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Simulations of interacting electrons and bosons out of equilibrium, starting from first principles and aiming at
realistic multiscale scenarios, is a grand theoretical challenge. Here, using the formalism of nonequilibrium
Green’s functions and relying in a crucial way on the recently discovered time-linear formulation of the
Kadanoff-Baym equations, we present a versatile toolbox for the simulation of correlated electron-boson
dynamics. A large class of methods are available, from the Ehrenfest to the dressed GD for the treatment of
electron-boson interactions in combination with perturbative, i.e., Hartree-Fock and second-Born, or nonper-
turbative, i.e., GW and T matrices either without or with exchange effects, for the treatment of the Coulomb
interaction. In all cases the numerical scaling is linear in time and the equations of motion satisfy all fundamental
conservation laws.

DOI: 10.1103/PhysRevB.105.125134

I. INTRODUCTION

The electron dynamics in correlated materials is typically
accompanied by the interaction with bosonic particles and
quasiparticles, such as phonons, plasmons, charge density
waves, photons, etc. From the theoretical point of view the
vastly different energy (or time) scales [1–6] and the quantum
nature of the involved bosonic particles [7–11] pose con-
siderable challenges. A scalable quantum method to model
excitation and relaxation phenomena in correlated many-
body systems, reliable beyond the perturbative regime, is
crucial to simulate and interpret experimental results and
to design new materials. This latter aspect is especially
important in view of recent progresses in light-enhanced
phonon-induced superconductivity [12–15], manipulation of
thermoelectric properties with cavity photons [16,17], photon-
ics in nanojunctions [18], exciton-phonon dynamics [19–21],
and light-driven chemistry [22,23] to mention a few.

The many-body diagrammatic theory represents a sys-
tematic way to deal with interactions between electrons and
bosonic particles. In order to get access to the dynamical
properties of the system, the equations of motion (EOM) for
the two-times electron and boson Green’s functions, hereafter
referred to as the nonequilibrium Green’s function (NEGF)
theory [24–27], must be propagated. The EOMs in this case
are known as the Kadanoff-Baym equations (KBE) [28]. The
time nonlocality of the scattering term represents the ma-
jor difficulty for the full two-times propagation as it makes
the scaling at least cubic (t3

f ) with the physical propagation
time tf [29–36]. This hinders the possibility of resolving
small energy scales as those associated to phonons. In the
purely electronic case (no bosons) the generalized Kadanoff-
Baym ansatz (GKBA) [37] mitigates the problem of the cubic
scaling allowing one to limit the propagation to the time

diagonal, that is, to work with density matrices rather than
with two-times Green’s functions. One can work either with
the integro-differential formulation, which has a quadratic (t2

f )
scaling in time [38–44], or with a coupled system of first-order
ordinary differential equations (ODE) thus achieving a linear
(tf) time scaling [45,46]. The linear-time formulation has been
already implemented to study the photoinduced dynamics
of organic molecules [47], carrier and exciton dynamics in
2D materials [48], and the doublon production in correlated
graphene clusters [49].

In our recent Letter [11] we extended the GKBA to quan-
tized bosonic particles and formulated a first-order ODE,
hence time-linear, scheme to treat systems with an electron-
boson (e-b) interaction. We also stated that it is possible to
include the electron-electron (e-e) interactions on equal foot-
ing. The goal of this series of papers is to give an explicit
demonstration of our statement. We will further combine
the GKBA+ODE formulation with the Baym and Kadanoff
theories [26,50,51] to generate EOM that satisfy all funda-
mental conservation laws. This means that the feedback of
the electrons on the bosonic subsystem is consistently taken
into account. Several nonperturbative methods are generated
in this way, e.g., GW and T matrices either without or with
exchange [47] for the e-e interaction and Ehrenfest or dressed
second order (GD) for the e-b interaction. The whole set of
methods provides an ideal toolbox: Depending on the system
and the external driving one can choose the most appropriate
tool to simulate the dynamics. In paper II [52], we illustrate
our methods by applying them to electron-phonon dynamics
in the 1D Holstein-Hubbard model.

This paper is organized as follows. In Sec. II we intro-
duce the most general system Hamiltonian and review basic
notions of the NEGF formalism. We then discuss diagram-
matic approximations and connections between self-energies
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and high-order Green’s functions through the � functional of
Baym. In Sec. III we present the GKBA for electrons and
bosons and show how to close the EOM for the electronic-
and bosonic-density matrices in two different ways, using
either the self-energies or the high-order Green’s functions.
We subsequently derive the GKBA+ODE formulation and
discuss in detail the diagrammatic content of the self-energy
for all considered approximations. Conclusions and outlook
are drawn in Sec. IV.

II. ELECTRON-BOSON NEGF EQUATIONS
FOR CORRELATED SYSTEMS

We consider a general electron-boson system possibly
driven by external time-dependent fields and hence described
by the Hamiltonian

Ĥ (t ) = Ĥel(t ) + Ĥbos(t ) + Ĥel-bos(t ). (1)

The electronic Hamiltonian

Ĥel(t ) =
∑

i j

hi j (t )d̂†
i d̂ j + 1

2

∑
i jmn

vi jmn(t )d̂†
i d̂†

j d̂md̂n, (2)

comprises a one-body term (h† = h) accounting for the kinetic
energy as well as the interaction with nuclei and possible ex-
ternal fields and a two-body term accounting for the Coulomb
interaction between the electrons. The time dependence of
the Coulomb matrix elements vi jmn(t ) could be due to the
adiabatic switching protocol adopted to generate a correlated
initial state. Henceforth we use Latin letters to denote one-
electron states; thus i is a composite index standing for an
orbital degree of freedom and a spin projection.

The annihilation and creation operators for a bosonic mode
μ, i.e., âμ and â†

μ, are arranged into a vector (x̂μ, p̂μ) where

x̂μ = (â†
μ + âμ)/

√
2 are the position operators and p̂μ =

i(â†
μ − âμ)/

√
2 are the momentum operators. The Greek in-

dex μ = (μ, ξ ) is then used to specify the bosonic mode and
the component of the vector: φ̂μ = x̂μ for ξ = 1 and φ̂μ = p̂μ

for ξ = 2. We write the bosonic Hamiltonian as

Ĥbos(t ) =
∑
μν

�μν (t )φ̂μφ̂ν, (3)

where �† = � may depend on time, e.g., phonon driv-
ings. The typical Hamiltonian for free bosons, i.e., Ĥbos(t ) =∑

μ ωμ(â†
μâμ + 1

2 ), follows from Eq. (3) when setting

�μμ′ = 1

2
δμμ′ωμδξξ ′ , (4)

see also paper II [52]. If the bosons are photons then μ = p is
the momentum and ωp = c|p|, with c the speed of light.

The electronic and bosonic subsystems interact through

Ĥel-bos(t ) =
∑
μ,i j

gμ,i j (t )d̂†
i d̂ j φ̂μ; (5)

therefore electrons can be coupled to both the mode co-
ordinates and momenta. Similarly to the Coulomb matrix
elements v we allow g to depend on time for possible adiabatic
switchings.

Without any loss of generality we work with an orthonor-
mal basis for one-electron states and one-boson states. Then

the creation and annihilation operators fulfill the standard
anticommutation rules for electrons

{d̂i, d̂†
j } = δi j, {d̂†

i , d̂†
j } = {d̂i, d̂ j} = 0, (6)

and commutation rules for bosons

[φ̂μ, φ̂ν] = αμν, αμμ′ = −δμμ′

(
0 −i
i 0

)
ξξ ′

. (7)

A. NEGF formalism

In the NEGF formalism the fundamental unknowns are the
electronic lesser/greater single-particle Green’s functions

G<
i j (t, t ′) = i〈d̂†

j (t ′)d̂i(t )〉, G>
i j (t, t ′) = −i〈d̂i(t )d̂†

j (t ′)〉,
(8)

and their bosonic counterparts

D<
μν (t, t ′) = D>

νμ(t ′, t ) = −i〈
φ̂ν (t ′)
φ̂μ(t )〉. (9)

In Eq. (9) we have introduced the fluctuation operators


φ̂ν (t ) ≡ φ̂ν (t ) − 〈φ̂ν (t )〉, (10)

where the expectation value of the bosonic field operator
φν (t ) ≡ 〈φ̂ν (t )〉 (in contrast to the electronic case) is in gen-
eral nonzero. In Eqs. (8), (9), and (10) the operators are in the
Heisenberg picture and hence they depend on time.

The correlators G≶ and D≶ satisfy the integro-differential
Kadanoff-Baym equations (KBE) of motion. For the elec-
tronic part they read (in matrix form):

[i∂t − he(t )]G≶(t, t ′) = [�e,≶ · GA + �e,R · G≶](t, t ′),
(11)

where [a · b](t, t ′) ≡ ∫
dt̄ a(t, t̄ )b(t̄, t ′) is a real-time convo-

lution and the superscripts “R” and “A” denote the retarded
and advanced components. The quantity �e is the correlation
part of the electronic self-energy; it is a functional of G and
D through many-body diagrammatic treatments. The time-
local mean-field part is incorporated in the effective electronic
Hamiltonian he(t )

he
i j (t ) = hi j (t ) + V HF

i j (t ) +
∑

μ

gμ,i j (t )φμ(t ), (12)

where V HF
i j = ∑

mn[vimn j (t ) − vim jn(t )]ρ<
nm(t ) is the Hartree-

Fock (HF) potential written in terms of the the electronic-
density matrix ρ<(t ):

ρ
≶
i j (t ) ≡ −iG≶

i j (t, t ), [ρ>
i j ≡ ρ<

i j − δi j]. (13)

Analogously, for the bosonic correlators we have (in matrix
form) [27]

[i∂t − hb(t )]D≶(t, t ′) = α[�b,≶ · DA + �b,R · D≶](t, t ′),
(14)

where �b is the bosonic self-energy and

hb ≡ α(� + �T ) (15)

is the effective bosonic Hamiltonian. Like �e also �b is a
functional of G and D. To distinguish matrices in the one-
electron space from matrices in the one-boson space we use
boldface for the latters. If Ĥbos is a sum of harmonic oscilla-
tors then � + �T is proportional to the identity matrix in ξ
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space, see Eq. (4), and hence α(� + �T ) = (� + �T )α. For
simplicity we here specialize the discussion to this case.

To close the KBE one additionally needs to propagate
the position and momentum expectation values appearing in
Eq. (12):∑

ν

[
iδμν∂t − hb

μν (t )
]
φν (t ) =

∑
i j

ḡμ,i jρ ji(t ), (16)

where we have introduced

ḡμ.i j ≡
∑

ν

αμνgν,i j . (17)

The KBE can also be used to generate the EOM for
the electronic and bosonic density matrices. By subtracting
Eq. (11) from its adjoint and taking the equal times limit
(t = t ′) we obtain

d

dt
ρ<(t ) = −i[he(t ), ρ<(t )] − (Ie(t ) + Ie †(t )), (18)

where Ie(t ) is the right hand side of Eq. (11) calculated in t =
t ′. Analogously, the subtraction of Eq. (14) from its adjoint
and the subsequent evaluation in t = t ′ yields for the bosonic
density matrix

γ≶
μν (t ) ≡ iD≶

μν (t, t ), [γ >
μν ≡ γ <

μν + αμν = γ < ∗
μν ], (19)

the following equation of motion:

d

dt
γ<(t ) = −i[hb(t ), γ<(t )] + (Ib(t ) + Ib†(t )), (20)

where Ib(t ) is the right hand side of Eq. (14) for t = t ′.
Equations (18) and (20) are not closed because the colli-
sion integrals Ie and Ib are still functionals of the two-times
Green’s functions via the respective self-energies, �e =
�e[G, D; v, g] and �b = �b[G, D; v, g]. In Sec. III we shall
illustrate how to close the EOM (18) and (20) through the
GKBA for electrons and bosons. Preliminarily we need to
develop further the NEGF theory and discuss diagrammatic
approximations.

We split the electronic self-energy into a purely electronic
part �ee[G, v] ≡ �e[G, D; v, g]g=0 and a rest, i.e.,

�e = �ee + �eb. (21)

The electronic collision integral is then the sum of two terms,
one containing �ee and the other containing �eb:

Ie = Iee + Ieb. (22)

From the first equation of the Martin-Schwinger hierarchy for
the electronic and bosonic Green’s functions one can show
that the three collision integrals Iee, Ieb and Ib can also be
written in terms of two high-order Green’s functions [27]:

Ge
im jn(t ) = −〈d̂†

n (t )d̂†
j (t )d̂i(t )d̂m(t )〉c, (23)

Gb
μ,i j (t ) = 〈d̂†

j (t )d̂i(t )φ̂μ(t )〉c. (24)

The subscript “c” in the averages signifies that only the cor-
related part must be retained. Like the self-energies also the
high-order Green’s functions are functionals of G, D, v and g.
Pulling out from Ge the electronic part Gee ≡ Ge|g=0, hence

Ge = Gee + Geb, (25)

FIG. 1. Diagrammatic representation of the collision integrals in
terms of high order Green’s functions. Full lines are used for G, zig-
zag lines are used for D, wavy lines are used for v and empty circles
are used for g.

one finds

Iee
l j = −i

∑
imn

vlnmi(t )Gee
im jn(t ), (26a)

Ieb
l j = +i

∑
μ,i

gμ,li(t )Gb
μ,i j (t ) − i

∑
imn

vlnmi(t )Geb
im jn(t ), (26b)

Ib
μν = −i

∑
mn

ḡμ,mn(t )Gb
ν,nm(t ). (26c)

Equations (26) establish the relation between the pair �e and
�b and the pair Ge and Gb; the diagrammatic content of this
relation is illustrated in Fig. 1. Notice that the diagrams for
�eb(t, t ′) have either an e-b vertex g(t ) or an e-e vertex v(t )
at time t . The former provide the diagrammatic content of Gb

while the latter provide the diagrammatic content of Geb, see
again Eq. (26b).

It is critical to point out that for arbitrary approximations
to �eb and �b the mixed Green’s function Gb entering Ieb and
Ib need not be equal. We therefore consider only �-derivable
approximations [11,26,27,51] for these quantities. The Baym
functional � is expressed in terms of connected vacuum di-
agrams with e-b and e-e vertices. Let �c[G, D; v, g] be the
correlated part of the full Baym functional; �c is obtained by
discarding the HF and Ehrenfest vacuum diagrams, leading to
the HF potential and classical nuclear potential appearing in
Eq. (12). We define �ee as the purely electronic part of �c,
hence �ee[G, v] = �c|g=0, and write

�c[G, D; v, g] = �ee[G, v] + �̃[G, D; v, g]. (27)

The �-derivable self-energies are then given by (times t and
t ′ on the Keldysh contour)

�eb
i j (t, t ′) = δ�̃

δGji(t ′, t )
, (28a)

�b
μν (t, t ′) = − δ�̃

δDνμ(t ′, t )
− δ�̃

δDμν (t, t ′)
. (28b)

The � derivability guarantees that the same high-order
Green’s function Gb enters Ieb and Ib. Alternatively, the
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functional dependence of Gb on G and D can be directly
deduced from the functional derivative of �̃ with respect to
the e-b coupling:

Gb
μ,i j (t ) = 1

i

δ�̃[G, D; v, g]

δgμ, ji(t )
. (29)

We emphasize that the � derivability of �eb and �b

guarantees the fulfillment of all fundamental conservation
laws [53] provided that also Iee is calculated in a conserv-
ing manner. A sufficient condition for having a conserving
Iee is to consider only �-derivable electronic self-energies
�ee

i j (t, t ′) = δ�ee/δGji(t ′, t ). This condition, however, is not
necessary. We use the less stringent requirement of the sym-
metry of the two-particle Green’s function (2-GF) [50]

Gee
im jn(t, t ′) ≡ −〈d̂†

n (t )d̂†
j (t ′)d̂i(t

′)d̂m(t )〉c|g=0 = Gee
min j (t

′, t ).
(30)

This two-time function coincides with Gee(t ) in Eq. (25) along
the time diagonal, i.e., Gee(t, t ) = Gee(t ).

B. Approximations for correlated electron-boson dynamics

In several physical situations, e.g., phonon-induced carrier
relaxation, Raman spectroscopy, transport through molecular
junctions, etc., �̃ is approximated as

(31)

where the e-b vertices are either bare [54] (photon fields) or
statically screened [2] (phonon fields). This is the diagram-
matic approximation that we too examine in the present paper.
In most practical implementations the boson propagator D in
�̃ is frozen at its equilibrium and noninteracting value. We
go beyond this approximation and consider �̃ as a functional
of the fully dressed electronic and bosonic Green’s functions.
Energy can then be transferred from the bosonic subsystem to
the electronic subsystem and viceversa while the total energy
is conserved. The explicit mathematical expression of �̃ is
(time integrals are over the Keldysh contour)

�̃= i

2

∑
μν
i jsq

∫
dtdt ′gμ, ji(t )Dμν (t, t ′)gν,sq(t ′)Gis(t, t ′)Gq j (t

′, t ).

(32)
Through functional derivatives with respect to G and D, see
Eqs. (28), the chosen �̃ leads to the dressed second-order
self-energy (GD) for the electrons [55] and to the bubble
self-energy for the bosons [11], see Sec. III C for more details.
These self-energies give the same mixed Green’s function Gb

from Eqs. (26b) and (26c) since they are derived from the
same �̃ functional.

We have seen that Gb can also be calculated from Eq. (29).
Taking into account that �ee is independent of the e-b cou-
pling we get

Gb
μ,i j (t ) =

∑
ν,sq

∫ t

dt ′{D>
μν (t, t ′)gν,sq(t ′)G>

is (t, t ′)G<
q j (t

′, t )

− (>↔<)}. (33)

FIG. 2. (a) Mixed Green’s function Gb from the approximated
Baym functional in Eq. (31). (b) Two-particle Green’s function Ge =
Gee for GW , T ph, and T pp.

To highlight the mathematical structure in the right hand side
we find useful to introduce a composite index for pairs of
electron indices. Without any risk of ambiguity we use Greek
letters also for such composite index:

gμ,i j = g
μ,

j
i
= gμν, Gb

μ,i j → Gb

μ,
j
i
= Gb

μν, ν =
(

j
i

)
.

(34)

This mathematical notation expresses the physical notion that
we need two fermions to make a boson. We can then rewrite
Eq. (33) in a compact matrix form as

Gb(t ) = i
∫ t

dt ′{D>(t, t ′)g(t ′)χ0,<(t ′, t ) − (>↔<)}, (35)

where, consistently with our notation, the matrices with Greek
indices are represented by boldface letters. In Eq. (35) we have
defined the noninteracting response function

χ0,≶
μν (t ′, t ) = χ

0,≶
q j
si

(t ′, t ) ≡ −iG≶
q j (t

′, t )G≷
is (t, t ′). (36)

The diagrammatic representation of Eq. (35) is given in
Fig. 2(a).

Let us now discuss the 2-GF Ge. The functional �̃ in
Eq. (31) is independent of the Coulomb interaction v and
therefore Geb = 0, or equivalently Ge = Gee, see Eq. (25). For
Gee we consider a large class of perturbative and nonpertur-
bative approximations like the second-Born (2B), GW and T
matrix in the particle-hole (T ph) and particle-particle (T pp)
channels as well as GW plus exchange (X ), T ph + X , and
T pp + X [47]. In Ref. [47] we have also shown how to include
three-particle correlations through a generalization of the
GKBA to the three-particle Green’s function. The method has
been dubbed the Faddeev approach and it is particularly suited
to study the correlated electron dynamics in molecules after an
inner-valence ionization. All the aforementioned approxima-
tions to Gee satisfy the symmetry condition in Eq. (30); hence
the resulting theory is fully conserving.

For the more familiar GW , T ph and T pp approximations
the 2-GF satisfies an RPA-like equation whose diagrammatic
representation can be found in, e.g., Fig. 1 of Ref. [47].
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TABLE I. Definitions of electronic two-particle tensors. The vertically grouped indices are combined into one (Greek) super-index.

Quantity 2B and GW T pp T ph

iχ0,≶
13
24

(t, t ′) G≶
13(t, t ′)G≷

42(t ′, t ) −G≶
13(t, t ′)G≶

24(t, t ′) −G≶
13(t, t ′)G≷

42(t ′, t )

Gee
13
24

Gee
4132 Gee

1234 Gee
1432

he
13
24

he
13δ42 − δ13he

42 he
13δ24 + δ13he

24 he
13δ42 − δ13he

42

v13
24

v1432 v1243 v1423

ρ<

13
24

ρ<
13ρ

>
42 ρ<

13ρ
<
24 ρ<

13ρ
>
42

Therefore, the 2-GF can be written as (in matrix form)

Gee(t ) = −i
∫ t

dt ′{χ>(t, t ′)v(t ′)χ0,<(t ′, t ) − (>↔<)},
(37)

where

χ≶ = (δ + χR · v) · χ0,≶ · (v · χA + δ) (38)

and

χR/A = χ0,R/A + χ0,R/A · v · χR/A, (39a)

= χ0,R/A + χR/A · v · χ0,R/A. (39b)

In Eq. (38) the quantity δ stands for the Dirac delta in time
and the Kroenecher delta in the two-electron space, hence for
any two-time correlator C we have [δ · C](t, t ′) = ∫

dt̄ δ(t −
t̄ )C(t̄, t ′) = C(t, t ′). Depending on the approximation the ma-
trices in the two-electron space Gee, χ0 and v are defined in
Table I. The perturbative 2B approximation is simply obtained
by replacing the dressed χ with χ0 in Eq. (37). Notice that
the matrix χ0 in Eq. (36) coincides with the matrix χ0 in
Eq. (37) only for the 2B and GW approximations. To keep the
notation as light as possible we however use the same symbol
even when they are different (T ph and T pp approximation) and
make the reader notice the slight abuse of notation when this
occurs. The diagrammatic representation of Eq. (37) is given
in Fig. 2(b).

In the next section we derive the EOM for ρ<, γ<, Gb,
and Gee in the GD approximation and in all approximations
of Table I. We also show how to modify the EOM when
exchange is included and provide the diagrammatic content
of the corresponding self-energies.

III. GKBA+ODE SCHEME FOR NEGF SIMULATIONS

A. GKBA for electrons and bosons

A way to close the EOM for the density matrices consists
in implementing the GKBA for electrons [37] and our recently
proposed GKBA for bosons [11]

G≶(t, t ′) = −GR(t, t ′)ρ≶(t ′) + ρ≶(t )GA(t, t ′), (40)

D≶(t, t ′) = DR(t, t ′)αγ≶(t ′) − γ≶(t )αDA(t, t ′), (41)

combined with the mean-field form of the retarded propaga-
tors:

GR(t, t ′) = −iθ (t − t ′)T {e−i
∫ t

t ′ dτ he(τ )}, (42)

DR(t, t ′) = −iαθ (t − t ′)T {e−i
∫ t

t ′ dτ hb(τ )}. (43)

We mention that more advanced propagators can be used
without affecting the scaling of the numerical solution
[41,56–59]. Once the GKBA is applied to a given approxima-
tion to the self-energies (or equivalently high-order Green’s
functions) both Ie and Ib become functionals of ρ< and γ<;
hence Eqs. (16), (18), and (20) become a closed system of
integro-differential equations for the one-time unknown func-
tions φ(t ), ρ<(t ) and γ<(t ). We refer to this approach as the
GKBA+KBE.

For purely electronic systems an efficient implementation
of the GKBA equation of motion (18) has been recently pro-
posed [45,46]. The main feature is the linear scaling with the
maximum propagation time for the 2B, GW and T -matrix
approximations. In Ref. [47] the class of approximations has
been further extended to include exchange effects and even
three-particle correlations. The question what is the most gen-
eral approximation to �̃ for preserving the time-linear scaling
property is still open. In this work we make a step in this

direction and show that the approximate

(discussed in the previous section) does not affect the overall
time scaling.

B. GKBA form of Gb and Ge

The Green’s functions Gb and Ge = Gee are prerequisites
for reformulating the GKBA+KBE equations in terms of
first-order ODE, thus achieving a linear time-scaling scheme.
The purpose of this section is to implement the GKBA and
transform these high-order Green’s functions into functionals
of ρ< and γ<.

Let us consider first Gb. Evaluating the noninteracting re-
sponse functions of Eq. (36) with the GKBA in Eq. (40) we
find a sum of products between matrices in the two-electron
space

χ0,≶(t, t ′) = PR(t, t ′)ρ≶(t ′) − ρ≶(t )PA(t, t ′), (44)
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where PA(t, t ′) = [PR(t ′, t )]† and for t > t ′ the particle-hole
propagator fulfills the equation of motion

i
d

dt
PR(t, t ′) = he(t )PR(t, t ′), (45)

with boundary condition iPR(t+, t ) = −1 and PR(t, t ′) = 0
for t < t ′. The boldface quantities ρ<(t ) and he(t ) are matrices
in the two-electron space and they are given in Table I under
the column 2B and GW . The matrix ρ> is obtained from ρ< by
changing the one-electron matrices ρ≶ → ρ≷. Substituting
Eqs. (44) and (41) into Eq. (35) we find

Gb(t ) = −i
∫ t

dt ′DR(t, t ′)α	b(t ′)PA(t ′, t ), (46)

with

	b(t ) ≡ γ>(t )g(t )ρ<(t ) − γ<(t )g(t )ρ>(t ). (47)

Equation (46) is a functional of the bosonic and fermionic
density matrices through the definitions in Table I, Eq. (43)
and Eq. (45).

Next we consider the 2-GF Gee. Using the GKBA to eval-
uate the noninteracting response function χ0 in one of the
approximations of Table I we always find Eq. (44) where
PR fulfills the same equation of motion as in Eq. (45) but
with boundary conditions iPR(t+, t ) = −1 for 2B and GW
and iPR(t+, t ) = 1 for the T -matrix approximations. Another
important difference is that the definition of the matrices ρ≶

and he(t ) changes by changing approximation according to
Table I. Using this result the retarded and advanced noninter-
acting response function, i.e.,

χ0,R/A(t, t ′) ≡ ±θ (±t ∓ t ′)[χ0,>(t, t ′) − χ0,<(t, t ′)], (48)

read

χ0,R(t, t ′) = PR(t, t ′)ρ
(t ′), (49a)

χ0,A(t, t ′) = ρ
(t )PA(t, t ′). (49b)

where

ρ
(t ) ≡ ρ>(t ) − ρ<(t ). (50)

In Ref. [47] we have shown that inserting Eqs. (49) into
Eq. (39) for χR/A and then using Eq. (44) for χ0,≶, the
lesser/greater interacting response function in Eq. (38) can be
written as

χ≶ = 
Rρ≶ · (δ + vρ

A) − (δ + 
Rρ
v) · ρ≶
A, (51)

where the dressed propagator 
R(t, t ′) = [
A(t ′, t )]† fulfills
the RPA equation


R − PR = 
R · ρ
vPR = PRρ
v · 
R, (52a)


A − PA = 
A · vρ
PA = PAvρ
 · 
A. (52b)

For later purposes we also observe that taking into account
the equation of motion (45) for PR together with its boundary
condition, the dressed propagators satisfy a simple EOM

i
d

dt

R(t, t ′) = [he(t ) + a ρ
(t )v(t )]
R(t, t ′), (53a)

−i
d

dt

A(t ′, t ) = 
A(t ′, t )[he(t ) + a v(t )ρ
(t )], (53b)

where the constant a depends on the approximation: a = 0
in 2B, a = −1 in GW , a = 1 in T ph, T pp. The two-time
function 
R can be interpreted as a dressed particle-hole (for
GW and T ph) or particle-particle (for T pp) propagator.

We have now all the ingredients to obtain the GKBA form
of the 2-GF, and hence to transform Gee into a functional of
ρ<. We substitute Eq. (51) for χ≶ and Eq. (44) for χ0,≶ into
Eq. (37) and find

Gee(t ) = i

[(

Rρ> · (δ + v ρ

A) − (δ + 
Rρ
 v) · ρ>
A︸ ︷︷ ︸

χ>

)
· v ρ<PA︸ ︷︷ ︸

−χ0,<

]
(t, t ) − [> ↔ <](t, t )

= i[
Rρ>vρ< · PA + 
R(ρ>vρ
 − ρ
vρ>) · 
A · vρ<PA](t, t )

− i[
Rρ<vρ> · PA + 
R(ρ<vρ
 − ρ
vρ<) · 
A · vρ>PA](t, t )

= i[
R (ρ>vρ< − ρ<vρ>) · PA + 
R (ρ>vρ< − ρ<vρ>) · 
A · v ρ
PA](t, t )

= i[
R (ρ>vρ< − ρ<vρ>) · 
A](t, t ), (54)

where in the second equality we have observed that [
A ·
v ρ≶PA](t, t ) = 0 since 
A(t, t̄ ) contains a θ (t̄ − t ) and
PA(t̄, t ) contains a θ (t − t̄ ). Making explicit the time inte-
gration we recognize the same mathematical structure of the
mixed Green’s function Gb in Eq. (46)

Gee(t ) = i
∫ t

dt ′ 
R(t, t ′) 	e(t ′)
A(t ′, t ), (55)

where we have defined

	e(t ) ≡ ρ>(t )v(t )ρ<(t ) − ρ<(t )v(t )ρ>(t ). (56)

Equation (55) is a functional of the bosonic and fermionic
density matrices through the definitions in Table I and
Eqs. (53).

C. EOM for Gb and Ge

Differentiating Eq. (46) with respect to t and taking into
account that DR(t, t ′) defined in Eq. (43) satisfies for t > t ′
the equation i d

dt DR(t, t ′) = hb(t )DR(t, t ′) we find

i
d

dt
Gb(t ) = −	b(t ) + hb(t )Gb(t ) − Gb(t )he(t ), (57)

125134-6



TIME-LINEAR SCALING NONEQUILIBRIUM GREEN’S … PHYSICAL REVIEW B 105, 125134 (2022)

(a) (b)

FIG. 3. Bosonic self-energy for electrons (a) and electronic self-
energy for bosons (b).

where we also used the equation of motion (45) for PA(t ′, t ) =
[PR(t, t ′)]†. We notice that Eq. (57) differs from the EOM in
Ref. [11] by the minus sign in front of 	b. This is due to
the fact that a minus sign has been introduced in the present
definition of ρ>, see Eq. (13).

Similarly, differentiating Eq. (55) with respect to t and
taking into account the equation of motion (53) for 
R/A we
find

i
d

dt
Gee(t ) = −	e(t ) + [he(t ) + aρ
(t )v(t )]Gee(t )

− Gee(t )[he(t ) + av(t )ρ
(t )]. (58)

Equations (57) and (58) together with the equation of mo-
tion for φ(t ) [Eq. (16)] and the equations of motion for the
electronic- and bosonic-density matrices [Eqs. (18) and (20)],
form a closed system of first-order ODE to study the dynamics
of interacting electrons and bosons in a large class of approx-
imations, see also below. This is the GKBA+ODE scheme.

The GKBA+ODE scheme is equivalent to the original
GKBA+KBE integro-differential equations with electronic

self-energy �e = �ee + �eb and bosonic self-energy �b. For
the approximate functional �̃ in Eq. (32) we have that �eb is
the GD self-energy calculated using dressed Green’s functions
G and D, see Fig. 3(a). The dressed Green’s function D dif-
fers from its equilibrium counterpart since bosons receive an
electronic feedback through �b. The latter is in turn evaluated
in accordance with the �-derivability theory of Baym and
it is therefore given by the electronic bubble, see Fig. 3(b).
The electronic self-energy due to the e-e interaction �ee can
instead be approximated in several ways. In addition to the
perturbative 2B approximation [which corresponds to set a =
0 in Eq. (58)] the two-electron index-order outlined in Table I
is equivalent to the implementation of the GW approximation
(a = −1), see Figs. 4(a) and 4(b) or the T -matrix approxima-
tion (a = 1) in the particle-hole and particle-particle channels,
see Figs. 4(c) and 4(d).

The 2-GF in the GW and T -matrix approximations solve
the Bethe-Salpeter equation (BSE) with kernel v given in
Table I under the respective (GW or T ph) column. Exchange
effects to all orders can be included using the kernel w (same
index-order convention as v) where

wimn j = vimn j − vim jn, (59)

i.e., the sum of the direct and exchange (X ) Coulomb inte-
grals. The addition of exchange to the BSE kernel preserves
the symmetry condition in Eq. (30) and, therefore, these ap-
proximations too are conserving. The GKBA form of the
resulting Gee satisfies Eq. (58) where all v’s are replaced by

(a) (f)

(g)

(h)

(i)

(b)

(c)

(d)

(e)

FIG. 4. All possible self-energies �ee that can be implemented in the GKBA+ODE scheme. (a) RPA screened interaction; (b) GW self-
energy with RPA screened interaction; (c) T -matrix self-energy in the particle-hole channel; (d) T -matrix self-energy in the particle-particle
channel; (e) GW + X approximation consisting of a GW -like diagram and an infinite series of exchange diagrams. The screened interaction
is W̄ defined in (f) where the polarization (g) differs from the bare one as it accounts for multiples electron-hole scatterings. (h) T ph + X
approximation consisting of the standard T ph diagrams and an infinite series of exchange diagrams—notice the appearance of W̄ . (i) T pp + X
approximation.
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w—hence also the definition of 	e in Eq. (56) changes. We
refer to these approximations as the GW + X method if w is
written with the GW -index order and the T ph + X method if
w is written in the T ph-index order [47]. As there is a one-to-
one diagrammatic correspondence between Gee and �ee, it is
instructive to work out the self-energy diagrams in these two
approximations. We anticipate that �ee is not � derivable in
GW + X and T ph + X (nonetheless the theory is conserving).

In Fig. 4(e) we show the GW + X self-energy. It consists
of a GW -like diagram and of an infinite series of exchange
diagrams. The screened interaction W̄ differs from the RPA
W in Fig. 4(a) since the polarization contains a nonperturba-
tive vertex correction describing the multiple scattering of an
electron-hole pair, see Figs. 4(f) and 4(g). If we replace W̄
with the RPA W and restrict the sum over k to k = 1, then
the GW + X self-energy reduces to the SOSEX self-energy
introduced in Ref. [60], see also Refs. [61–63].

The T ph + X self-energy is illustrated in Fig. 4(h). In ad-
dition to the standard T ph diagrams, see again Fig. 4(d), this

approximation contains a GW -like diagram decorated by an
infinite series of exchange terms at both vertices. It is worth
noticing that the sums over the interactions start from unity on
the left and from zero on the right, hence no GW -like diagram
is contained in here. Interestingly, the screened interaction is
the same as in the GW + X approximations, i.e., it is the W̄
of Fig. 4(f). We finally observe that the Bethe-Salpeter equa-
tion with kernel w in the particle-particle channel would lead
to a multiple counting of the same diagram since exchanging
two particles twice is equivalent to no exchange. Therefore
the proper way of constructing the T pp + X approximation
is depicted in Fig. 4(i), where all internal lines are bare e-e
interactions. The EOM for Gee in T pp + X is the same as in
the T pp approximation. The difference appears in the EOM
for ρ<; the collision integral Iee of Eq. (26a) should in this
case be calculated with vimn j → wimn j .

As Fig. 4 shows, the GKBA+ODE scheme can be imple-
mented for a large number of methods. For all of them the
EOM have the same mathematical structure:

i
d

dt
φμ(t ) = hb

μν (t )φν (t ) +
∑

i j

ḡμ,i jρ ji(t ), (60a)

i
d

dt
ρ<

l j (t ) = [he(t ), ρ<(t )]l j +
(

−c
∑
imn

(vlnmi(t ) − x′ vlnim(t ))Gee
im jn(t ) + d

∑
μ,i

gμ,li(t )Gb
μ,i j (t ) − (l ↔ j)∗

)
, (60b)

i
d

dt
γ <

μν (t ) = [hb(t ), γ<(t )]μν +
(

d
∑
mn

ḡμ,mn(t )Gb
ν,nm(t ) − (μ ↔ ν)∗

)
, (60c)

i
d

dt
Gb(t ) = −	b(t ) + hb(t )Gb(t ) − Gb(t ) he(t ), (60d)

i
d

dt
Gee(t ) = −	e(t ) + [he(t ) + aρ
(t ) ux(t )]Gee(t ) − Gee(t )[he(t ) + a ux(t ) ρ
(t )], (60e)

where the control parameters a, c, x, x′, and d allow to switch
between different methods

a =

⎧⎪⎪⎨
⎪⎪⎩

any HF
0 2B
−1 GW + (X )
1 T ph + (X ), T pp + (X )

c =
{

0 HF
1 otherwise

x =
{

0 GW, T ph, T pp + (X )
1 2B, GW + X, T ph + X

x′ =
{

1 T pp + X
0 otherwise

d =
{

0 Ehrenfest
1 GD for electrons, bubble for bosons .

In Eq. (60e) we have introduced

ux ≡ (1 − x) v + x w (61)

and

	e(t ) ≡ ρ>(t ) ux(t ) ρ<(t ) − ρ<(t ) ux(t ) ρ>(t ) (62)

to distinguish GW and T ph (x = 0) from GW + X and T ph +
X (x = 1). Taking into account Table I and the definitions of
he, hb, and 	b in Eqs. (12), (15), and (47) the whole NEGF
toolbox is thus equivalent to a system of five coupled first-
order ODE.

Equations (60) fulfill all fundamental conservation laws
and constitute the main result of this paper. As with any set
of first-order differential equations the GKBA+ODE scheme
must be supplied with an initial condition for the unknown
quantities. We could start with an uncorrelated state described
by a HF electronic-density matrix and no bosons, i.e.,

φμ(0) = 〈0|φ̂μ|0〉, ρ<(0) = ρHF,

γ <
μν (0) = 〈0|
φ̂ν
φ̂μ|0〉, Gb = Gee = 0,

and then switch on the couplings v(t ) and g(t ) adiabatically.
At the end of the adiabatic switching the values of φ, ρ<, γ<,
Gee, and Gb can be saved and used as the initial (correlated)
conditions for the simulations of interest. However, we could
also start from any initial nonequilibrium state. In paper II [52]
we implement and solve Eqs. (60) to study the dynamics
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of polarons and phonon-dressed doublons in the Hubbard-
Holstein model starting from two different nonequilibrium
initial conditions, highlighting the effects of the interplay be-
tween e-e and e-b interactions.

We remark that the GKBA+ODE scheme is particularly
advantageous to investigate dynamical processes occurring at
different time scales. Consider for instance the optical exci-
tation in a semiconductor. Initially the dynamics is dictated
by the electronic time-scale and hence the time-step to solve
numerically Eqs. (60) should be kept below ∼10 attoseconds.
After a while the dynamics slows down and the time-scale
is dictated by the electron-phonon scattering rate. We could
then stop the simulation, save the value of φ, ρ<, γ<, Gee,
and Gb, and start a second simulation using a larger time-step,
e.g., 1 ÷ 10 femtoseconds, and the saved values as initial con-
ditions. Alternatively, we could implement an adaptive time
step. This second option is always preferable if we have no
limits to the CPU time per job.

IV. SUMMARY AND OUTLOOK

In this paper we developed a diagrammatic NEGF for-
malism to simulate the coupled electron-boson dynamics in
correlated materials. The formalism relies on the GKBA
for electrons [37] and on our recently proposed GKBA for
bosons [11]. With the GKBAs one can collapse the KBE
for the two-times Green’s functions onto integro-differential
equations for the one-time density matrices. In Refs. [45,46] it
was realized that the KBE+GKBA integro-differential equa-
tions of purely electronic systems can be reformulated in
terms of a system of coupled first-order ODE for the GW
and T -matrix self-energies. Shortly after such GKBA+ODE
scheme was extended to include exchange effects and three-
particle correlations [47]. Furthermore it was realized that a
GKBA+ODE scheme can be constructed also to treat systems
with only e-b interactions [11]. Our paper shows that e-e

and e-b interactions can be treated on equal footing without
altering the time-linear scaling.

We have presented a large class of methods, and for each
of them the diagrammatic content of the self-energy has been
explicitly worked out. The merits of the NEGF toolbox are (i)
all fundamental conservation laws are satisfied independently
of the method; (2) the ODE nature of the EOM allows one to
address phenomena occurring at different time scales through
a save-and-restart procedure accompanied by an adaptation of
the time-step; and (3) as a byproduct of the calculation we
have access to the spatially nonlocal correlators Ge and Gb,
containing information on charge or magnetic orders [64,65],
polaronic or polaritonic states, etc., see Ref. [66] and paper
II [52].

The formal development of the GKBA+ODE scheme is
still at its infancy. The generalization of the GKBA to higher
order Green’s functions put forward in Ref. [47] may give
access to even more accurate approximations while remaining
within a time-linear scheme. Furthermore, the inclusion of
an interaction with a fermionic or bosonic bath would make
possible to simulate the dynamics of, e.g., photoionized sys-
tems [67,68] or molecular junctions [41,69]. Numerical works
based on the GKBA+ODE scheme have begun to appear in
the literature only recently [47–49]. Parallel implementations
in high performance computer facilities are expected to open
the door to first-principles investigations of a wide range of
nonequilibrium correlated phenomena.
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