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Nonequilibrium dynamics of the open chain Holstein-Hubbard model is studied using the linear time-scaling
GKBA+ODE scheme developed in Pavlyukh et al. [Phys. Rev. B 105, 125134 (2022)]. We focus on the
set of parameters relevant for photovoltaic materials, i.e., a pair of electrons interacting with phonons at the
crossover between the adiabatic and antiadiabatic regimes and at moderately large electron-electron interaction.
By comparing with exact solutions for two corner cases, we demonstrate the accuracy of the T matrix (in the pp
channel) and the second-order Fan (GD) approximations for the treatment of electronic (e-e) and electron-phonon
(e-ph) correlations, respectively. The feedback of electrons on phonons is consistently included and is shown
to be mandatory for the total energy conservation. When two interactions are simultaneously present, our
simulations offer a glimpse into the dynamics of doublons and polarons unveiling the formation, propagation
and decay of these quasiparticles, energy redistribution between them and self-trapping of electrons.
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I. INTRODUCTION

Even in the absence of e-e interactions, electrons coupled
to bosons represent one of the most studied systems in physics
[1–3]. Restricting to solid state and molecular physics, there
are numerous models of increasing complexity: a core elec-
tron coupled to plasmons [4–6], the Holstein dimer [7,8] or a
quantum dot coupled to leads [9–15] as a paradigmatic model
for the Franck-Condon blockade in nanoscale transport, and
infinite 1D and 2D systems at various fillings representing
phenomena ranging from the energy transfer along conju-
gated polymer chains and photovoltaic devices [16,17], the
oscillations in the excitonic condensate in transition metal di-
and ternary-chalcogenides [18], to correlated cuprate systems
[19,20]. A common physical phenomenon pertinent to all
of them is the emergence of a new kind of quasiparticle—
the polaron—an electron surrounded by a cloud of coherent
phonons [21].

Historically, one-dimensional coordination polymers [22]
were among the first systems where e-ph dynamics have been
studied experimentally [23,24] and theoretically [25], and a
good understanding of polaron formation and localization
has been obtained. In fact, they are convenient paradigmatic
materials for theoretical NEGF investigations. They can be
characterized by a small set of parameters, and the 1D
nature makes them amenable to alternative theoretical meth-
ods, including the wave function [25–28], the density-matrix
renormalization group [29], the hierarchical equations of mo-
tion [16] and matrix product state [30,31] based ones. Much
more versatile and practically relevant are materials for pho-
tovoltaic applications [32]. By the very nature of solar energy
conversion, several crucial aspects—creation of nonequilib-

rium carriers, their dressing and formation of the polaronic
quasiparticles, and transport through the active material to
electrodes—creates a good predisposition for a NEGF the-
ory and poses very interesting challenges, e.g., simulation of
picosecond (ps) polaron self-localization in α-Fe2O3 photo-
electrochemical cells [33].

We are close to achieving the goal of ps dynamics within
a NEGF theory: e-ph thermalization has already been demon-
strated in a model insulator without e-e interactions on a 2-ps
time scale [34], whereas e-e interacting 2D systems have been
propagated for 100 fs [35]. Here, we illustrate our methods
by applying them to electron-phonon (e-ph) dynamics in the
1D Holstein-Hubbard model [30,36]. The model features im-
portant physical mechanisms present in realistic systems and
enables us to benchmark the GKBA+ODE scheme of the
real-time NEGF theory in complicated crossover regimes.

The outline of our paper is as follows. After recapitulating
basic ingredients of the NEGF formalism (see [37] for the
full-fledged theory) in Sec. II, we introduce the open-chain
Holstein-Hubbard model in Sec. III. Numerical scaling with
the system dimension and strategies for the code optimiza-
tion are discussed and compared with alternative approaches.
More insights into the model dynamics are obtained in the
partial cases where only e-e or e-ph interaction is present.
Therefore, in Sec. IV we provide benchmarks against numeri-
cally exact solutions of the Hubbard model. Besides finding a
high level of accuracy of the T -matrix approximation in the
particle-particle channel, it is shown that doublons play an
important role in the system dynamics. In Sec. V the concept
of polaron is introduced and results for the electron localiza-
tion in the Holstein model are presented. Then, we discuss
how electrons and doublons propagate when e-e and e-ph are
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simultaneously present (Sec. VI) at the level of T matrix and
the fully dressed second-order Fan (GD) approximation. We
find that e-ph interactions modify the localization of doublons
in a nontrivial way. We discuss two competing mechanisms
and support our interpretation by analyzing total energy con-
tributions and e-ph correlators. Conclusions and outlook are
drawn in Sec. VII.

II. ELECTRON-BOSON NEGF EQUATIONS

The theory developed in the preceding paper [37] is
completely general and can be applied to a wide range of
physical systems out of equilibrium with electron-electron
and electron-boson interactions. Here we consider specifically
electrons interacting with phonons as one of the most inter-
esting and technologically relevant cases. Henceforth we use
Latin letters to denote one-electron states; thus i ≡ (i, σ ) is
a composite index standing for an orbital degree of freedom
i and a spin projection σ . For phonons, one may work with
standard creation and annihilation operators â†

μ and âμ for
the mode μ, respectively. However, since electrons typically
couple to the phononic displacement, it is of advantage to
introduce operators of displacement and momentum

x̂μ = 1√
2

(â†
μ + âμ), p̂μ = i√

2
(â†

μ − âμ). (1)

The composite Greek index μ = (μ, ξ ) specifies the phononic
mode and the component of the vector. It is convenient to
introduce two-components operators, with components distin-
guished by a pseudospin ξ

Âμ =
(

â†
μ

âμ

)
ξ

, φ̂μ =
(

x̂μ

p̂μ

)
ξ

. (2)

From standard commutation rules,

[âμ, â†
μ′] = δμμ′ , [x̂μ, p̂μ′] = iδμμ′ , (3)

it is not difficult to derive the commutation relations for two-
component operators:

[Â†
μ, Âμ′ ] = δμμ′σ

(3)
ξξ ′ , [φ̂μ, φ̂μ′] = −δμμ′σ

(2)
ξξ ′ = αμμ′ . (4)

Here, σ (i), i = 1, . . . 3 are the pseudospin Pauli matrices.
Therefore, the noninteracting phononic Hamiltonian can be
written as a quadratic form:

Ĥph =
∑
μ

ωμ

(
â†

μâμ + 1

2

)
= Â†ωÂ = φ̂†�φ̂, (5a)

ω = � = diag(ω) ⊗ 1

2

(
1 0
0 1

)
. (5b)

The electron-phonon interaction is written in the form

Ĥe-ph(t ) =
∑
μ,i j

gμ,i j (t )d̂†
i d̂ j φ̂μ. (6)

Density functional perturbation theory [38,39] is a well-
established tool to construct the e-ph coupling matrix
elements [3] (gμ,i j tensor) from first principles.

In the NEGF formalism the fundamental unknowns are the
electronic lesser/greater single-particle Green’s functions G≶

I e= ev

+ phg

(a)

(b) αI ph = ph
g

FIG. 1. Diagrammatic representation of the collision integrals in
terms of high-order Green’s functions. Full lines are used for G and
zig-zag lines are used for D.

and their phononic counterparts D≶. They satisfy the integro-
differential Kadanoff-Baym equations (KBE) of motion. The
KBE can also be used to generate the EOMs for the electronic
ρ<

i j = 〈d̂†
j d̂i〉 and phononic γ <

μν = 〈φ̂ν φ̂μ〉 − 〈φ̂ν〉〈φ̂μ〉 density
matrices

d

dt
ρ<(t ) = −i[he(t ), ρ<(t )] − (Ie(t ) + (Ie(t ))†), (7)

d

dt
γ<(t ) = −i[hph(t ), γ<(t )] + (Iph(t ) + (Iph(t ))†). (8)

The effective electron Hamiltonian he is a sum of the
mean-field electronic hHF(t ) = h(t ) + VHF(t ) and phononic
he-ph(t ) = ∑

μ gμ〈φ̂μ(t )〉 parts, i. e., he(t ) = hHF(t ) + he-ph(t ).

hph ≡ α(� + �T ) is the effective phononic Hamiltonian.
Equations (7) and (8) are not closed because the collision

integrals Ie and Iph are proportional to the more complicated
correlators Ge and Gph, respectively, see Fig. 1. Explicitly

Ge
im jn = −〈d̂†

n d̂†
j d̂id̂m〉c, Gph

μ,i j = 〈d̂†
j d̂iφ̂μ〉c. (9)

In [37] we have shown using the generalized Kadanoff-Baym
ansatz (GKBA) [40] that they, in turn, fulfill their own equa-
tions of motions: for electrons in 2B and T pp approximations
[41,42]

i
d

dt
Ge(t ) = −�e(t ) + [he(t ) + aρ�(t )v(t )]Ge(t )

−Ge(t )[he(t ) + av(t )ρ�(t )]. (10)

And, similarly, for phonons [34]

i
d

dt
Gph(t ) = −�ph(t ) + hph(t )Gph(t ) − Gph(t )he(t ), (11)

We consistently use bold symbols to denote rank-2 matrices
with phononic indices [viz. Eq. (8) and (11)] or electronic
superindices [Eq. (10)]. The constant a in Eq. (10) is equal
to 0 for the second Born (2B) approximation and to 1 for
the T -matrix approximation in the pp channel (T pp). In these
equations v is the Coulomb tensor, ρ� = ρ> − ρ<, and

�e(t ) ≡ ρ>(t )v(t )ρ<(t ) − ρ<(t )v(t )ρ>(t ), (12a)

�ph(t ) ≡ γ>(t )g(t )ρ<(t ) − γ<(t )g(t )ρ>(t ), (12b)
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are the driving terms. We refer to [37] for the details related
to the index order of these quantities. To close the KBE one
additionally needs to propagate the position and momentum
expectation values φν (t ) = 〈φ̂ν (t )〉 because they enter he

i
d

dt
φμ(t ) −

∑
ν

hph
μν (t )φν (t ) =

∑
νi j

αμνgν,i jρ ji(t ). (13)

Equations (11) and (10) together with EOMs for the
electronic- and phononic-density matrices [Eqs. (7) and (8)]
and the equation of motion for φ(t ) [Eq. (13)] form a closed
system of ordinary differential equations (ODE).

III. 1D HOLSTEIN-HUBBARD MODEL OUT
OF EQUILIBRIUM

The most demanding part of the GKBA+ODE calculations
is the solution of the electronic two-particle equation (10),
whereby the matrix product vG scales as O(N6

e-basis ), with the
number of electronic basis functions Ne-basis. The scaling can
be improved relatively easy by imposing additional physically
motivated restrictions on the matrix elements of v. This brings
us to the consideration of the extended Hubbard model.

In the extended Hubbard model, which is the target of our
numerical implementation, there are two classes of Coulomb
integrals expressed in a site basis

vd
i j = vi j ji, vx

i j = vi ji j . (14)

All other Coulomb matrix elements are set to zero. This
reduces the complexity of the correlated GKBA methods to
O(N5

e-basis ). In our implementation we exploit this simplifica-
tion whenever condition (14) is fulfilled. The implementation
is otherwise completely general and can be used, for instance,
to study screening at the level of the GW approximation
[35,42–44].

In this paper, we focus on the dynamics of electrons and
phonons in the 1D one-band Holstein-Hubbard (h-h) model,
where each site is coupled to a phonon,

Ĥh-h = −h
∑

σ=↑,↓

∑
〈i, j〉

d̂†
iσ d̂ jσ + U

∑
i

n̂i↑n̂i↓

+
∑

i

{ωâ†
i âi + g(â†

i + âi )n̂i}. (15)

Here h is the matrix element of the nearest neighbor hopping
(〈i, j〉 are the neighboring sites), U is the on-site Hubbard
repulsion [therefore vd

i j = Uδi j and vx = 0 in Eq. (14)], σ

is the spin projection, ω is the frequency of phonons equal
at all sites, i. e. ωμ = ω in Eqs. (5), and g is the coupling
matrix element of the phonon displacement at site i to the total
electron density at the same site (n̂i = ∑

σ n̂iσ , n̂iσ = d̂†
iσ d̂iσ ),

explicitly gμ,i j = √
2gδi jδμiδξ,1 in Eq. (6), where the

√
2 pref-

actor is in accordance with the definition of the phononic
displacement in Eq. (1). The dynamics is triggered by the
creation of an electron (or a pair of them with zero total
spin) at a given lattice site. The lattice is otherwise empty.
Here, we denote N = Ne-basis = Nb-basis—the number of sin-
gle particle electronic- and phononic-basis functions. In what
follows we measure energies in the units of h and times in
the units of 1/h, therefore the system is characterized by a
set of three parameters {U, ω, g}. For the ease of report-

TABLE I. Largest systems and computational resources (Xeon
Gold 5218 CPU @ 2.30GHz) used in this paper.

System Correlations State Time CPU hours

N e-e e-ph vector tf e-e e-ph

151 HF Ehrenfest 23 254 40 0.02 0.07
151 HF GD 7 046 264 40 3.8 2.0
151 2B GD 526 954 666 40 181.2 2.0
151 T pp Ehrenfest 519 931 656 40 482.8 0.04
151 T pp GD 526 954 666 40 488.0 2.6

ing total energies, we eliminated the zero-point vibrational
energy 1

2 Nω from the Hamiltonian (15) in comparison with
Eq. (5).

The scenario with a single electron has been studied in
a number of works using different methods. Fehske et al.
[45] used the Chebyshev expansion technique to solve the
Schrödinger equation in a truncated bosonic basis and to study
the polaronic cloud formation characterized by the diagonal
〈n̂i(â

†
i+x + âi+x)〉 (x = 0) correlator, and the phonon emission

and reabsorption processes leading to the electron effective-
mass enhancement in a smaller system comprising only 17
sites. Interference/reflection of the electron wave packet from
the boundaries prevent clear interpretation at larger times.
Similar a wave-function (WF) approach has been used by
Golež et al. [26] to study the relaxation dynamics of the
Holstein polaron, which they characterized by a single relax-
ation time τ and showed it to be proportional to h/g2 [in the
notation of Eq. (15)]. To identify the polaron they used a more
complicated correlator γ (x) = ∑

i〈n̂iâ
†
i+xâi+x〉. Chen, Zhao,

and Tanimura applied the hierarchical equations of motion to
exciton-phonon coupled systems and likewise found excitonic
localization [16]. This is a very relevant scenario of the energy
transfer in organic molecules and in photovoltaic devices.
Finally, Kloss et al. [30] were able to investigate larger 1D
and 2D systems using the matrix product state (MPS) method.
The objective was to study the self-localized behavior in e-
ph systems and to demonstrate the computational benefits
offered by the tensor network states. Here we demonstrate
that GKBA+ODE approach not only allows to study large
systems of comparable spatial extent, but also to incorpo-
rate e-e interactions without imposing any restrictions on the
number of particles or the system dimensionality (see Table I
for a summary of systems and computational resources). This
represents two great benefits of the GF methods in contrast to
other approaches: The dimension of the Hilbert space in the
WF approach grows factorially with the number of particles,
whereas the MPS approach is more suited for 1D systems.

Our numerical investigations are structured as follows.
In the first step we establish that for the treatment of the
time-evolution of a correlated spin-0 pair of electrons the
T -matrix method in the pp channel is the most appropriate.
We demonstrate this by comparing with the exact solution in
the absence of phonons. Very similar exact and T pp results are
contrasted with the results from time-dependent Hartree-Fock
(TDHF) and from the second Born (2B) approximations. We
then add e-ph interactions and compare the localization of the
electronic wave packets at different e-e interaction strengths.
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IV. SPREADING OF THE TWO-ELECTRON WAVE
PACKET ON THE 1D LATTICE

Here we consider the pure electronic case (g = 0). The
respective (Hubbard) Hamiltonian is denoted as Ĥh [cf.
Eq. (15)]. Electronic evolution starts from the following initial
condition

|ψi〉 ≡ |ψ (t = 0)〉 = d̂†
i0↑d̂†

i0↓|0〉, (16)

where |0〉 is the vacuum (empty) state, and i0 is the lattice
site (typically in the middle of the 1D chain) where the
electrons are added. This choice is dictated by two considera-
tions: (i) computational convenience in order to achieve longer
propagation times before the wave packet collides with the
boundaries and (ii) homogeneous investigation—in Sec. V we
benchmark the method against the results of Ref. [30] where
the electron was created at the chain center.

The exact two-electron singlet wave function can be repre-
sented in a matrix form as

|ψ (t )〉 =
∑

i j

Ci j (t )

2

(
d̂†

i↑d̂†
j↓ − d̂†

i↓d̂†
j↑

)|0〉, (17)

with symmetry Ci j = C ji. It is normalized as 〈ψ (t )|ψ (t )〉 =∑
i j |Ci j (t )|2 = 1 and fulfills the EOM i d

dt |ψ (t )〉 = Ĥh|ψ (t )〉
iĊi j (t ) = −(Ci+1, j + Ci−1, j + Ci, j+1 + Ci, j−1) + Uδi jCi j,

(18)
with a boundary condition that Ci j = 0 if i, j = 0, N + 1,
where N is the number of lattice sites.

Our main observables are the density matrix

ρ<
i j,σ (t ) ≡ 〈ψ (t )|d̂†

jσ d̂iσ |ψ (t )〉 =
∑

n

C∗
in(t )C jn(t ), (19a)

the electronic states’ occupation numbers (independent of
spin)

ni,σ (t ) ≡ 〈ψ (t )|n̂iσ |ψ (t )〉 =
∑

n

|Cin(t )|2, (19b)

and the doublon occupations

di(t ) ≡ 〈ψ (t )|(n̂i↑ − ni↑)(n̂i↓ − ni↓)|ψ (t )〉
= |Cii(t )|2 − ni↑ni↓. (19c)

Electron dynamics described by Eq. (18) is not trivial and
represent a stringent test for approximations of MBPT. Even
the dynamics of a single electron on a lattice is quite dif-
ferent from the continuous wave-packet spreading, which is
well known from quantum mechanics. The difference comes
from the form of the initial state (16), which is spatially too
narrow in comparison with the lattice spacing as discussed by
Schönhammer [46].

The electronic group velocity ve is bounded:

ve = dε(k)

dk

∣∣∣∣
k=k f

� 2h. (20)

Here ε(k) = −2h cos(k) is the electron-momentum dispersion
relation and k f is a center in momentum space of the fastest
moving component of the wave packet. When there are more
electrons in the system, the Hubbard interaction complicates
the picture due to the appearance of the resonant doublon

(a) (b) U=4U=2

(d)(c)

0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10

site index, i
0 10 20 30 40 50 60 70

site index, i

|
ij
|

n i, 
d i

FIG. 2. Electronic properties of the 1D Hubbard chain of length
N = 75 comprising two electrons from the exact solution of Eq. (18)
with the initial condition Ci j (0) = δii0δ ji0 with i0 = 38. Top row:
Snapshots at time t = 10 of the electronic-density matrix. Bottom
row: Electron (blue) and doublon (orange) occupation numbers com-
puted according to Eq. (19b) and Eq. (19c), respectively.

states [29,47]. Since the doublon dispersion differs from the
electron dispersion by a prefactor: E (k) = −J cos(k), where
J = 4h2/U (well justified for U � h) is the superexchange
coupling constant [29], the doublon group velocity vd is in
general different from the electronic one. This difference be-
tween the ve and vd can be appreciated by comparing blue and
orange lines in Fig. 2.

In Figs. 3 and 4, the performance of three different
methods: time-dependent Hartree-Fock (HF), second Born
approximation and the T -matrix approximation in the pp
channel is compared against these exact results. The initial
condition for the electronic-density matrix corresponding to
the initial state Eq. (16) reads

ρi j,σ (t = 0) = δii0δ ji0 , Ge(t = 0) = 0, (21)

0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

HF (U=2)(a) 2B (U=2)(b) Tpp (U=2)(c)

(e)(d) (f)

site index, i site index, i site index, i

|
ij
|

n i, 
d i

FIG. 3. Moderate Hubbard repulsion U = 2: snapshots at time
t = 10 of the electronic-density matrix (top row) and the electron
(blue lines) and doublon (orange lines) occupations (bottom row)
obtained using GKBA+ODE with different approximations.
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0 10 20 30 40 50 60 700 10 20 30 40 50 60 70
0.00
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0.04

0.06

0.08

0.10

0 10 20 30 40 50 60 70

HF (U=4)(a) 2B (U=4)(b) Tpp (U=4)(c)

(e)(d) (f)

site index, i site index, i site index, i

|
ij
|

n i, 
d i

FIG. 4. Strong Hubbard repulsion U = 4: snapshots at time t =
10 of the electronic-density matrix (top row) and the electron (blue
lines) and doublon (orange lines) occupations (bottom row) obtained
using GKBA+ODE with different approximations.

meaning that the two electrons (with spin ↑ and ↓) are initially
uncorrelated.

As expected, the mean-field method is completely in-
adequate for the 1D Hubbard model considered here: The
electronic-density matrix features a fourfold symmetry per-
tinent to noninteracting particles. A bit more accurate is the
2B method. It correctly predicts the density localization at the
diagonal, however, it fails to describe the spreading of dou-
blons: at U = 2 they propagate with nearly the same velocity
as electrons (Fig. 3). The situation seems to be different from
the half-filled case, where already 2B approximation is accu-
rate for the prediction of doublons [48]. Only T pp provides
good agreement with the exact solution for the two-electron
system considered here for intermediate (U = 2) and large
(U = 4) Hubbard repulsion. This can be seen in the density
matrix plots in Figs. 3 and 4, as well as in Fig. 5, where we
zoom in into the electron and doublon occupation numbers
as functions of the lattice site. These two observables can be
directly obtained from the GKBA+ODE approach. The first

40 45 50 55 60 65 70
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

U=2

n
i

d
i

exact Tpp

site index, i

n i, 
d i

0 5 10 15
0.0

0.1

0.2

0.3

0.4

2B

exact
Tpp

∑
i d

i

t

FIG. 5. Comparison of the electron ni ≡ ni,σ (blue) and doublon
occupations di (orange) for a Hubbard chain with N = 75 at time t =
10 illustrating the difference in the corresponding group velocities.
Due to the inversion symmetry only a half of the system is shown.
The inset depicts the total number of doublons in the system from the
exact time-evolution vs 2B and T pp approximations.

one, the electron occupation number is given by

ni,σ (t ) = ρ<
ii,σ (t ). (22)

For spin-compensated systems as considered here, ρi j,↑ =
ρi j,↓, which allows to drop the spin index, i.e., ni ≡ ni,σ .

The second observable, the number of doublons di(t ) as
a function of the site number i, can be considered in par-
allel to the wave-function approach presented above. Puig
von Friesen, Verdozzi, and Almbladh demonstrated how
this quantity can be computed in the full Kadanoff-Baym
method applied to the T -matrix approximation [49]. In the
GKBA+ODE scheme the doublon occupations are expressed
in terms of the two-body correlator Ge(t )

di(t ) = 〈ψ (t )|n̂i↑n̂i↓|ψ (t )〉 − ni↑(t )ni↓(t ) = −Ge
iiii(t ). (23)

Notice that we are talking here about the correlated part of
the doublon occupation number as defined by Eq. (19c). Not
only Fig. 5 demonstrates excellent agreement between the
exact and the T pp-matrix methods, it also nicely illustrates the
difference between two different group velocities ve and vd .

Notice that on physical grounds we do not expect sim-
ilar performance from GW and T ph methods (they reflect
correlations in particle-hole channels, which are not relevant
here). Therefore, all subsequent results with phonons will be
presented only for these three methods: HF, 2B, and T pp. 2B
approximation is accurate only for initial instances of time.
At larger times the population of doublons according to the
2B approximation diminishes, in contrast with the prediction
of the T pp approximation, which is in good agreement with
exact results (see inset of Fig. 5). We notice, however, that
doublons can decay by a pure electronic mechanism at higher
fillings. Calculation of the relaxation rate requires analyzing
high orders of the perturbation theory in the interparticle
interactions and has been performed for the Fermi-Hubbard
[50] and Bose-Hubbard [51] models. Spectral properties of
two-electron systems have also been studied with similar
conclusions: T pp is very accurate, whereas 2B approxima-
tion underestimates the binding energy of a Cooper pair (see
Fig. 13.5 in Ref. [52]).

V. ROLE OF PHONONS: EHRENFEST VS GD
APPROXIMATION

While the Holstein model is not solvable for arbitrary pa-
rameters, there are regimes where the system behavior can be
understood at least qualitatively. If the mass of a phonon is
much larger than the mass of an electron, the system is in the
adiabatic regime. It is characterized by the well-defined po-
tential energy surfaces and large stiffness of the lattice and is
attained for ω/h � 1. Nonequilibrium e-ph dynamics in this
regime has already been investigated using the GKBA+ODE
scheme (see Supplemental Material of Ref. [34]). In the
opposite antiadiabatic limit the phonons adjusts almost instan-
taneously to the motion of an electron. We consider here the
more intriguing crossover regime ω/h = 1.

The binding energy of a polaron can be estimated pertur-
batively [4] as

εp = −g2

ω
. (24)
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FIG. 6. Evolution of the electronic density ni ≡ ni,σ for different e-ph interaction strengths and initial states as a function of time t and
lattice site i. Phonons are treated semiclassically, i. e., in the Ehrenfest approximation. Top row depicts the case of a “vertical” initial state (29)
for phonons, bottom row—the “relaxed” initial state (30). In panels (a) and (d) these two scenarios are schematically depicted for the i0 lattice
site. Panels (b) and (e) the negligible effect of the initial state for the case of weak e-ph interaction (g = 0.5). Panels (c) and (f) demonstrate
that for the strong e-ph interaction (g = 1.5) the electronic density is localized at the central site when the dynamics is started from the relaxed
phononic state. Initial electronic-density matrix is the same in all cases and is given by Eq. (21).

By comparing it with the electronic bandwidth of 2h we arrive
at the second important ratio:

λ = g2

2hω
. (25)

When λ � 1, electrons in a small portion of the Brillouin zone
around the band bottom are affected by phonons, lattice dis-
tortions spread over many lattice sites, and one classifies this
quasiparticle as the “large” or “light” polaron. The polaron
effective mass is enhanced as compared to the mass of an
electron, however, the mass renormalization depends only on
the phononic frequency, and not on the interaction strength.
We will see below that this is not the case for our simulations.
In the opposite limit of the so-called “small” or “heavy”
polaron all electronic states are dressed by phonons [21]. A
large exponential renormalization of the hopping constant is a
marked physical phenomenon in this limit [52]:

h̃ = he−g2/ω2
. (26)

Here we consider two values e-ph coupling g = 0.5 and 1.5
corresponding to λ = 0.125 and 1.125, respectively.

We start the investigation of the e-ph dynamics with the
simplest semiclassical treatment of the optical phonons and
without e-e interactions (U = 0). This is the scenario of Kloss
et al. [30], earlier investigations are by Sayyad and Eckstein
[53] (initially hot electron distribution, DMFT), Dorfner et al.
[28] (diagonalization in a limited functional space). While the
methods are very different, in our approach we can treat sys-
tems of comparative sizes (we use N = 151 for all subsequent
results) and even with e-e interactions (next section). Since
now the phononic subsystem is included, the initial conditions

for the electrons are supplemented with the conditions for the
phononic density matrix γ<, the electron-phonon two-body
correlator Gph and the phononic coordinates φ

γ <
iξ, jζ (t = 0) = γ

(0)
ξζ , γ (0) = 1

2

(
1 −i
i 1

)
; (27a)

Gph(t = 0) = 0; (27b)

φi,ξ (t = 0) = δii0φ
(0)
ξ . (27c)

Equation (27a) indicates that the initial phononic state is a
coherent state

|ϕi〉 ≡ |ϕ(t = 0)〉 = eβâ†
i0

−β∗âi0 |0〉. (28)

Equation (27b) implies that there are no e-ph correlations
initially. In parallel to Kloss et al. [30], two scenarios for
the initial phononic displacements φ

(0)
ξ are considered. In the

first one, Fig. 6(a), a vertical transition takes place from the
vacuum state with zero number of electrons and phonons to a
state with two electrons. In this case the phonons retain their
averaged values of the displacement and momentum:

φ(0) = 〈ϕi|φ̂i0 |ϕi〉 = 0, β = 0. (29)

In the second relaxed scenario, Fig. 6(b), it is assumed that the
phonon coupled to the excitation site i0 is instantly displaced
to a new minimum of the potential energy surface:

φ(0) = 〈ϕi|φ̂i0 |ϕi〉 =
(−g/ω

0

)
, β = −g/

(√
2ω

)
. (30)

Time-evolution of the electronic occupations in the pres-
ence of classical phonons, i. e., Ehrenfest approximation
[γ<(t ) = γ<(0), only Eq. (13) for φμ is solved for phonons],
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FIG. 7. [(a)–(d)] Evolution of the electronic density of the N =
151 Holstein chain for different e-ph interaction strengths and initial
states. Dashed lines in panels (a) and (b) schematically depict light-
cones corresponding to the renormalized group velocity vee−g2/ω2

.
[(e)–(f)] Electronic densities at time t/(2π ) = 6. e-ph correlations
are treated on the GD level.

is depicted in Fig. 6 (central and right columns). For g = 0.5
[panels (b) and (e)], the electron wave packet spreads without
any localization, and the effect of initial state on the electron
dynamics is negligible. For stronger e-ph interaction [g =
1.5 panels (c) and (f)] the effect of initial phononic state is
strong. One observes an almost complete localization starting
from the relaxed configuration, which is rather unphysical. In
particular, it is impossible to explain the localization by the
phononic renormalization of the hopping parameter.

However, if we add the e-ph correlation effects at the GD
level (Fig. 7), a dramatic improvement in the spatial extent of
the electron density can be seen in close agreement with the
finding of Ref. [30] that “the Franck-Condon excitation is seen
to retain a substantial mobility even under strong coupling”.
The electron group velocity reduction is well described by
Eq. (26) as indicated by red dashed lines.

We also notice that GKBA+ODE approach may some-
times lead to negative electronic densities [Fig. 4(f) and grey
areas in Fig. 7] even though the total number of particles
is conserved. The weight of these domains is typically very
small and only causes numerical instabilities when the e-
ph coupling constant is large. We mention in passing that

Ehrenfest phonon dynamics

GD phonon dynamics

vertical
g=0.5

relaxed
g=0.5

vertical
g=1.5

relaxed
g=1.5

vertical
g=0.5

relaxed
g=0.5

vertical
g=1.5

relaxed
g=1.5

(t)

(t)

(t)

(t)

FIG. 8. Phase portrait of the five central phonons of the N = 151
Holstein chain. Ehrenfest (top) and GD (bottom) results are com-
pared for different e-ph interactions and initial states.

negative populations have been observed also in NEGF simu-
lations with memory truncation [54].

Next, we look at the phononic observables starting with
the site-resolved averaged values of the displacement and
momentum, Fig. 8. Our main finding here is that the phase
trajectories approach limiting cycles at the Ehrenfest level (in
line with Ref. [55]), whereas they are not closed at the GD
level (this difference is more pronounced for g = 1.5) indi-
cating a damping of the phononic subsystem. This important
physical phenomenon has also been studied in the context of
polaron relaxation [26]. We will revisit this issue in the next
section when discussing the total energy conservation.

VI. ROLE OF e-e INTERACTIONS AND PHONONS

In Sec. IV we have demonstrated that electron dynamics in
the presence of e-e interactions is modified by the formation
and propagation of doublon excitations. Electron-density ma-
trix is fragmented into a diagonal part hosting doublons and
off-diagonal part describing singly-occupied lattice sites. In
Sec. V we have considered the effect of phonons on the nonin-
teracting electrons and have shown how it reduces their group
velocity leading to self-trapping. In Fig. 9(a) we summarize
the results of different methods with and without e-e and e-ph
interactions. It can be seen that they have very different effects
on the system dynamics (cf. subpanels v and iii).

It is well known that phonons hybridize with a variety of
electronic excitations: plasmons [56–58], excitons [16,59,60],
polaritons [61], collective amplitude modes in superconduc-
tors [62]. Much less is known about the coupling of doublons
and phonons, being a topic of current intense investigations
[63]. The effect has been studied almost exclusively in the
half-filled case, where it was shown that phonons hybridize
and modify the doublon dispersion relation [64], the phonon-
assisted decay of excess doublons and the phonon-enhanced
doublon production was predicted [36]. But what happens in
the two-electron case?
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FIG. 9. (a) Electron occupations (color) and doublon occupations (thin black) at time t = 20 for all used methods and a vertical initial
state. (b) Snapshots at t = 16 of the electronic occupations (color) and doublon occupations for Holstein-Hubbard model with N = 75 for
different e-ph interaction strengths. (c) Time evolution of the total number of doublons in the system for different e-ph interaction strengths.

In order to elucidate the simultaneous effect of e-e and
e-ph interactions, we fixed U = 2 and performed a series of
calculations for various electron-phonon interaction strengths,
Fig. 9(b). Here we clearly see the already discussed self-
trapping of electrons. It is reflected in the width reduction
of the electronic distributions (depicted in color). Quite re-
markably, however, the effect of the e-ph interaction on the
distribution of doublons (thin black lines) is minimal. To
facilitate the comparison, vertical dashed lines in Fig. 9(b)
mark the position of the fastest doublon peaks for g = 0.1.
Increasing e-ph interaction from 0.1 to 0.7, a slight increase of
the width of doublon distribution becomes evident, a part of
the doublon density can be found outside the marked domain.
By increasing g further, the doublon distribution is squeezed
again, whereby the peak position for g = 1 coincides with
the vertical line. This nonmonotonous behavior indicates that
two competing physical phenomena are at play. A qualitative
understanding is provided by the superexchange expression
for the doublon hopping constant J = 4h2/U , which is the
measure of the group velocity vd . e-ph interaction modifies
both parameters entering J . The Hubbard-U constant is renor-
malized due to the emergence of the effective e-e interaction
mediated by phonons [2]. From general arguments, the effect
is positive and nonlocal in time [65]. In the extreme antiadi-
abatic regime the interaction becomes instantaneous leading
to an effective Hubbard model with a reduced U value [66]—
hence the enhancement of vd . However, for the crossover case
ω = h considered here, the effect is small, and therefore for
larger g the exponential renormalization of the hopping con-
stant according to Eq. (26) becomes the dominant mechanism.
It leads to the slow-down of the doublon spreading seen for
g � 0.8.

In Fig. 9(c), the total number of doublons in the system
is plotted as a function of time for different e-ph coupling
strengths. It features a rapid increase of the population at
initial stage, followed by a depopulation (for g � 0.3) after
which a steady value is reached in an oscillatory fashion on

a much longer time scale. In line with the discussion above,
the steady number of doublons is a monotonically decreasing
function of g confirming again the renormalization of the
Hubbard-U by e-ph interactions.

The discussion of the doublon dynamics is facilitated by
the analysis of the total energy and its various contributions:

E (t ) = Ee, MF(t ) + Eph, MF(t ) + Ee-ph, MF(t ) + Ec(t ). (31)

The mean-field energy contributions are defined as follows:

Ee, MF(t ) = 1
2 Tr [(h(t ) + hHF)ρ(t )], (32a)

Eph, MF(t ) = Tr [�(t )	(t )], (32b)

Ee-ph(t ) = Tr [he-ph(t )ρ(t )], (32c)

with �μν (t ) = γ <
μν (t ) + φμ(t )φν (t ) being the full phononic

density matrix. The correlation energy Ec is associated with
Ge and Gph

Ec = Ee, c + Eph, c. (33)

Explicit expressions can be formulated on the Keldysh con-
tour:

Ee, c(t ) = − i

2

∫
γ

dt̄ Tr �e(t, t̄ )G(t̄, t+), (34a)

Eph, c(t ) = i

2

∫
γ

dt̄ Tr 
ph(t, t̄ )D(t̄, t+), (34b)

where �e and 
ph is electronic, phononic self-energy, respec-
tively. For conserving approximations they can be written in a
symmetrized form in terms of the collision integrals:

Ee, c(t ) = − i

4
Tr [Ie(t ) − (Ie(t ))†], (35a)

Eph, c(t ) = i

4
Tr [αIph(t ) − (αIph(t ))†]. (35b)

The two contributions are equal in the absence of e-e in-
teractions as has been shown in our earlier paper [34]. Notice
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FIG. 10. Time-dependent energies for the g = 0.5 cases with
vertical initial state.

that Ee, c contains a phononic part (equal to Eph c) and a pure
e-e correlation energy. In Figs. 10 and 11, the time evolution
of the total energy ingredients is presented for two values of
e-ph coupling strength, g = 0.5 and g = 1.5 and two values of
e-e coupling, U = 0 and U = 2. In all cases the total energy
is conserved up to numerical accuracy despite the fact that
correlated contributions are an order of magnitude smaller.
Theories with frozen phonons obviously do not fulfill this
property.

The initial stage of the doublon dynamics is driven by a
pure electronic mechanism. This can be concluded by compar-
ing a very quick increase of the electronic-correlational energy
Ee, c (proportional to the number of doublons) and a slow
variation of the mean-field phononic energy Eph, MF(t ) (pro-
portional to the number of phonons) in Figs. 10 (GD + T pp

results). The latter grows in time at the expense of the electron
kinetic energy Ee, MF [54]. In panels (a) to (b) in Figs. 10
and 11 the kinetic energy exchange between the electronic
and phononic subsystems is severely underestimated. This is a
shortcoming of the Ehrenfest approximation and it is cured in
GD. Notice that the efficiency of the kinetic energy exchange
increases with increasing g and remains unchanged even in the
presence of e-e interaction.

By inspecting the behavior of the pure electronic-
correlation energy Ee-e, c = Ee, c − Eph, c in the asymptotic
regime we conclude that for larger times the doublon-phonon
scattering becomes less efficient; The energy of doublons is
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FIG. 12. The e-ph correlator δi =
√
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i,1 + δ2
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time for three different e-ph coupling constants and vertical initial
state.

insufficient to excite phonon quanta—the so-called phononic
bottleneck effect. In 2B pure electronic correlations given by
Ee-e, c is negative (difference between magenta and cyan lines),
meaning that the density of doublons goes negative, see also
panel (iv) in Fig. 9(a). This shortcoming of the 2B is cured by
the T pp approximation.

Finally we characterize the spreading of the polaronic
quasiparticle. Its spatial extension can be quantified by plot-
ting the correlators

δi,ξ (t ) = 〈
n̂i0 (t )φ̂i0+i,ξ (t )

〉 = Gph
i0+i,ξ ;i0i0

(t ), (36)

where i0 is the initial excitation site. It represents a conditional
probability of a phonon at site i0 + i having the mean displace-
ment φ when an electron is at site i0. Therefore, it can be used
as a tool to distinguish the coherent phononic cloud propa-
gating together with the electron from uncorrelated phononic
background [45]. As we already discussed above, our system
in the presence of strong e-ph interaction, behaves in many
ways similar to the case with reduced e-e coupling. This can
be seen in the dynamics of doublons in Fig. 9(b), and in
similarities between panels (b) and (d) in Fig. 11. Therefore,
Fig. 12(c) depicts the classical picture of polaron spreading.
Going to smaller values of e-ph coupling as in Figs. 12(a)
and 12(b), the effect of U becomes dominant, it reduces the
spectral strength and spatial extent of a polaron, representing
a marked feature of electronic correlations.

VII. SUMMARY

In this paper, we applied a nonequilibrium Green’s func-
tion formalism [37] to investigate coupled electron-phonon
dynamics in the 1D Holstein-Hubbard model. While theories
separately describing e-e correlations or e-ph correlations in
model systems are known, this contribution is devoted to the
systems where both ingredients are important. We restrict to
the �-derivable and, therefore, conserving approximations,
and consider a class of theories with an additive Baym func-
tional consisting of the electronic and phononic parts. This
leads to intertwined electronic and phononic self-energies,
whereas the electronic and phononic response functions are
treated independently. This approach captures with elegance
the feedback in time domain of phonons on the electronic
properties and the modification of phononic properties caused
by the dynamics of electrons. The method scales linearly with
the physical propagation time thanks to the use of GKBA
in the ODE formulation. This allows one to perform simu-
lations for unprecedentedly large systems such as 1D chains
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described by the extended Holstein-Hubbard model. The
model is a prototype for typical photovoltaic systems and
possesses two remarkable quasiparticle states—polarons and
doublons. The interplay between them leads to intricate physi-
cal phenomenon of the doublon localization that we discuss at
length here. We emphasize that the phenomenon is manifested
at moderate e-e and e-ph interaction strengths and therefore
is well suited for methods based on many-body perturbation
theory. Besides the obvious observables such as elec-
tronic occupation numbers and density matrices, phase-space
dynamics of individual phonons, we consider more com-

plicated e-ph correlators and ingredients of the total
energy.
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