stitutional alloy systems have been developed since the 1930s
[3–5]. The simplest approach for calculations for alloys is the
virtual crystal approximation (VCA), in which the concen-
tration average of the potential is placed on each site of the
lattice [6,7]. Although the VCA seems to be a good approx-
imation for metals with a simple free-electron-like electronic
structure such as Na, K, and Al, it is known that the VCA
completely fails to yield correct physical properties for transi-
tion metal alloys [4]. In particular, the VCA fails to describe
element-specific properties of an alloy, which are relevant,
for example, in hyperfine interactions [3]. This shortcoming
of the VCA was removed by Korringa [8] and Beeby [9],
who introduced the so-called average t-matrix approximation
(ATA). Within this approach, the concentration average of the
single-site scattering matrix, the t matrix, is used instead of the
potential to consider component-projected properties. How-
ever, the ATA still has formal problems, sometimes leading to
unphysical results [3]. For homogeneous random alloys, the
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most sophisticated single-site method solving these problems
is the coherent potential approximation (CPA). The CPA is
a mean-filed theory treating alloys by introducing an effec-
tive medium defined by its average scattering properties first
proposed by Soven [10] and Taylor [11]. Formulating the
CPA within the framework of multiple scattering or Korringa-
Kohn-Rostoker (KKR) formalism implies that embedding one
of the alloy components in the CPA should lead to no addi-
tional scattering on average. Accordingly, unlike for the VCA
and ATA methods, one has to determine the effective medium
self-consistently for the CPA calculations.

As the CPA can easily be applied on the basis of elec-
tronic structure methods working with the Green’s function,
it is usually formulated in combination with the tight-binding
(TB) method or the KKR Green’s function method [12,13],
which is a well-established first-principles electronic structure
calculation method. Especially, using the KKR-CPA method
[14,15], quite a few physical properties of alloy systems have
been studied, such as the magnetic structure properties of
dilute magnetic semiconductors [16], exchange coupling, and
the corresponding magnetic transition temperature [17,18], as
well as transport properties, such as the extrinsic and intrinsic
contributions of the anomalous [19] and spin Hall effects
[20]. This situation is due to a characteristic feature of the
KKR method. Unlike other general first-principles calculation
methods, such as the standard pseudopotential-based meth-
ods and the linearized augmented plane wave method, the
Green’s function of the system is used already within the self-
consistent field (SCF) calculation step when performing KKR
calculations. Therefore, it is easy to construct the Green’s
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function for alloy systems by means of the KKR-CPA and
to directly calculate physical quantities using the resulting
Green’s function. In the field of first-principles calculations,
the CPA is alternatively formulated on the basis of the tight-
binding linear muffin-tin orbital method [21] as well as the
linear combination of atomic orbitals methods [22,23].

In this contribution, we present an implementation of the
CPA that is similar to the KKR-CPA Green’s function method
but more efficient and widely applicable while keeping the
accuracy of the prediction of physical properties that the
KKR-CPA method possesses. For the practical realization of
this goal, we focus on the Wannier formulation. The reason for
this is that we can construct Wannier functions from any kind
of first-principles calculation method if the wave function is
available, and we can set up a corresponding TB model from
the obtained Wannier functions. This means that we present a
computational method for the electronic structure of random
alloys that can be combined with any kind of first-principles
computational method. Moreover, we can substantially reduce
the computational time when using the Wannier formalism
if it is successfully combined with the CPA as it can be
performed independently of the SCF calculations done by
the first-principles calculations. However, the CPA method
cannot be simply incorporated into the Wannier representation
since two ambiguities remain in the calculation that do not
exist in the KKR-CPA method. One is an ambiguity in the
determination of the relative reference values of the on-site
potentials for the elements that form an alloy since the SCF
loops are executed independently for each element in the case
of the Wannier representation. Concerning this problem, we
propose a very simple method in Sec. II B to set the reference
values from the results of some few supercell calculations.
The other is setting the site off-diagonal terms for the CPA
Hamiltonian. For the site off-diagonal terms, we employ the
concentration average for each component of an alloy as it
was applied in previous works dealing with the implementa-
tion of the CPA [13,22]. To clarify the validity of these two
assumptions, it is quite important to compare basic physi-
cal quantities obtained with the Wannier-CPA method with
those calculated using well-established CPA implementations
such as the KKR-CPA method. Although works on alloys
using the Wannier representation in combination with the CPA
[24–33], the CPA+dynamical mean-field theory [34–36], the
cluster coherent potential approximation [37,38], and the typ-
ical medium dynamical cluster approach [39] exist, there is
no study testing the validity of the Wannier-CPA method by
comparing physical quantities such as the spectral functions
and the magnetic moments calculated by the Wannier-CPA
method with those obtained for well-established and well-
tested CPA implementations. Therefore, in this study, we test
the performance of the Wannier-CPA method under these two
assumptions and compare our results with the results from the
KKR-CPA method. We will discuss the effect of the reference
on-site potential in Sec. III C. Since the Wannier functions are
widely used to investigate many physical properties [40,41],
we can expect a wide range of applications of this method
once the performance of the Wannier-CPA method becomes
clear.

In the following, we first present our formulation of the
CPA in terms of the Wannier representation. As examples

for its application, we show results for the Bloch spectral
function, the density of states (DOS), and the magnetic mo-
ment in the Fe-based 3d transition metal alloys Fe-V, Fe-Co,
Fe-Ni, and Fe-Cu. We verify the accuracy of the Wannier-CPA
method by comparing the results with those calculated via
the KKR-CPA method. Despite the rather simple formulation
for the Wannier-CPA method, the quantities obtained in this
way reproduce quite well the results obtained with the more
demanding KKR-CPA method.

II. FORMULATION

To develop a simple and general computational method for
homogeneous random alloys, we formulate the CPA on the
basis of the Wannier formalism. We evaluate the performance
of the Wannier-CPA method by comparing it with results ob-
tained via the well-developed KKR-CPA calculation method.
We first present the formulation of the CPA in random alloys
as used within the KKR-CPA method and then adapt it for the
Wannier representation.

A. KKR-CPA

The most prominent feature of the KKR Green’s function
method is that the Green’s function of the system is set up and
used during the SCF calculations. Within the KKR formalism,
the Green’s function for a pure system is given as follows [42]:

G(r + RI + Qi, r′ + RJ + Q j, E )

=
∑
�,�′

Zi
�(r, E )τ IiJ j

��′ (E )Z j×
�′ (r′, E )

− δIJδi j

∑
�

[
Zi

�(r, E )Ji×
� (r′, E )θ (r′ − r)

+ Ji
�(r, E )Zi×

� (r′, E )θ (r − r′)
]
. (1)

Here, RI and Qi give the positions of the unit cell I and
atomic site i, respectively, and r and r′ refer to the positions
of electrons on atoms at (RI , Qi ) and (RJ , Q j ), respectively.
The functions Zi

� and Ji
� stand for the regular and irregular

solutions of the single-site Schrödinger or Dirac equation for
site i, respectively. In the relativistic formulation, the sub-
script � = (κ, μ) stands for the combination of the relativistic
spin-orbit (κ) and magnetic (μ) quantum numbers, and the
superscript × refers to the left-hand-side solution of the Dirac
equation [43]. The general definition of the scattering path
operator τ

IiJ j
��′ (E ) accounts for all scattering events connecting

site i of the Ith unit cell and site j of the Jth unit cell.
Since the Green’s function of the system is obtained di-

rectly when using the KKR method, it is easy to calculate
physical quantities or to incorporate the effect of alloying
through the CPA; they can be formulated in terms of the
Green’s function. The CPA condition of the KKR formalism
is formulated by the following equations [14]:

τ 0i0i
c (E ) =

∑
α

cατ 0i0i
α (E ), (2)

τ 0i0i
c (E ) = 1

�BZ

∫
BZ

d3k
[
t c

−1(E ) − G0(k, E )
]−1

ii
, (3)

τ 0i0i
α (E ) = [

t i
α

−1
(E ) − t i

c
−1

(E ) + τ 0i0i
c

−1
(E )

]−1
, (4)
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where τ 0i0i
c (E ) is the site-diagonal CPA scattering path opera-

tor, the subscript α is the index for the atom types in the alloy,
cα is the concentration of atom α, �BZ is the volume of the
Brillouin zone (BZ), the underline indicates matrices on the
basis of the combined spin angular momentum index �, and
the double underline represents matrices with respect to the
combined spin angular momentum index � and the site index
i. The information about the coherent potential in a random
alloy is included in t i

c(E ), which is the single-site scattering
matrix for the coherent potential. The CPA scattering path
operator τ 0i0i

c (E ) is given by the BZ integral in terms of the
CPA single-site scattering matrix and so-called KKR structure
constant G0(k, E ). The last equation gives the scattering path
operator for an embedded α atom on site i in the CPA medium.

Unlike the previously mentioned VCA and ATA methods,
we have to determine the CPA medium self-consistently for
the given t matrices t i

α (E ) of the components. Several al-
gorithms have been suggested to deal with the above CPA
equations. The most commonly used algorithm was worked
out by Mills et al. [44] and allows one to obtain the CPA
scattering path operator τ 0i0i

c (E ) using an iterative process (for
more details, see Ref. [45]).

B. Wannier-CPA

While the Green’s function is directly supplied by the
KKR-CPA method, we first have to construct a TB Hamil-
tonian in the case of the Wannier formalism according to the
expression

H =
∑
I,J

∑
i, j

∑
n,n′

|RI + Qi, n〉 HIiJ j
nn′ 〈RJ + Q j, n′| , (5)

where n is the index of the Wannier functions including spin.
To make use of the CPA, we divide the Hamiltonian into site
diagonal and off-diagonal terms as in the CPA, in which a
single-site theory is formulated only for diagonal terms:

HIiJ j
nn′ = (1 − δIJδi j )t

IiJ j
nn′ + δIJδi jv

i
nn′ , (6)

where v and t are the on-site potential and the site off-diagonal
terms of the Hamiltonian of the Wannier basis, respectively.
To apply the CPA to the Wannier functions, we construct the
Green’s function of the system from the TB Hamiltonian.
Within the Wannier representation, the corresponding real-
space Green’s function is given by an integral over the BZ
as follows:

G0iJ j
nn′ (E ) = 1

�BZ

∫
BZ

d3k G i j
nn′ (k, E )e−ik·RJ , (7)

where G i j
nn′ (k, E ) is the Fourier transform of the Green’s func-

tion. Here, the Fourier transform reduces the computation
time by reducing the number of matrix elements in the Green’s
function compared to the real-space representation. In matrix
form, G i j

nn′ (k, E ) satisfies the following equation:

G(k, E ) = [
G−1

0 (E ) − T (k)
]−1

, (8)

where matrices with both atomic site and Wannier function
indices are indicated by a double underline. Here, the matrix
elements are given by

[G(k, E )]i j
nn′ = G i j

nn′ (k, E ), (9)

[
G−1

0 (E )
]i j

nn′ = δi j
(
δnn′E − vi

nn′
)
, (10)

[T (k)]i j
nn′ =

∑
J

(1 − δ0Jδi j )t
0iJ j
nn′ eik·RJ . (11)

The KKR multiple-scattering formulation for the CPA con-
dition cannot be used within the Wannier formalism because
of the complexity in defining the scattering path operator in
the TB model. Therefore, we used an equation mathematically
equivalent to the first equation in the KKR-CPA condition [see
Eq. (2)]. For this purpose, we exploit the representation of the
scattering operator t i

α (E ),

t i
α (E ) = [

vi
α − vi

c(E )
]{

1 − G0i0i
c (E )

[
vi

α − vi
c(E )

]}−1
, (12)

in which the fictitious coherent potential vi
c(E ) is replaced by

the real potential of the α atom vi
α at site i. Herein, G0i0i

c (E )
corresponds to the Green’s function of the coherent potential
in the reference unit cell. The CPA condition in the single-site
approximation is then given by

〈t i〉 =
∑

α

cαt i
α = 0, (13)

where we indicate the matrices with respect to the combined
indices of the Wannier functions n by a single underline. For
the numerical calculation of the coherent potential vi

c(E ), we
use an iterative method that is similar to the Mills algorithm
[46]. We update the nth temporary coherent potential vi

c
(n)(E )

in the following way. When the CPA condition is not satisfied
by the nth temporary coherent potential, we can define the
concentration averaged scattering operator as

〈t i〉(n) =
∑

α

cαt i
α

(n) �= 0. (14)

The next update for the coherent potential is obtained as
follows:

vi
c

(n+1)
(E ) = vi

c
(n)

(E ) + 〈t i〉(n) [
1 + G0i0i

c
(n)

(E ) 〈t i〉(n) ]−1
,

(15)

where the Green’s function is obtained from the nth coherent
potential vi

c
(n)(E ). We repeat the cycle until 〈t i〉(n) becomes

smaller than a threshold δ. We exploit the VCA for the initial
guess of the coherent potential as follows:

vi
c

(1)
(E ) =

∑
α

cαvi
α. (16)

To apply this formalism to real alloys, we have to con-
sider the following two points. One is the on-site potentials
of the two pure components since the density functional
theory (DFT)-based Wannier Hamiltonian does not provide
information about the reference value of these potentials. To
determine the relative on-site potential energies, we use the
supercell calculations as follows. Let us consider an A-B bi-
nary alloy. First, we perform DFT calculations for a supercell
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of eight atoms, A1B7 and A7B1, and construct the TB Hamil-
tonian in the Wannier basis. Then, we derive the difference of
the on-site potential of the 3d orbitals between components
A and B for both A1B7 and A7B1 and set their average as
	v

supercell
A−B . Then, we perform DFT calculations for pure A and

pure B and construct the Wannier TB Hamiltonian. We use
this Hamiltonian to calculate the CPA Green’s function, but
before starting the CPA calculation, we subtract a constant
from the diagonal terms of the on-site potential so that the po-
tential difference of 3d orbitals in pure A and pure B becomes
	v

supercell
A−B . The other point to consider is the determination

of the site off-diagonal term in the TB Hamiltonian since the
site diagonal terms as well as the site off-diagonal terms are
different for the two components. This is in sharp contrast
to the KKR-CPA formalism, where only the scattering path
operator depends on the component. In this paper, since we
consider alloys consisting of two transition metal elements,
we simply take a concentration average [13,22].

Accurate determination of the Fermi energy is important
for examining the magnetic properties of alloys. We set the
Fermi energy so that the total number of electrons

N = − 1

π
ImTr

∫ EF

dEGc(E ) (17)

is consistent with the number of electrons in the A-B alloy. A
complex contour Gauss-Legendre integral is used to calculate
the above integral. The Fermi energy of the system is deter-
mined iteratively using the DOS and the difference between
the total number of electrons of the alloy and the number of
electrons obtained by integrating the Green’s function up to
the temporary Fermi energy.

C. Computational steps of a Wannier-CPA calculation

The CPA calculations using the Wannier formalism are
organized as follows: First, we perform DFT calculations
using the QUANTUM ESPRESSO package [47,48] based on plane
waves and pseudopotentials. We use the ultrasoft pseudopo-
tentials [49] in the PSLIBRARY [50] with the functional type
of a generalized gradient approximation with the Perdew-
Burke-Ernzerhof exchange-correlation functional [51] and
with relativistic effects included. Here, we set the lattice con-
stant as the experimental value of bcc Fe a = 2.86 Å assuming
that bcc Fe is alloyed with other transition metal elements.

The Wannierization process is conducted by using the
WANNIER90 package [52–56] to reproduce the DFT energy
bands below EF + 3 eV, with EF being the Fermi energy. We
construct for each spin a nine-orbital model, which contains
one 4s, five 3d , and three 4p atomic orbitals. Although we
perform the Wannierization using wave functions obtained
with the pseudopotential method, the underlying electronic
structure calculation method used is irrelevant for the fol-
lowing discussion on the physical quantities. This implies in
particular that our Wannier-CPA scheme can be combined
with any band structure scheme that provides the correspond-
ing Wannier representation of the electronic structure as an
input.

Since the relative values of the reference for the on-site
potential are not given by the Wannier Hamiltonian, we de-
termine the difference of the on-site potential of 3d orbitals

between the Fe and X (X = V, Co, Ni, and Cu) components by
using 	v

supercell
Fe−X calculated in the nonmagnetic mode. Using

the on-site potential, we perform the Wannier-CPA calcula-
tions. We will discuss the dependence of the results on the
constant subtracted from the on-site potential of X in the
magnetic moment in the last part of Sec. III C.

The electronic structure calculation of the KKR-CPA
method is performed self-consistently using the fully relativis-
tic spin-polarized Munich SPR-KKR package [43,57]. For the
exchange-correlation functional, we employ the parametriza-
tion given by Vosko et al. [58]. An angular momentum cutoff
of lmax = 4 is used for the KKR multiple-scattering calcula-
tions. Here, we use the same lattice parameter a = 2.86 Å as
in the Wannier-CPA calculation.

As the Green’s function of a random alloy is obtained using
the process described above, we can calculate the Bloch spec-
tral function, the DOS, and the magnetic moment from the
obtained CPA Green’s function. In the following section, we
describe the results of calculating these quantities in transition
metal alloys and compare them with the results obtained with
the KKR-CPA method.

III. RESULTS AND DISCUSSION

In this section, we present results for various physical
quantities obtained using the Wannier-CPA method. We dis-
cuss their accuracy by comparing the Bloch spectral function,
the DOS, and the magnetic moment calculated with the
Wannier-CPA and the KKR-CPA methods. As an interesting
target material, we focus on the Fe-based 3d transition metal
alloys Fe-X (X = V, Co, Ni, and Cu). We selected the elements
X so that the atomic number of X is close to that of Fe. Here,
we omit Fe-Cr and Fe-Mn alloys, for which an antiferromag-
netic configuration is predicted in the alloy systems [59,60].
As is demonstrated in the following, we found excellent agree-
ment between the results obtained with the Wannier-CPA and
KKR-CPA methods for the considered alloys.

A. Bloch spectral function

First, we show the Bloch spectral functions of bcc Fe-Cu
alloys calculated using both the Wannier-CPA and KKR-CPA
methods to compare the basic electronic structure that deter-
mines physical quantities. The Bloch spectral function is the
imaginary part of the trace of the Green’s function given as
follows:

A(k, E ) = − 1

π
Im Tr Gc(k, E ). (18)

If we plot the wave vector and energy region where the Bloch
spectral function takes finite values, it shows a structure very
similar to the band structure or dispersion relation E (k) of the
pure systems. Figure 1 shows the representative Bloch spectral
function for bcc FexCu1−x (x = 0.0, 0.2, 0.4, 0.6, 0.8, and
1.0) alloys calculated using both the Wannier-CPA (left side)
and the KKR-CPA (right side) methods. We obtained similar
behavior for the Bloch spectral function of Fe-V, Fe-Co, and
Fe-Ni alloys. For this reason, we discuss only the details of the
calculations of the bcc Fe-Cu alloys. The calculations were
performed using the bcc structure for all the calculations on
Fe-Cu alloys for simplicity, although Cu takes the fcc structure
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FIG. 1. Bloch spectral functions along the high-symmetry lines
�-H -P-N-� for FexCu1−x with the concentrations (a) x = 0.00,
(b) x = 0.20, (c) x = 0.40, (d) x = 0.60, (e) x = 0.80, and (f) x =
1.00 calculated by the Wannier-CPA method and (g) x = 0.00, (h)
x = 0.20, (i) x = 0.40, (j) x = 0.60, (k) x = 0.80, and (l) x = 1.00
calculated by the KKR-CPA method.

in the pure form. Similarly, the calculations for the Fe-V, Fe-
Co, and Fe-Ni alloys were also performed by using the bcc
structure. For the calculation for pure Fe and Cu, we added
a small imaginary part of 0.1 mRy to the energy to obtain
visible Bloch spectra because the spectral structure consists
of a δ function for pure Fe and Cu. As shown in Fig. 1, we
obtain very close spectral structures from the Wannier-CPA
and KKR-CPA methods.

Since the Bloch spectral functions of the total state have a
rather complex structure, we resolved them with respect to the
spin directions. The corresponding Bloch spectral functions
for the spin-down and -up states in FexCu1−x are represented

FIG. 2. The same as Fig. 1, but projected to spin-down states.

in Figs. 2 and 3, respectively. As the concentration is changed
from Cu to Fe0.20Cu0.80, the spectral structure of Fe appears
between −1 and 1 eV in both the Wannier-CPA and the KKR-
CPA results, as shown in Figs. 2(b) and 2(h), which is about
2 eV lower than that for pure Fe. This spectral structure be-
comes clear and shifts to higher energies as the concentration
of Fe is increased to 0.40 and 0.60 in both methods.

The only major difference in the Bloch spectral function
between the Wannier-CPA and the KKR-CPA results appears
in the spectral structure of Fe0.80Cu0.20 near the H point in the
reciprocal lattice. We observed a pronounced structure near
−2 eV in the case of the Wannier-CPA method, as shown in
Fig. 2(e), which is strongly affected by the spectral structure of
Fe. On the other hand, in the KKR-CPA method, this feature
is mixed with the spectrum of Cu at around −5 eV, forming a
single-peak structure [Fig. 2(k)].
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FIG. 3. The same as Fig. 1, but projected to spin-up states.

For pure bcc Fe, we observed weak spectral features in the
spin-down channel that reflect the main spectra of the spin-
up states between −2 and 2 eV in the results obtained with
the Wannier-CPA and the KKR-CPA methods [Figs. 2(f) and
2(l)]. These weak features can be ascribed to the relativistic
effect of the mixing of spin-up and spin-down states by the
spin-orbit coupling.

Figure 3 shows the Bloch spectral functions for the spin-up
states in FexCu1−x calculated using both the Wannier-CPA
and KKR-CPA methods. Unlike the spectral structure of
Fe0.20Cu0.80 in the spin-down state, the blurred spectral struc-
ture near the Fermi energy does not show up in the spin-up
state, as shown in Figs. 3(b) and 3(h), forming a sharper struc-
ture over the entire region. This so-called virtual-crystal-like
behavior indicates that the spin-up spectra of pure Fe and
Cu are energetically closer to each other than those of the

FIG. 4. DOS of FexX1−x , where X atoms are (a) V, (b) Co, (c) Ni,
and (d) Cu alloys calculated by the Wannier-CPA method and (e) V,
(f) Co, (g) Ni, and (h) Cu alloys calculated by the KKR-CPA method.
The DOS of pure Fe is shown by red lines, and that of X is shown by
blue lines. For alloys, we show the DOS using intermediate colors
between red and blue depending on the concentrations of Fe and X .

spin-down states. For the same reason, the spectral structures
between −6 and −4 eV are less blurred than those between
−3 and −1 eV in FexCu1−x (x = 0.20–0.80) alloys since the
spectral structure of pure Fe and Cr are energetically closer
to each other between −6 and −4 eV. This behavior was
observed for both the Wannier-CPA and KKR-CPA methods
[Figs. 3(b)–3(e) and 3(h)–3(k)]. We again observed a weak
spectral feature corresponding to the main spectral structure
of the spin-down states in pure Fe between energies of −2
and 1 eV [Figs. 3(f) and 3(l)].

B. Density of states

Figure 4 shows the computational results for the DOS near
the Fermi energy (−2 to 2 eV) obtained with the Wannier-CPA
and KKR-CPA methods for bcc Fe-X (X = V, Co, Ni, and Cu)
alloys to monitor the occupation trend of the states in each
alloy. Here, the DOS is given by integrating the Bloch spectral
functions over the BZ:

D(E ) =
∫

BZ
d3k A(k, E ). (19)

We plot the DOS of pure Fe and the pure X component with
red and blue lines, respectively. For the alloy systems, we plot
the DOS with a neutral color between red and blue depending
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FIG. 5. The same as Fig. 4, but projected to the Fe component.

on the concentrations of Fe and X . Figure 4 shows that the
qualitative behavior of the DOS energy shift with increasing
X concentration is fully consistent for both the Wannier-CPA
and KKR-CPA methods. A representative example can be
seen in the spin-up DOS of Fe-Ni alloys. For the KKR-CPA
method [Fig. 4(g)], the peak structure arising from Fe at
around −1 eV is shifted to lower energies as the concentration
of Ni increases, reaching a minimum at around Fe0.50Ni0.50,
and is then shifted to higher energies. This behavior is repro-
duced quite well by the Wannier-CPA calculations, as shown
in Fig. 4(c).

To examine the element-specific properties of the DOS,
we define the component projection of the Green’s function.
According to Ref. [14], the CPA condition given by Eq. (13)
can be rewritten using the Green’s function as follows:

G0i0i
c (E ) =

∑
α

cαG0i0i
α (E ), (20)

where G0i0i
α (E ) is given by

G0i0i
α (E ) = G0i0i

c (E ) + G0i0i
c (E )t i

α (E )G0i0i
c (E ). (21)

Here, G0i0i
α (E ) gives the Green’s function when, for site i

of the zeroth unit cell, the t matrix of the CPA medium is
replaced by that for component α. Therefore, G0i0i

α (E ) cor-
responds to the α-component projection of the CPA Green’s
function. As the component projection of the Green’s function
is determined in the CPA cycle, the calculation of the element-
specific properties of the DOS is straightforward. Figures 5
and 6 show the Fe- and X -specific DOSs of Fe-X (X = V,

FIG. 6. The same as Fig. 4, but projected to the X component
(X = V, Co, Ni, and Cu).

Co, Ni, and Cu) alloys, respectively. Here, again, the DOS
of the alloy with a high Fe concentration is plotted with
reddish lines, and that with a high X concentration is shown
by bluish lines. On the whole, structural similarities in the
element-specific DOSs calculated with both the Wannier-CPA
and KKR-CPA methods can be found in Figs. 5 and 6, but we
can also see some small differences in the detailed structure.
For example, the Fe-component projection of the DOS of

Fe-V alloys in the V-rich region obtained with the KKR-CPA
method has a peak structure near −1.5 eV [Fig. 5(e)] which
is not observed in the spin-up DOS and quite small in the
spin-down DOS of the Wannier-CPA calculation [Fig. 5(a)].

C. Magnetic moment

In the previous two sections, we found that the Wannier-
CPA method can reproduce the Bloch spectral function and
the DOS of Fe-based transition metal alloys quite well. Fi-
nally, we discuss the physical quantities predicted by the
Wannier-CPA method. As an example, we focus on the mag-
netic moment. Concerning the magnetic moment in Fe-based
transition metal alloys, one of the best benchmarks is the
Slater-Pauling curve [61]. The Slater-Pauling curve is a con-
vex curve that appears when the saturation magnetization of
these alloys is plotted against the number of electrons per
atom. In Fe-Co alloys, it is known that the maximum of the
saturation magnetization occurs near Fe0.7Co0.3. The left and
right sides of the curve form a straight line with an angle of
45◦ with the horizontal axis of the Fe-based alloys when the
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FIG. 7. Magnetic moment of Fe-X (X = V, Co, Ni, and Cu)
calculated by (a) the Wannier-CPA and (b) KKR-CPA methods.

scales of one electron on the horizontal axis and one Bohr
magneton on the vertical axis are equal. Previous research
showed that the experimental results of the Slater-Pauling
curve are excellently reproduced by the KKR-CPA calcula-
tions [62,63]. Here, we compare our results for the magnetic
moment obtained with our Wannier-CPA method with those
of the KKR-CPA method.

Figure 7 shows the magnetic moment in the Fe-X (X =
V, Co, Ni, and Cu) alloys calculated by the Wannier-CPA
and KKR-CPA methods. There is a structural transition from
bcc to fcc in Fe-based alloys when the number of electrons
exceeds about 26.7. However, all the calculations were done
in the bcc structure for the one-to-one comparison between
the Wannier-CPA and KKR-CPA methods. We can conclude
from Fig. 7 that the Wannier-CPA calculation gives reliable
calculation results concerning the calculation of magnetic mo-
ments for the following reasons. First of all, the magnetic
moments calculated by the Wannier-CPA method form a typ-
ical Slater-Pauling curve, which takes a maximum moment in
the case of Fe0.75Co0.25 and intersects the horizontal axis at
an angle of almost 45◦. Furthermore, the calculated magnetic
moments in the bcc Fe-X (X = V, Co, Ni, and Cu) alloys using
the Wannier-CPA method are in good agreement with those
from the KKR-CPA method since the average values of the
deviation in magnetic moments are only 0.057μB, 0.064μB,
0.036μB, and 0.080μB, respectively. These results show that
the Wannier-CPA method can be a powerful tool for the pre-
diction of physical quantities expressed by the integral up to
Fermi energy despite its simple formulation.

Since we set the reference values of the on-site potential
using a simple method using supercell calculations, we dis-
cuss the effect of the change in the magnetic moment due
to deviation from the actual reference values of the on-site
potential. Since the difference in 	v

supercell
Fe−X (X = V, Co, Ni,

and Cu) obtained from Fe1X7 and Fe7X1 is within 1 eV [64],
we calculated the magnetic moment of Fe0.5X0.5 by adding
0.5 eV to the diagonal terms of the on-site potential of X in
the Wannier-CPA method. Then, we calculated the magnetic
moment by subtracting 0.5 eV from the diagonal terms of
the on-site potential of X and derived the difference between
the two moments. We divided it by the magnetic moment
calculated without changing the on-site potential and derived
the rates of change in the magnetic moment. These rates of
change in the magnetic moment were only 6.55%, 2.07%,
0.23%, and 4.72% in Fe0.5V0.5, Fe0.5Co0.5, Fe0.5Ni0.5, and
Fe0.5Cu0.5, respectively, even with the large difference of 1 eV
in the on-site potential. Since the difference in the reference

values of the on-site potentials between Fe and X from the
actual values has only a small effect on the physical quantities,
this method using supercells can be a simple and valuable way
to determine the relative difference in the on-site potentials of
Fe and X .

IV. CONCLUSION

We have formulated the CPA in the Wannier representation
to develop a calculation method for homogeneous random
alloys, which can be readily accessed from any first-principles
calculation method. This Wannier-CPA method significantly
reduces the computation time compared with those of the
existing methods. Compared to the KKR-CPA method, this
Wannier-CPA method can be expected to reduce the compu-
tational time by a factor of 10. To investigate the performance
of this Wannier-CPA method, we have examined the Bloch
spectral function, the DOS, and the magnetic moment for vari-
ous Fe-based transition metal alloys from the Green’s function
obtained with the Wannier-CPA method and compared our
results with the results of the calculation using the well-
developed KKR-CPA method. Regarding the Bloch spectral
function, the spectral structures of the Fe-Cu alloys were com-
pared using both the Wannier-CPA and KKR-CPA methods.
We observed a blurred spectral structure of Fe near the Fermi
energy in the spin-down state when the Fe content was low.
On the other hand, we observed a clear virtual-crystal-like
spectral structure in the spin-up state. This is because of the
similarity in the energy structures of Fe and Cu spin-up states.
These behaviors are the same in both the Wannier-CPA and
KKR-CPA methods. Furthermore, by changing the concentra-
tion of Fe, we also found an energy shift in the peak structure
of the DOS. It is the same for the Wannier-CPA and KKR-
CPA calculations for all of the Fe-X (X = V, Co, Ni, and
Cu) alloys. Finally, we calculated the magnetic moment of the
Fe-X alloys. We can reproduce the well-known Slater-Pauling
curve from the Wannier-CPA method, which is quite similar
to that from the KKR-CPA method, which confirms the good
predictive power for physical quantities of the Wannier-CPA
method. In this paper, we have discussed only the Bloch
spectral function, the DOS, and the magnetic moment in the
Wannier-CPA method. Nevertheless, one may conclude that
this Wannier-CPA method has great applicability to other
physical quantities and also large compound systems, which
have many restrictions concerning the calculation time as the
main bottleneck. The transport calculation should be one such
example. Although there are many works on the anomalous
and spin Hall effects using Wannier functions, only the in-
trinsic contribution of the conductivity is considered in all
those works. Using the formulation we have given, it could be
possible to calculate the conductivity including the extrinsic
contributions as well. To evaluate the potential of the devel-
oped Wannier-CPA method, we expect further applications of
the method to various materials in addition to transition metal
alloys.
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