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Weyl hydrodynamics in a strong magnetic field
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We study the hydrodynamic transport of electrons in a Weyl semimetal in a strong magnetic field. Impurity
scattering in a Weyl semimetal with two Weyl nodes is strongly anisotropic as a function of the direction of the
field and is significantly suppressed if the field is perpendicular to the separation between the nodes in momentum
space. This allows for convenient access to the hydrodynamic regime of transport, in which electron scattering
is dominated by interactions rather than by impurities. In a strong magnetic field, electrons move predominantly
parallel to the direction of the field, and the flow of the electron liquid in a Weyl-semimetal junction resembles the
Poiseuille flow of a liquid in a pipe. We compute the viscosity of the Weyl liquid microscopically and find that it
weakly depends on the magnetic field and has the temperature dependence η(T ) ∝ T 2. The hydrodynamic flow
of the Weyl liquid can be generated by a temperature gradient. The hydrodynamic regime in a Weyl-semimetal
junction can be probed via the thermal conductance Gq(B, T ) ∝ B2T of the junction.
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I. INTRODUCTION

Hydrodynamics has recently been receiving attention as a
paradigm for describing transport in sufficiently clean mate-
rials with strong electron correlations not amenable to exact
microscopic treatment. Hydrodynamic description deals with
macroscopic degrees of freedom, such as the densities of
particles and their momenta.

The hydrodynamic regime requires that the electron-
electron scattering rate significantly exceed the electron-
phonon and impurity scattering rates and is predicted to lead
to such unconventional phenomena as Gurzhi effect [1,2]
(growing conductance with increasing temperature), current
vortices [3,4], and magnetic dynamos in electron liquids
[5]. Hydrodynamic transport is also often discussed as a
possible mechanism behind the linear-in-T resistivity in high-
temperature superconductors [6,7].

Dirac materials in two-dimensional (2D) (graphene
[8–10]) and three-dimensional (3D) (Weyl and Dirac
semimetals [5,11–15]) is another popular venue for theoretical
studies of hydrodynamic effects. Hydrodynamic flows in such
systems simulate ultrarelativistic interacting matter and, in the
case of two dimensions, allow for convenient visualization
(see, e.g., Ref. [16]).

Despite extensive theoretical studies, achieving the hydro-
dynamic regime is rather challenging; materials that allow
for conclusive experimental observations of hydrodynamic
transport are few and far between. Such observations include
manifestations of hydrodynamics in the nonlocal transport in
high-mobility (Al,Ga)As heterostructures [17,18], magnetore-
sistive [19–22], and Gurzhi effects [23–25] in (Al,Ga)As het-
erostructures, deviations from the Wiedemann-Franz law [26]
in WP2, and a combination of magnetotransport phenomena in
PdCoO2 [27]. Graphene provides another popular playground
for observing hydrodynamic phenomena [4,16,28–32] (see
Refs. [9,10] for a comprehensive review).

In this paper we demonstrate that 3D Weyl semimetals
(WSMs) is a readily accessible platform for hydrodynamic
transport and discuss manifestations of such transport in
them in strong magnetic fields. As demonstrated recently in
Ref. [33], the impurity scattering time τ for electrons in a
Weyl semimetal with two nodes is strongly anisotropic as a
function of the direction of the magnetic field:

1

τ
= 1

τ0
cos2 θ + 1

τ1
, (1.1)

where θ is the angle between the field and the separation of
the Weyl nodes in momentum space and 1/τ0 � 1/τ1. The
scattering rate is strongly suppressed for θ close to π/2, i.e.,
for magnetic fields perpendicular to the separation between
the nodes, which makes the hydrodynamic regime in a Weyl
semimetal conveniently achievable by applying the magnetic
field in the respective direction (in addition to that, the elastic
scattering length in a strong magnetic field may be quite large
even away from θ = π

2 ; see Appendix A).
In a strong magnetic field, Weyl electrons move predom-

inantly (anti)parallel to the direction of the field. As a result,
the motion of the electron liquid in a Weyl-semimetal junction
in a magnetic field resembles the Poiseuille flow [34,35] of
a liquid in a pipe, as shown in Fig. 1. The friction between
the layers of the Weyl liquid moving with different veloci-
ties leads to dissipation and viscosity. Due to the effectively
one-dimensional character of the flow, there is no transverse
transport of particles that leads to a common mechanism
of viscosity in liquids and gases [36]. The viscosity comes,
however, from the “Coulomb drag” between layers of liquid
moving with different velocities, a mechanism introduced re-
cently for conventional metals in Ref. [37].

We derive the hydrodynamic equations describing the hy-
drodynamic motion of a Weyl liquid in a strong magnetic
field, compute microscopically the viscosity of such a liquid,
and analyze the conduction of a Weyl-semimetal junction. We
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FIG. 1. The flow of a Weyl liquid in a junction in a strong
magnetic field. The motion is effectively unidirectional because
quasiparticles can move only parallel or antiparallel to the magnetic
field. The velocity of the liquid is defined as the velocity of the refer-
ence frame (bath) in which thermalization of the liquid takes place.
The dependence of the velocity on the transverse coordinate creates
shear stress. The corresponding dissipative forces are determined by
the Coulomb interaction between different layers of the liquid.

find that the viscosity weakly depends on the magnetic field
and strongly on the temperature T and, for realistic tempera-
tures, is given by

η = M

12πvF
T 2, (1.2)

where the “mass” M gives the inverse curvature of the quasi-
particle dispersion near the Weyl nodes and vF is the Fermi
velocity. In the hydrodynamic regime, the thermal conduc-
tance (the response of the energy flux to a small temperature
difference) of a Weyl-semimetal junction is given, up to a
nonuniversal coefficient of order unity which depends on the
shape of the junction, by

Gq ∼
( |e|B

c

)2 S

LMvF
T, (1.3)

where S is the cross-sectional area and L is the length of the
junction.

The paper is organized as follows. In Sec. II we introduce
the model of WSMs in a strong magnetic field and discuss
the approximations we use in this paper. In Sec. III we derive
the hydrodynamic equations for the electron liquid in such a
semimetal. Section IV deals with the viscosity of such a liq-
uid. In Sec. V we describe the hydrodynamic flow of the Weyl
liquid generated by a temperature gradient and the possibility
of its experimental observation. We conclude in Sec. VI.

II. MODEL

We consider the model of a Weyl semimetal with two Weyl
nodes, right (R) and left (L) (shown in Fig. 2), and equal en-
ergies of the nodes. The Weyl semimetal may have additional
nodes that weakly affect the electron dynamics between nodes
L and R so long as the additional nodes are well separated
in momentum space from the nodes under consideration. The
magnetic field B is directed at angle θ with respect to the line
connecting the two nodes in momentum space. For simplicity
we assume that the quasiparticles have no spin (apart from
the pseudospin operator associated with the bands in the Weyl

FIG. 2. Orientation of the magnetic field relative to the locations
of the Weyl nodes in momentum space.

semimetal) and have isotropic dispersions around each node.
Our quantitative results will hold, however, up to coefficients
of order unity, for an arbitrary type-I Weyl semimetal.

We focus on the ultraquantum limit of the magnetic field

B >

(
2

9

) 1
3 μ2c

|e|v2
F

, (2.1)

at which all electrons in equilibrium occupy the zeroth Landau
level, where μ is the chemical potential (measured from the
energy of the Weyl nodes) in the absence of the field; vF is the
Fermi velocity; hereinafter we set h̄ = 1.

In the absence of impurity scattering and interactions, the
motion of electrons is one dimensional; quasiparticles can
propagate only parallel or antiparallel to the direction of the
magnetic field B with the velocity vF . We assume that elec-
trons move along the magnetic field at node L and in the
opposite direction at node R.

Impurities and screening of Coulomb interactions. The
strength of Coulomb interactions in the system is character-
ized by the dimensionless “fine structure constant”

α = e2

εvF
, (2.2)

where ε is the dielectric constant. Most Weyl and Dirac mate-
rials have sufficiently large values of the dielectric constant
[38–41] to ensure the condition α � 1, which controls the
diagrammatic perturbation theory for the interactions used in
this paper.

While we focus on the hydrodynamic regime of transport,
the system may contain a small amount of charged impurities.
The hydrodynamic transport, studied in this paper, will persist
so long as the elastic scattering rate (1.1) is significantly
exceeded by the quasiparticle scattering rate due to electron-
electron interactions.

In the Thomas-Fermi approximation [42], the screening
radius of static Coulomb interaction is given by [33]

κ
−1 =

√
πεvF c

2|e|3B
= lB

√
π

2α
. (2.3)

The Thomas-Fermi approximation is justified in the limit [42]
|μ| � κvF , which will be assumed throughout this paper.
However, our results still hold qualitatively for other values
of μ.

Spatial scales of the hydrodynamic flow. To apply the hydro-
dynamic description, we assume that the macroscopic degrees
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of freedom of the electron liquid, such as the velocity u of the
liquid, vary smoothly in space, on length scales λ significantly
exceeding the microscopic scales of the system,

λ � Q−1, lB, κ
−1, (2.4)

where 2Q is the separation between the Weyl nodes in mo-
mentum space; the screening radius κ

−1 is given by Eq. (2.3)
and

lB =
√

c/(|e|B) (2.5)

is the magnetic length. The momentum separation 2Q be-
tween the Weyl nodes is typically of the order of inverse
atomic distances and is assumed to be the largest momentum
scale in the problem.

At low temperatures, the densities are correlated on length
scales of the order of the screening radius (2.3) κ

−1 =
lB

√
π/α, which exceeds the magnetic length lB due to the

smallness of the coupling constant α. The correlations in the
electron liquid may, therefore, be assumed isotropic on length
scales κ

−1 � L � λ exceeding the screening radius κ
−1 but

shorter than the characteristic scales λ of the variation of the
macroscopic hydrodynamic parameters such as the velocity of
the liquid.

Energy scales. As we demonstrate in this paper, the vis-
cosity of the Weyl liquid strongly depends on its temperature.
For magnetic fields on the order of 1T or larger, the cyclotron
frequency vF /lB is on the order of 50 meV or larger and, thus,
significantly exceeds the temperatures T used in experiments
on Weyl semimetals. Taking into account Eq. (2.3), realistic
energy scales may, therefore, be assumed to satisfy the condi-
tions

T � vF κ � vF /lB. (2.6)

III. HYDRODYNAMIC EQUATIONS

A. Velocity of the hydrodynamic flow

In the hydrodynamic description, the flowing electron
liquid may be considered to be equilibrated in a moving refer-
ence frame. It is possible, therefore, to introduce the velocity
u of the electron liquid as the velocity of the equilibrium ref-
erence frame. Considering the dispersion ξk = ±vF k − u(r)k
of the quasiparticles at the zeroth Landau level near the
left and the right nodes, the respective quasiparticle occu-
pation numbers are given by fL(k, u, μL ) = f (k, u, μL ) and
fR(k, u, μR) = f (−k,−u, μR), where

f (k, u, μ) = 1

e[vF k−u(r)k−μ(r)]/T + 1
(3.1)

and the momentum k is measured from the respective node.
Hereinafter, we assume that the gradient of the velocity u is
small and neglect the effects of vorticity exemplified by the
chiral vortical effect [12,43,44].

The electron liquid may be thermalized by any bath of
neutral excitations (e.g., phonons) or the electrons themselves.
The full hydrodynamic description of a Weyl semimetal
should include the hydrodynamic equations of motion of the
bath as well as those of the electron liquid. In this paper we
assume, for simplicity, that the electron liquid acts as its own
bath.

B. Hydrodynamic variables

We develop a hydrodynamic description of the electron
liquid in terms of the density of electrons near each node and
the momentum density of the liquid. The electron density NL

near node L is measured relative to the equilibrium states of
an undoped Weyl semimetals in the absence of the flow (i.e.,
for u = 0):

NL = |e|B
2πc

∫
dk

2π
[ fL(k, u, μL ) − fL(k, 0, 0)]. (3.2)

Using the distribution functions fL(k, u, μL ) = f (k, u, μL )
given by Eq. (3.1) we obtain

NL = |e|B
4π2c

μL

vF − u
, (3.3)

where μL is the chemical potential at the left node.
Because each quasiparticle at the left node moves with the

velocity vF along the magnetic field and carries a charge of
e = −|e|, the electric current jL carried by the electrons near
this node (relative to the equilibrium state in the absence of
the flow) is given by

jL = e
|e|B
2πc

∫
dk

2π
vF [ fL(k, u, μL ) − fL(k, 0, 0)]

= evF NL. (3.4)

Similarly, we compute the concentration NR of the elec-
trons near the right node:

NR = |e|B
4π2c

μR

vF + u
(3.5)

and the current

jR = −evF NR. (3.6)

C. Hydrodynamic equations

1. Continuity equations for densities

The continuity equation for the electron density NL reads

∂t NL + vF ∂zNL = − e2

4π2c
E · B − NL − NR

τ
, (3.7)

where vF NL is the flux of the density (measured relative to the
equilibrium state) along the magnetic field (z axis); the first
term in the right-hand side (rhs) describes the change of the
density NL due to the chiral anomaly [45–48] in the presence
of the electric field E; the second term in the rhs accounts for
the elastic scattering of electrons between the two nodes. In
Eq. (3.7), 1/τ is the rate of internodal elastic scattering (due to
collisions with impurities or other defects in the system). Sim-
ilarly, the continuity equation for the density NR is given by

∂t NR − vF ∂zNR = e2

4π2c
E · B − NR − NL

τ
. (3.8)

2. Navier-Stokes equation

In order to provide a complete hydrodynamic description
of the electron liquid in given electric and magnetic fields, the
continuity equations (3.7) and (3.8) have to be complemented
by the Navier-Stokes equation for momentum density. The
momentum density near each individual Weyl node is not
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conserved due to the interactions between electrons at differ-
ent nodes.

The Navier-Stokes equation is given by

∂t p + ∂zJp = FE + Fscatt + Fvisc − ∂zP, (3.9)

where p is the density of momentum along the z axis; Jp is the
flux of momentum; the force FE account for the change of the
momentum p due to external electric and magnetic fields; Fscatt

describes momentum relaxation due to impurity scattering;
Fvisc is the force that describes dissipative effects due to the
viscosity of the electron liquid; and P is the pressure of the
electron liquid. In what immediately follows, we compute
these quantities microscopically in a weakly interacting Weyl
electron liquid.

The momentum density is given by

p = |e|B
2πc

∫
dk

2π
[ fL(k, u, μL ) − fL(k, 0, 0)](−Q cos θ + k) + |e|B

2πc

∫
dk

2π
[ fR(k, u, μR) − fR(k, 0, 0)](Q cos θ + k)

= NL

[
−Q cos θ + μL

2(vF − u)

]
+ NR

[
Q cos θ − μR

2(vF + u)

]
+ |e|BT 2

6c

vF u

(v2
F − u2)2

, (3.10)

where 2Q is the separation between the Weyl nodes in momentum space. The flux Jp of momentum reads

Jp = vF
|e|B
2πc

∫
dk

2π
[ fL(k, u, μL ) − fL(k, 0, 0)](−Q cos θ + k) − vF

|e|B
2πc

∫
dk

2π
[ fR(k, u, μR) − fR(k, 0, 0)](Q cos θ + k)

= vF NL

[
−Q cos θ + μL

2(vF − u)

]
− vF NR

[
Q cos θ − μR

2(vF + u)

]
+ |e|BT 2

12c

3v2
F u2 − u4

(v2
F − u2)2

vF

. (3.11)

Using Eqs. (3.3) and (3.5), the divergence of the flux Jp can be simplified as

∂zJp =
{
vF ∂zNL

[
−Q cos θ + μL

2(vF − u)

]
− vF ∂zNR

[
Q cos θ − μR

2(vF + u)

]}

+
[vF NL

2
∂z

( μL

vF − u

)
+ vF NR

2
∂z

( μR

vF + u

)]
+ vF

|e|B
24c

[
∂z

T 2

(vF − u)2
+ ∂z

T 2

(vF + u)2

]

= vF ∂zNL

(
−Q cos θ + μL

vF − u

)
− vF ∂zNR

(
Q cos θ − μR

vF + u

)
+ |e|BT 2

6c

(3v2
F u + u3)vF

(v2
F − u2)3 ∂zu + |e|BT

6c

3v2
F u2 − u4

(v2
F − u2)2

vF

∂zT .

(3.12)

The force FE is given by the change of the total momentum p due to the transfer of quasiparticles between the nodes because
of the chiral anomaly:

FE = |e|B
2πc

∂t

∫
dk

2π
{ fL[k, u, μL − |e|Ezt (vF − u)] − fL(k, u, μL )}(−Q cos θ + k)

∣∣∣∣
t=0

+ |e|B
2πc

∂t

∫
dk

2π
{ fR[k, u, μR + |e|Ezt (vF + u)] − fR(k, u, μR)}(Q cos θ + k)

∣∣∣∣
t=0

. (3.13)

Using the distribution functions fL(k, u, μL ) = f (k, u, μL ) given by Eq. (3.1) we obtain

FE = − e2

4π2c
E · B

(
−Q cos θ + μL

vF − u

)
+ e2

4π2c
E · B

(
Q cos θ − μR

vF + u

)
. (3.14)

In the limit of low temperatures T , Eq. (3.14) can be understood intuitively as follows. The quantities −Q cos θ + μL

vF −u and

Q cos θ − μR

vF +u give the momenta of the quasiparticles near the chemical potentials at the left and the right nodes and e2

4π2c E · B
is the rate of increase of the quasiparticle density at the right node (or its decrease at the left node). Multiplying these momenta
by the corresponding rates of change of quasiparticle densities gives the rate of change of the total momentum due to an external
electromagnetic field in the limit of zero temperature. We emphasize, however, that the result (3.14) applies at all temperatures
T .

The momentum relaxation rate due to impurity scattering is given by

Fscatt = |e|B
2πc

1

τ

∫
dk

2π
[ fR(−k, u, μR) − fL(k, u, μL )](−Q cos θ + k)

+ |e|B
2πc

1

τ

∫
dk

2π
[ fL(−k, u, μL ) − fR(k, u, μR)](Q cos θ − k)

= NL − NR

τ

(
2Q cos θ − μL

vF − u
− μR

vF + u

)
− 1

τ

|e|BT 2

3c

uvF

(v2
F − u2)2 , (3.15)
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where 1/τ is the elastic internodal scattering rate introduced
in Eqs. (3.7) and (3.8). At T = 0, Eq. (3.15) can be understood
intuitively as follows. At T = 0, all the electron states with
energies up to μL and μR are filled at the left and right nodes,
and it is possible to assume that only electrons with energies
min(μL, μR) < ε < max(μL, μR) get scattered between the
nodes. Then the quantities −Q cos θ + 1

2 ( μL

vF −u + μR

vF +u ) and

Q cos θ − 1
2 ( μL

vF −u + μR

vF +u ) have the meaning of the average
momenta of electrons at the left and the right nodes that
participate in these elastic scattering processes. Multiplying
these momenta by the rate NL−NR

τ
of change of the densities

of electrons due to internodal scattering gives Eq. (3.15) at
T = 0.

The force Fvisc = ∂xTxz + ∂yTyz + ∂zTzz describes the dis-
sipative effects due to the viscosity of the liquid, where Txz,
Tyz, and Tzz are the components of the stress tensor. While
the liquid can move only along the direction of the magnetic
field (the z axis, see Fig. 1) in the strong magnetic field under
consideration, the velocity u of this motion is different for
different transverse coordinates x and y for the same z, which

creates shear stress. The total viscous force is given by

Fvisc = η
(
∂2

x + ∂2
y

)
u + κ∂2

z u, (3.16)

where u is the velocity of the electron liquid defined in
Sec. (III A); η is the shear viscosity, the response of the stress
forces between layers of the electron liquid flowing along the z
axis to the transverse gradient of the velocity u; the coefficient
κ characterizes the response of the strain to the longitudinal
spatial change of the velocity u. We microscopically demon-
strate in Sec. IV that η � κ .

The pressure P of the Weyl liquid, computed in Ap-
pendix B, is given by

P = P0 + |e|B
12cvF

T 2, (3.17)

where P0 is a temperature-independent contribution that de-
pends on the details of the quasiparticle dispersion away from
the Weyl nodes.

Combining Eqs. (3.9), (3.12), (3.14), (3.15), and (3.16), we
arrive at the Navier-Stokes equation (3.9) in the form

∂t p + vF ∂zNL

(
−Q cos θ + μL

vF − u

)
− vF ∂zNR

(
Q cos θ − μR

vF + u

)
+ |e|BT 2

6c

(
3v2

F u + u3
)
vF(

v2
F − u2

)3 ∂zu + |e|BT

6c

3v2
F u2 − u4(

v2
F − u2

)2
vF

∂zT

= − e2

4π2c
E · B

(
−Q cos θ + μL

vF − u

)
+ e2

4π2c
E · B

(
Q cos θ − μR

vF + u

)

+ NL − NR

τ

(
2Q cos θ − μL

vF − u
− μR

vF + u

)
− 1

τ

|e|BT 2

3c

uvF(
v2

F − u2
)2 + η

(
∂2

x + ∂2
y

)
u + κ∂2

z u − ∂zP. (3.18)

Equations (3.7), (3.8), and (3.18) provide a complete hydro-
dynamic description of a Weyl liquid in a strong magnetic
field.

IV. VISCOSITY

In this section we compute microscopically the viscosity of
a Weyl liquid in a strong magnetic field. The viscosity tensor is
determined by the correlator of the corresponding components
of the stress tensor (see, for example, Ref. [49]) and can be
represented in the form

ηijkl(ω) = 1

�
[Bijkl(ω) − Bijkl(0)], (4.1)

where

Bijkl(ω) = 1

2

∫
dr

∫ β

−β

dτ 〈Tτ T̂i j (r, τ )T̂kl (0, 0)〉ei�τ

∣∣∣∣
i�→ω+i0

(4.2)

is the retarded correlator of the components T̂i j and T̂kl of the
stress tensor operator and i� → ω + i0 is our convention for
the analytic continuation from positive Matsubara frequencies
� to the real frequency ω [50,51].

Strictly speaking, the viscosity of the electron liquid de-
pends on the velocity u of the liquid at a given location, and
the averaging 〈· · · 〉 in Eq. (4.2) should be carried out with
respect to the equilibrium Fermi-Dirac distribution (3.1) in

the reference frame of the moving liquid. However, because
realistic velocities u are significantly exceeded by the Fermi
velocity vF , the dependence of the viscosity on the velocity
u may be neglected and averaging over the equilibrium state
of a stationary liquid may be used when computing the vis-
cosity tensor (4.1). In what follows, we evaluate explicitly the
Matsubara correlator in Eq. (4.2).

The stress tensor T̂i j includes two qualitatively distinct
components [52]. The first, kinetic component is independent
of the interaction in the system and for a Weyl semimetal with
two nodes, is given by

T̂ (0)
i j (r) =

∑
χ=L,R

ψ̂†
χ (r)v̂iχ k̂ jψ̂χ (r), (4.3)

where the summation is carried out over the nodes χ = L, R;
ψ̂†

χ (r) and ψ̂χ (r) are the creation and annihilation operators
of the electrons at node χ ; v̂iχ is the ith component of the
velocity operator at node χ , and k̂ j = −i ∂

∂r j
is the jth momen-

tum component. The second contribution to the stress tensor
T̂i j is determined by the electron-electron interactions [52]
(see also Refs. [37,53]) and, in the limit of smooth variations
of the gradients of the macroscopic parameters of the liquid
[cf. the condition (2.4)] (“local uniformity approximation” of
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Ref. [52]), is given by

T̂ (int)
i j (r) = − 1

2

∑
χ,χ ′=L,R

∫
dρ ψ̂†

χ

(
r + ρ

2

)
ψ̂

†
χ ′

(
r − ρ

2

)

× ρi
∂V (ρ)

∂ρ j
ψ̂χ ′

(
r − ρ

2

)
ψ̂χ

(
r + ρ

2

)
, (4.4)

where V (ρ) = e2

ερ
is the Coulomb interaction potential.

A. Shear viscosity

In what immediately follows, we compute the viscosity
η = ηxzxz = ηyzyz that describes the response of the shear
stress [54] Txz and Tyz of the liquid flowing along the z axis, the
direction of the magnetic field (see Fig. 1), to the transverse
gradients ∂u

∂x and ∂u
∂y of the velocity. Because the quasiparticles

at both nodes can move only (anti)parallel to the magnetic
field (vxχ = vyχ = 0, vzχ �= 0), there is no kinetic contribution
(4.3) to the components Txz and Tyz of the stress tensor, which
determine the viscosity η. The absence of such a contribution
is due to the effectively one-dimensional character of the mo-
tion of the liquid. Indeed, in conventional liquids and gases,
in which interactions between particles may be considered to
be contact, the viscosity comes from the transverse transport
of particles between parallel moving layers of liquid and the
transfer of the longitudinal momentum of those particles [36].
Because transverse transport is negligible in a Weyl semimetal
in a strong magnetic field, the viscosity is dominated by
the Coulomb drag between parallel moving layers of liquid,
which comes from the long-range character of (screened)
Coulomb interactions. In what follows, we compute, there-
fore, the Matsubara correlator [cf. Eq. (4.2)] of the interaction
contributions (4.4) to the stress tensor.

The electron liquids may relax momentum via processes of
quasiparticle scattering between the nodes. Due to the long-
range nature of Coulomb interactions, with the characteristic
momentum scale κ given by Eq. (2.3), such processes have a
rate suppressed by the small parameter κ/Q � 1 and will not
be considered here.

Another possible mechanism of viscosity comes from the
Coulomb drag [55–57] between layers of the electron liquid
moving parallel to each other, as shown in Fig. 1. In the
presence of the transverse gradient of the velocity u, different
layers of the electron liquid move with different velocities,
with Coulomb interactions resulting in effective friction forces
between the layers. This mechanism of viscosity has been
pioneered in Ref. [37] for a conventional Fermi liquid. Under
the made approximations, it also dominates the viscosity of
Weyl fermions in a strong magnetic field considered here.

The drag contribution to the Matsubara correlator Bijkl(i�)
in Eq. (4.2) corresponds to the diagram in Fig. 3(b), where the
interaction contribution to the stress tensor Ti j corresponds to
the vertex shown in Fig. 3(a). To describe the screening of the
interactions, we use the random phase approximation (RPA)
[42,50], as shown in Fig. 3(c). A prefactor of 2 in diagram 3(b)
comes from two possible pairings of the ends of the stress-
tensor vertex 3(a) in the correlator that this diagram describes.

FIG. 3. Diagrams for computing the viscosity of the electron
liquid. (a) The vertex corresponding to the interaction contribution
to the stress tensor. (b) The diagram for the drag contribution to the
viscosity. (c) A block in diagram (b) which takes into account the
screening of the interactions in the RPA.

The correlator Bijkl(i�), corresponding to the diagram 3(b),
can be evaluated in the momentum representation as

Bijkl(i�) = T

2

∑
iν

∫
d3q

(2π )3

∂

∂qi
[q jV (q)]

∂

∂qk
[qlV (q)]

× �(i� + iν, q)

1 − V (q)�(i� + iν, q)

�(iν, q)

1 − V (q)�(iν, q)
,

(4.5)

where V (q) = 4πe2

εq2 is the bare propagator of Coulomb in-
teractions and �(iν, q) is the polarization operator, which
corresponds to a simple fermionic bubble in the diagrams in
Fig. 3(c) in the limit of a small coupling α � 1. A micro-
scopic calculation of the polarization operator are presented
in Appendix C.

Equation (4.5) contains a Matsubara sum of the form
I (i�) = T

∑
iν D(iν + i�)D(iν), which can be conveniently

computed by contour integration in the complex ν plane that
gives

I (i�) = 1

4π i

∫ +∞

−∞
coth

ε

2T
ε

× [DA(ε + i�)DR(ε) − DR(ε + i�)DA(ε)]dε

+ 1

4π i

∫ +∞

−∞
coth

ε

2T
ε

× [DR(ε)DR(ε − i�) − DA(ε)DA(ε − i�)]dε,

where DA(ε) and DR(ε) ≡ D∗
A(ε) are the advanced and re-

tarded versions of the correlator D(iν), i.e., obtained from
it by analytic continuation from, respectively, the lower and
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the upper half-planes (see, for example, Refs. [58,59] for the
details of the contour integration). Performing such contour
integration and the analytic continuation i� → ω + i0 and
utilizing Eq. (4.1) gives, in the limit of low frequencies ω,

η(ω → 0)

= 1

T

∫
dε

2π

d3q
(2π )3

[
qxqzV ′(q)

2q sinh ε
2T

]2

× [Im �R(ε, q)]2

{[1 − V (q) Re �R(ε, q)]2 + [V (q) Im �R(ε, q)]2}2 ,

(4.6)

where �R(ε, q) is the retarded polarization operator obtained
by analytic continuation from the Matsubara polarization op-
erator �(iν, q) given by Eq. (4.7). Equation (4.6) has been
obtained in Ref. [37] using Keldysh technique. In what im-
mediately follows, we evaluate explicitly the polarization
operator for experimentally important frequency and momen-
tum scales.

1. Polarization operator

The polarization operator

�(r; r′; i�) = −1

2

∫ β

−β

〈n̂(r, τ )n̂(r′, 0)〉ei�τ dτ, (4.7)

where n̂(r, τ ) is the electron density, is evaluated explicitly in
Appendix C. In the limit κ

−1 � lB under consideration and
at momenta |q| � l−1

B , the Fourier transform of the retarded
polarization operator is given by

�R(ε, q)

= |e|B
2πc

∑
χ=L,R

∫
dk

2π

fχ (k, 0, μχ ) − fχ (k + qz, 0, μχ )

Eχk − Eχ (k+qz ) + ε + i0
,

(4.8)

where the integration is carried out over the momentum k
along the direction of the magnetic field; fχ (k, 0, μχ ) is the
distribution function of the electrons at node χ [cf. Eq. (3.1)];
and Eχk is the corresponding electron dispersion (as we clarify
below, the deviation of the dispersion from the linear depen-
dence ±vF k needs to be taken into account for evaluating the
viscosity of the system).

The real and imaginary parts of the retarded polariza-
tion operator �R(ε, q) describe, respectively, the screening
of Coulomb interactions and the decay of the density waves
in the Weyl liquid (Landau damping). In what immediately
follows, we evaluate these contributions explicitly.

2. Screening

The main contribution to the static viscosity (4.6) comes
from the energies ε on the order of the temperature T , which

is significantly exceeded by the cyclotron frequency [see
Eq. (2.6)] and the bandwidth of the quasiparticle dispersion.
This allow us to neglect the ε dependence of the real part
Re�R of the retarded polarization operator.

Similarly, we neglect the dependence of Re�R on the mo-
mentum q whose characteristic values are on the order of the
inverse screening radius κ given by Eq. (2.3) and significantly
exceeded by the inverse magnetic length l−1

B [cf. the condition
(2.6)] and the momentum scales of the quasiparticle band.
Below, we will show that the typical scale of the momentum
component qz that contributes to the viscosity is even smaller
and is on the order of T/vF .

The real part of the polarization operator is, therefore,
given by the density of the electron states at the Fermi level
(with the minus sign):

Re �R(ε, q) = − |e|B
2π2cvF

= − εκ
2

4πe2
, (4.9)

where κ is the inverse screening radius of Coulomb interac-
tions given by Eq. (2.3).

3. Landau damping

For the existence of a finite damping (to the leading or-
der in interactions), it is necessary to take into account the
curvature of the electron dispersion near the nodes. Indeed,
for linearly dispersive quasiparticles, density waves composed
of electrons near one node propagate with the velocity ±vF

and lack dispersion. The conservation of momentum in any
process involving only electrons near one node also enforces
energy conservation, which is why all momentum conserving
processes contribute to the damping and lead to a singular
∝ ∑

± δ(ε ± vF qz ) imaginary part of the lowest-order polar-
ization operator (4.8).

In order to describe a finite dispersion of the charge density
waves, we take into account the nonlinearity of the quasipar-
ticle dispersion near the Weyl nodes:

Ek = ±vF k + k2

2M
, (4.10)

where “+” and “−” correspond, respectively, to the left and
the right nodes. The dispersion (4.10) and the momentum k
are measured, respectively, from the Fermi level and Fermi
momentum. The energy scale Mv2

F is the largest energy scale
in the problems and, in the case it is determined by the band
structure of the Weyl semimetal, may be assumed to be on the
order of several electronvolt.

Utilizing Eqs. (4.8) and (4.10) gives

Im �R(ε, q) = |e|B
4πc

M

|qz|
∑
±

± sinh ε
2T

cosh
[

Mv2
F (ε±vF qz )

2εT + ε
4T

]
cosh

[
Mv2

F (ε±vF qz )
2εT − ε

4T

] . (4.11)

The terms with “+” and “−” correspond to functions sharply peaked at ε ± vF qz = 0 and account, respectively, for the
contribution of the left and right nodes.
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The characteristic values ε and vF qz that contribute to
the viscosity are on the order of the temperature T . When
deriving Eq. (4.11) we neglected, therefore, the effect of the

small energy q2
z

2M ∼ T 2

Mv2
F

� 1 on the distribution functions
fχ (k, 0, μχ ) and fχ (k + qz, 0, μχ ) in the polarization oper-
ator (4.8).

4. The value of the shear viscosity

Utilizing Eqs. (4.6) and (4.9) and the smallness of the
Landau damping, the viscosity can be rewritten in the form

η = 1

T

(
4πe2

ε

)2 ∫
dε

2π

d3q
(2π )3

q2
x q2

z

sinh2 ε
2T

[Im �R(ε, q)]2

(q2 + κ
2)4 .

(4.12)

Because the imaginary part Im �R(ε, q) of the retarded po-
larization operator is sharply peaked at ε ± vqz = 0 only
momenta qz on the order of T/vF contribute to the viscosity.
By contrast, the transverse momenta qx and qy have character-
istic values on the order of κ, which significantly exceed T/vF

[see the condition (2.6)]. This allows us to neglect the depen-
dence of the denominator in Eq. (4.12) on the momentum qz.
Integrating out the transverse momenta qx and qy gives

η = 1

3πT κ
4

(
πe2

ε

)2 ∫
dε

2π

dqz

2π

[Im �R(ε, q)]2

sinh2 ε
2T

q2
z . (4.13)

Using Eq. (4.11) and introducing variables s = ε
4T and t =

Mv2
F (vF qz−ε)

2εT , Eq. (4.13) can be represented in the form

η = 1

3π3T κ
4

(
πe2

ε

)2( |e|B
4πc

)2

× 16T 3M

v3
F

∫ |s|dtds

cosh2(s + t ) cosh2(s − t )
, (4.14)

which gives the viscosity

η = M

12πvF
T 2. (4.15)

Equation (4.15) is our main result for the viscosity of a Weyl
liquid in a strong magnetic field.

Due to the drag character of the analyzed mechanism of
viscosity, it has the same temperature dependence ∝ T 2 as
the drag resistivity between two parallel conductive layers
[57] and can be understood from phase-space considera-
tions similar to those explaining the ∝ T 2 dependence of
the electron-electron scattering rate in a conventional metal
[42,60]. Indeed, each electron can collide with electrons in
a parallel layer of the liquid with energies in a window of
order T near the Fermi energy. The characteristic width of
the layer of momenta into which the electron can get scattered
is also proportional to the temperature T . In the presence of
a finite curvature M−1 of the dispersion, the final momentum
of the other electron participating in the collision is fixed by
the energy and momentum conservation laws. This results,
therefore, in the ∝ T 2 scattering rate that manifests itself in
the viscosity (4.15).

B. Longitudinal response

In this subsection we evaluate the coefficient κ that char-
acterizes the response of stress component Tzz to the gradient
∂u
∂z [cf. Eq. (3.16)]. This coefficient has both drag and kinetic
contributions:

κdrag = 1

T

(
4πe2

ε

)2 ∫
dε

2π

d3q
(2π )3

q4
z

sinh2 ε
2T

[Im �R(ε, q)]2

(q2 + κ
2)4 .

(4.16)

Using Eq. (4.11) and introducing variables s = ε
4T , t =

Mv2
F (vF qz−ε)

2εT , and b = 4T
vF

, Eq. (4.16) can be represented in the
form

κdrag = M

12πvF
T 2 4

κ
2

∫
(bs)2|s|dsdt

cosh2 (s − t ) cosh2 (s + t )
. (4.17)

By introducing Eq. (4.15), Eq. (4.17) can be expressed as

κdrag = 4

κ
2

∫
(bs)2|s|dsdt

cosh2 (s − t ) cosh2 (s + t )
η

= 3ζ (3)b2

κ
2

η ∼ M

v3
F κ

2
T 4. (4.18)

For the low temperatures T � κvF under consideration
[cf. Eq. (2.6)], the contribution (4.18) is significantly exceeded
by the shear viscosity (4.15). The contribution (4.18) is pro-
portional to the typical value of q4

z ∝ T 4 and, as a result,
contains an extra power of T 2 relative to the shear viscosity
(4.15). It is possible to show that the kinetic contribution [i.e.,
containing the kinetic vertices (4.3)] has the same dependence
on the typical value of qz and the ∝ T 4 temperature depen-
dence and is also significantly suppressed compared to the
shear viscosity η. We leave, however, a rigorous calculation
of this contribution for future studies.

V. TEMPERATURE-GENERATED FLOW AND POTENTIAL
FOR EXPERIMENTAL OBSERVATION

In this section we address the possibility of experimental
observation of the discussed hydrodynamic flow of a Weyl
electron liquid in a strong magnetic field. In a sufficiently long
Weyl-semimetal junction, whose length exceeds the elastic
scattering length τvF , the conductance is independent of the
viscosity η. Indeed, according to Eqs. (3.7) and (3.8), a longi-
tudinal electric field E results in a stationary imbalance of the
electron densities NL − NR = − e2

4π2c B · Eτ , which leads to a

finite conductivity σ = |e|3vF

4π2c Bτ matching the conductivity in
a system in the nonhydrodynamic (diffusive) regime [45,46].

The hydrodynamic properties of the systems, however,
manifest themselves in heat transport. The hydrodynamic flow
can be generated by a temperature gradient and detected
through the dependence of the heat flux on the temperature
and magnetic field.

For a stationary flow, the momentum flux and electron
densities at nodes L and R do not change, ∂t p = ∂t NL =
∂t NR = 0. Multiplying the continuity equations (3.7) and (3.8)
by, respectively, −Q cos θ + μL

vF −u and Q cos θ − μR

(vF +u) and
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subtracting from the Navier-Stokes equation (3.18) gives

η
(
∂2

x + ∂2
y

)
u + κ∂2

z u − ∂zP − |e|B
6c

vF u(
v2

F − u2
)2

×
(

2

τ
+ 3v2

F + u2

v2
F − u2

∂zu + 3v2
F u − u3

v2
F

∂zT

T

)
T 2 = 0. (5.1)

At small velocities u and temperatures T , the term κ∂2
z u

and contributions in the last two lines of Eq. (5.1), of the
order of uT 2 in temperature and velocity, can be neglected.
Equation (5.1) then matches the equation for the flow of a
conventional liquid in a pipe [34,35].

In accordance with the Hagen-Poiseuille equation [34,35],
the hydrodynamic velocity u of such a liquid in the middle of
the junction is given by

u = ζS

ηL
�P, (5.2)

where ζ is a coefficient of order unity that depends on the
transverse shape of the junction; L is the length of the junc-
tion; S is its cross-sectional area; and �P is the pressure
difference between the two ends of the junction.

The pressure difference �P may be generated by different
temperatures at the ends of the junction. Utilizing Eq. (3.17),
we estimate the flow velocity of the Weyl liquid as

u ∼ |e|B
c

S

M

∂zT

T
, (5.3)

where the “mass” M describes the inverse curvature of the
quasiparticle dispersion and is introduced in Eq. (4.10). Using
Eq. (5.3) and assuming that the energy scale Mv2

F is given
by the quasiparticle bandwidth and is of the order of 1 eV,
we estimate that velocities u of the order of vF ∼ 108 cm

s can
be achieved in a junction of size

√
S ∼ L ∼ 100 nm (in all

dimensions) in a magnetic field B ∼ 1 T and for temperature
gradients ∂zT ∼ T/L. The hydrodynamic regime is further
favored by larger system sizes and magnetic fields.

The flow of the electron liquid is associated with the heat
flux (energy current) in the system, given by

q = |e|B
2πc

vF

∫
dk

2π
vF k[ fL(k, u, μL ) − fL(k, 0, 0)]

− |e|B
2πc

vF

∫
dk

2π
(−vF k)[ fR(k, u, μR) − fR(k, 0, 0)]

= |e|Bv2
F

8π2c

[
μ2

L

(vF − u)2
− μ2

R

(vF + u)2

]
+ |e|B

6c

v3
F u(

v2
F − u2

)2 T 2,

(5.4)

which can be used to detect the hydrodynamic flow and mea-
sure the average velocity u of the flow.

In the absence of the electric field E, there is no electric
current flowing through the system, as follows from Eqs. (3.7)
and (3.8) and the charge neutrality condition NL + NR =
const., which require μL

vF −u = μR

vF +u . According to Eq. (5.4),
the energy current in the absence of the charge current is,
therefore, proportional to the hydrodynamic velocity u of the
current:

q ≈ |e|B
6c

u

vF
T 2 ∼

( |e|B
c

)2 S

MvF
T ∂zT . (5.5)

The hydrodynamic flow can, thus, be generated by a temper-
ature difference �T at the ends of the junction and detected
through the temperature- and magnetic-field dependence of
the heat conductance Gq(T, B), the response of the total
energy flux to �T . Estimating the gradient ∂zT of the temper-
ature as ∂zT ∼ �T/L, where L is the length of the junction,
gives

Gq ∼
( |e|B

c

)2 S

LMvF
T . (5.6)

VI. CONCLUSION

In conclusion, we have studied the hydrodynamic motion
of the electron liquid in a Weyl semimetal with two Weyl
nodes in a strong magnetic field. Such systems provide a con-
veniently accessible platform for achieving the hydrodynamic
regime of transport because the impurity scattering rate of
Weyl fermions is strongly suppressed for certain directions of
the magnetic field, perpendicular to the separation of Weyl
nodes in momentum space.

Because Weyl fermions in a quantizing magnetic field
move parallel or antiparallel to the field, the motion of the liq-
uid resembles Poiseuille flow of a conventional liquid in a pipe
(see Fig. 1). The viscosity of such a liquid is dominated by
the interactions between parallel layers of the liquid moving
with different velocities. We have derived the hydrodynamic
equations of motion of such a liquid for a Weyl semimetal
with two Weyl nodes and computed microscopically its vis-
cosity. For realistic temperatures, the temperature dependence
of the viscosity is given by η(T ) ∝ T 2. The hydrodynamic
flow of the electron liquid in a Weyl-semimetal junction can
be generated by a temperature gradient and probed via the heat
conductance Gq ∝ B2T of the junction.
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APPENDIX A: ESTIMATES OF SCATTERING RATES IN A
STRONG MAGNETIC FIELD

In this Appendix we provide estimates of the internodal
elastic scattering rate [33]

1

τ
≈ 2πnimp|e|BvF

ch̄

(
e2

h̄εvF

cos θ

2Q2

)2

(A1)

in a Weyl semimetal in the ultraquantum regime, where 2Q
is the momentum separation between the nodes; nimp is the
concentration of impurities; ε is the dielectric constant; and
θ is the angle between the direction of the field and the
separation of the nodes. Because the scattering rate strongly
depends on the node separation 2Q, 1/τ ∝ Q−4, it is rather
sensitive to the details of the band structure and may differ
by orders of magnitude even in Weyl semimetals with close
parameters.
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TABLE I. The Fermi velocities, node separation, and scattering rates (A1) for four type-I Weyl semimetals in the magnetic field B = 1 T.
For the estimates we used n = 1015 cm−3 and ε = 30.

Compound vF × 107 cm/s Q × 106 cm−1 Source for Q and vF
1
τ

× 107 cos2 θ s−1

TaAs 3.2 1.425 [61] 9.71
NbAs 3.0 0.473 853
WTeS 4.0 37.8 [62,63] 1.57 × 10−5

WTeSe 4.0 26.2 6.80 × 10−5

In Table I we provide scattering rates for several of the
Weyl semimetals. These estimates show that even in materials
with the strongest scattering, the elastic scattering length in
the ultraquantum limit may be on the order of 10−2 cm and
may exceed or be comparable to the size of the sample even
for angles θ away from π/2, which makes the hydrodynamic
regime conveniently accessible.

APPENDIX B: HYDRODYNAMIC PRESSURE OF THE
WEYL LIQUID

The Sommerfeld expansion of the grand potential of the
electron liquid in volume V ,

�(T ) = −TV
∫

dεN0(ε) ln
(
1 + e

μ−ε

T
) = −

∫
dε

N (ε)

e
ε−μ

T + 1
,

(B1)

gives

�(T ) = �(0) − π2

6
VN0(μ)T 2, (B2)

where N0(ε) is the density of states and N (ε) is the number
of electron states in the system with energies smaller than ε.
Near the nodes of a Weyl semimetal in a strong magnetic field,
the density of states per node is given by N0(ε) = |e|B

4π2cvF
.

Using that � = −PV , we obtain the pressure of the equi-
librium electron gas in a two-node Weyl semimetal in the form

P = P0 + |e|B
12cvF

T 2, (B3)

where P0 is a temperature-independent contribution which
depends on the details of the quasiparticle dispersion away
from the Weyl nodes.

APPENDIX C: DETAILS OF THE CALCULATION OF THE
POLARIZATION OPERATOR

In this Appendix we provide the details of the calculation
of the polarization operator in a Weyl liquid in a magnetic field
in the ultraquantum limit, in which only the zeroth Landau
level contributes. In what follows, we use the Landau gauge

A = (−By, 0, 0) (C1)

for the vector potential of the magnetic field. For this gauge,
the momentum kxz in the xz plane is a good quantum number.

To the lowest order in interactions, the Matsubara polariza-
tion operator is given by

�(r, r′, i�) = 2T
∑

iω

∑
kxz,k′

xz

�∗
kxz

(r)�kxz (r
′)�∗

k′
xz

(r′)�k′
xz

(r)(
iω + i� − Ekxz

)(
iω − Ek′

xz

) ,

(C2)

where a prefactor of 2 accounts from the presence of two
nodes in the Weyl liquid, which contribute equally to the
polarization operator; Ekxz is the quasiparticle dispersion at the
zeroth Landau level with the momentum kxz in the xz plane,
and

�kxz (r) = Hkxz (y) exp [i(kxx + kzz)] (C3)

is the orbital part of the corresponding wave function, where

Hkxz (y) = (
π l2

BS2
xz

)−1/4
exp

[
−1

2
(y/lB − kxlB)2

]
; (C4)

Sxz is the area of the xz cross section of the system, which, for
simplicity, is assumed to be constant along the z axis; lB is the
magnetic length given by Eq. (2.5).

For the evaluation of the viscosity in this paper, we focus on
the correlations of electron densities on distances |r − r′| �
lB significantly exceeding the magnetic length lB. To evaluate
the polarization operator (C2) at these scales, we first Fourier
transform it with respect to the coordinate differences x − x′
and z − z′, using the exact translational invariance along the x
and z axes:

�(qxz, y, y′, i�)

= 2T
∑

iω

∑
kxz

H∗
(k+q)xz

(y)H(k+q)xz (y
′)H∗

kxz
(y′)Hkxz (y)[

iω + i� − E(k+q)xz

](
iω − Ekxz

) .

(C5)

For long distances, |r − r′| � lB, it is sufficient to consider
only small momenta |qxz| � l−1

B . Because the characteris-
tic length scale of the function Hk(y), given by Eq. (C4),
is lB, it allows us to neglect the momentum qxz in
Eq. (C5) and make the approximations H∗

(k+q)xz
(y) ≈ H∗

kxz
(y),

H(k+q)xz (y
′) ≈ Hkxz (y

′).
The summand in Eq. (C5) is peaked at the values of y

and y′ given by kxl2
b and has a characteristic width of lB with

respect to both of these coordinates. Taking into account the
summation with respect to all values of kx, the operator may
be considered, at distances |y − y′| � lB, as a sharply peaked
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function of y − y′, and approximated as

�(qxz, y, y′, i�) = δ(y − y′)
∫ {

2T
∑

iω

∑
kxz

H∗
kxz

(y)Hkxz (y
′)H∗

kxz
(y′)Hkxz (y)[

iω + i� − E(k+q)xz

](
iω − Ekxz

)
}

dy′

= 2δ(y − y′)T
∑

iω

∑
kxz

H∗
kxz

(y)Hkxz (y)[
iω + i� − E(k+q)xz

](
iω − Ekxz

)
= 2δ(y − y′)T

∑
iω

∫
dkz

2π

dkx

2π

1

lB
√

π

exp [−(lBkx − y/lB)2]

[iω + i� − E(k+q)xz ](iω − Ekxz )

= δ(y − y′)
2π l2

B

∑
iω

∫
dkz

2π

1[
iω + i� − E(k+q)xz

](
iω − Ekxz

) , (C6)

where we have taken into account the dispersion Ek depends only on the momentum component kz along the magnetic field and
is independent of the component kx.

Fourier transforming Eq. (C6) gives

�(q, i�) = |e|B
2πc

∑
iω

∫
dkz

2π

1[
iω + i� − E(k+q)z

](
iω − Ekz

) , (C7)

which matches the polarization operator of an effectively
one-dimensional systems with the dispersion Ekz and a degen-
eracy of |e|B

2πc per transverse area. The analytic continuation of

Eq. (C7) from the upper half-plane of Matsubara frequencies,
i� → ε + i0, to real frequencies ε gives the retarded polar-
ization operator (4.8).
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