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Chern-number matrix of the non-Abelian spin-singlet fractional quantum Hall effect
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While the internal structure of Abelian topological order is well understood, how to characterize the non-
Abelian topological order is an outstanding issue. We propose a distinctive scheme based on the many-body
Chern number matrix to characterize non-Abelian multicomponent fractional quantum Hall states. As a concrete
example, we study the many-body ground state of two-component bosons at the filling faction ν = 4/3 in topo-
logical flat band models. Utilizing density-matrix renormalization group and exact diagonalization calculations,
we demonstrate the emergence of non-Abelian spin-singlet fractional quantum Hall effect under three-body
interaction, whose topological nature is classified by sixfold degenerate ground states and a fractionally quantized
Chern-number matrix.
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I. INTRODUCTION

Topologically ordered quantum states like fractional quan-
tum Hall (FQH) state, which are beyond the Landau
symmetry-breaking paradigm, demonstrate many remarkable
features such as fractionalization of quasiparticles and topo-
logical ground state degeneracy [1,2]. For a FQH state
(irrespective of whether it is Abelian or non-Abelian in nature)
at given filling ν, it is common knowledge that the Hall con-
ductance should be a quantized value σH = ν, which is related
to a topological invariant (so-called Chern number) [3].

As sparked by Laughlin’s seminal work [4], the Hall con-
ductance is also related to the correlation power (zi − z j )m in
the trial wave function ψ

∏
i< j (zi − z j )m through the equality

σH = ν = 1/m. Since then, trial wave functions have become
one of the central roles in the study of spin-polarized FQH
effects, like composite-fermion wave functions of Abelian
FQH states at filling ν = p/(2p ± 1) [5]. In addition, one of
the earliest non-Abelian paired states at filling ν = 1/m (odd
m = 2 for fermion and even m = 1 for bosons) was described
by using either a parton wave function [6] or a Moore-
Read Pfaffian wave function [7] �MR = Pf( 1

zi−z j
)
∏

i< j (zi −
z j )m whose particle-hole symmetric version may be the most
promising candidate for the mysterious ν = 5/2 FQH effect
in experiment [8]. As an extension of the Moore-Read states,
a class of single-component non-Abelian parafermionic states
at filling ν = k/(kM + 2) (odd M for fermion and even M
for bosons) can be constructed as Read-Rezayi clustered
wave function [9] �RR ∝ ∏

i< j (zi − z j )M+2/k apart from a
constant conformal correlator. For these spin-polarized states
(Laughlin, Moore-Read, or Read-Rezayi states), the Hall con-
ductance σH = ν = 1/η is given by the correlation power of
(zi − z j )η in the wave function.

Further, for a wide class of quantum states dubbed as
Abelian topological ordered phases where the exchange statis-
tics of a quasiparticle belongs to a U(1) group, it has been

recognized that the integer-valued symmetric K matrix is
capable of classifying the internal topological structure of
multicomponent systems at generic fillings [10–13]. The
simplest example is a two-component quantum Hall state
described by the K = (m n

n m) matrix (m, n ∈ Z), with the
associated Halperin’s wave function [14]

�mmn ∝
∏
i< j

(z↑
i − z↑

j )m(w↓
i − w

↓
j )m

∏
i, j

(z↑
i − w

↓
j )n, (1)

where z↑
i ,w

↓
i are the coordinates of spin up and spin down.

Most importantly the K matrix determines the total charge
Hall conductance (in units of e2/h) σH = ν = qT · K−1 · q
where q is the charge vector [15]. Such two-component
FQH effects emerge as fermionic Halperin (331) states at
ν = 1/2 in coupled two-layer electron systems [16–19],
and further as bosonic Halperin (221) states at ν = 2/3 in
cold atomic neutral systems [20–23]. Interestingly, the K
matrix and its related Halperin wave function can be gen-
eralized to yield a common basis for the description of
one-component FQH states [24], and to construct a large class
of symmetry-protected topological phases for multicompo-
nent bosons [25,26]. In a word, the K matrix formulism plays
an important role in understanding Abelian multicomponent
topological orders.

In contrast, for non-Abelian topological order with non-
commutable anyonic braiding statistics, the effective edge
theory is known to be more complex than simple free boson
theory in Abelian topological orders. Unfortunately, com-
pared to its success in Abelian topological orders, it is well
known that the non-Abelian topological order cannot be sim-
ply characterized by the integer-valued K matrix as usual.
Despite previous attempts [27,28], there is no well accepted
non-Abelian version of the K matrix characterization, thus it
remains outstanding to precisely describe the internal struc-
ture of non-Abelian topological orders.
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Here we explore a way to characterize the internal corre-
lation structure of non-Abelian multicomponent topological
orders based on the Chern-number matrix. So far, it has
been successful in characterizing Abelian multicomponent
quantum Hall states based on the Chern-number matrix C =

1
m2−n2 ( m −n

−n m ) for m �= n, and C proved to be the inverse

of the K = C−1 matrix [29–33]. Here the diagonal and off-
diagonal elements of the Chern-number matrix are related to
intracomponent and intercomponent Hall transports, respec-
tively. Nevertheless, it is obscure whether such topological
characterization based on the Chern-number matrix can be
generalized to the case of non-Abelian multicomponent quan-
tum Hall states. In view of the physically equivalent relation
between the Hall conductance and the Chern number, we
aim at the target of constructing the Chern-number matrix for
non-Abelian two-component quantum Hall effects.

In this work, we theoretically address the open issues re-
garding the topological characterization of non-Abelian FQH
effects and investigate their Chern-number matrix structures.
We will focus on non-Abelian clustered spin-singlet quan-
tum Hall states (dubbed as NASS states) [34–36], which
are closely theoretical generalizations of the Halperin’s wave
functions. In consideration of the NASS wave function, we
conceive a plausible form of the Chern-number matrix to de-
scribe the charge responses of the NASS state. Through state-
of-the-art density-matrix renormalization group (DMRG) and
exact diagonalization (ED) simulations, we demonstrate a
robust NASS state at filling factor ν = 4/3 in topological flat-
band models with three-body interactions, and then further
validate its quantum Hall responses satisfying the proposed
Chern-number matrix description.

This paper is organized as follows. In Sec. II, we introduce
the SU(2) symmetric Hamiltonian of two-component bosons
loaded on two types of topological lattice models, i.e., π -flux
checkerboard and Haldane-honeycomb lattices, and give a de-
scription of our numerical methods based on a Chern-number
matrix to characterize two-component topological phases. In
Sec. III, we give the theoretical claim for the formalism of
the Chern-number matrix of NASS states and connect it to
the variational wave function for NASS states. In Sec. IV, we
study the many-body ground states of these two-component
bosons in the strong interaction regime, and present nu-
merical results of the Chern-number matrix at the filling
factor ν = 4/3, based on ED calculation of its Chern num-
ber and DMRG calculation of the fractional charge pumping
related to Hall conductance. Finally, in Sec. V, we conclude
with a brief discussion of the prospect of generalizing our
Chern-number matrix to more non-Abelian multicomponent
topological phases.

II. MODELS AND METHODS

Here, we will numerically address the emergence of FQH
effect of two-component soft-core bosons in topological flat
bands through state-of-the-art DMRG and ED simulations,
and introduce the Chern-number matrix of two-component
systems. We consider the following Hamiltonian for two-
component soft-core bosons with pseudospin degrees of
freedom via (k + 1)-body interactions at a total filling ν =

2k/3 in topological flat bands. The Hamiltonian built on topo-
logical π -flux checkerboard (CB) and Haldane-honeycomb
(HC) lattices, is given by

HCB =
∑

σ

[
−t

∑
〈r,r′〉

eiφr′r b†
r′,σ br,σ −

∑
〈〈r,r′〉〉

t ′
r,r′b†

r′,σ br,σ

−t ′′ ∑
〈〈〈r,r′〉〉〉

b†
r′,σ br,σ + H.c.

]
+ Vint, (2)

HHC =
∑

σ

[
−t

∑
〈r,r′〉

b†
r′,σ br,σ − t ′ ∑

〈〈r,r′〉〉
eiφr′r b†

r′,σ br,σ

−t ′′ ∑
〈〈〈r,r′〉〉〉

b†
r′,σ br,σ + H.c.

]
+ Vint, (3)

where b†
r,σ is the soft-core bosonic creation operator of pseu-

dospin σ =↑,↓ at site r, 〈· · · 〉, 〈〈· · · 〉〉 and 〈〈〈· · · 〉〉〉 denote
the nearest-neighbor, the next-nearest-neighbor, and the next-
next-nearest-neighbor pairs of sites, respectively. We take
the (k + 1)-body Hubbard interaction with pseudospin-SU(2)
symmetry,

Vint = U
∑

r

k∏
i=0

(nr,↑ + nr,↓ − i), (4)

where nr,σ is the particle number operator of pseudospin
σ at site r, and U is the strength of the on-site interac-
tion. In what follows, we take the tunnel couplings t ′ =
0.3t, t ′′ = −0.2t, φ = π/4 for the checkerboard lattice, while
t ′ = 0.6t, t ′′ = −0.58t, φ = 2π/5 for the honeycomb lattice,
such that the lowest Chern band in the whole Brillouin zone
is rather flat as indicated in Figs. 1(a) and 1(b) for topological
lattice geometry, and choose the interaction strength U = ∞
(namely, no more than k particles are allowed per lattice site).

For finite systems of Nx × Ny unit cells (enclosing Ns =
2 × Nx × Ny lattice sites), we perform ED calculations on the
many-body ground state of the model Hamiltonians, Eqs. (1)
and (2). The total filling of the lowest Chern band is ν = ν↑ +
ν↓ = (N↑ + N↓)/(Nx × Ny), where Nσ is the particle number
of pseudospin σ . With the translational symmetry, the energy
states are labeled by the total momentum K = (Kx, Ky) in
units of (2π/Nx, 2π/Ny) in the Brillouin zone. For larger
systems, we exploit the infinite DMRG on the cylindrical
geometry, with the maximal bond dimension up to M = 6000,
and the geometry of cylinders is chosen with open boundary
condition in the x direction and periodic boundary condition
in the y direction.

For the many-body ground state wave function ψ of a given
interacting system, the quantized Hall conductance is equiva-
lent to the many-body counterpart of the Chern number [37],
which can be calculated using the twisted boundary conditions
ψ (. . . , ri

σ + Nα êα, . . .) = ψ (. . . , ri
σ , . . .) exp(iθα

σ ) where θα
σ

is the twisted angle for particles of pseudospin σ in the α

direction [38,39]. Thus we can build up the Chern-number
matrix C = (C↑↑ C↑↓

C↓↑ C↓↓) for a two-component system spanned
by pseudospin degree of freedom, with the matrix elements
Cσσ ′ = ∫

dθ x
σ dθ

y
σ ′Fσ,σ ′ (θ x

σ , θ
y
σ ′ )/2π defined in the parameter
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FIG. 1. The schematic plot of (a) π -flux checkerboard lattice
model and (b) Haldane-honeycomb lattice model. Two sublattices
A, B are labeled by blue (red) filled circles. The arrow link shows
the hopping direction carrying a positive sign of chiral flux phase
φr′r = φ. For the checkerboard lattice, the next-nearest-neighbor
hopping amplitudes are t ′

r,r′ = ±t ′ along the solid (dotted) lines. ex,y

indicate the real-space lattice translational vectors. The lower panels
show the corresponding band dispersions.

(θ x
σ , θ

y
σ ′ ) plane as an integral over the Berry curvature

F xy
σ,σ ′ = Im

(〈
∂ψ

∂θ x
σ

∣∣∣∣ ∂ψ

∂θ
y
σ ′

〉
−

〈
∂ψ

∂θ
y
σ ′

∣∣∣∣ ∂ψ

∂θ x
σ

〉)
.

Within the parameter plane of twisted angles θ x
↑ = θ x

↓ =
θ x ⊆ [0, 2π ], θ y

↑ = θ
y
↓ = θ y ⊆ [0, 2π ], we can define the to-

tal charge Chern number related to the total charge Hall
conductance, as Ctot = ∑

σ,σ ′ Cσ,σ ′ = q · C · qT where q =
(1, 1) is the charge eigenvector of two-component particles.
As a concrete example, for k = 1 in the model Hamil-
tonians, Eqs. (1) and (2), it is numerically demonstrated
that the Chern-number matrix C221 = 1

3 ( 2 −1
−1 2 ) at ν =

2/3 for two-component bosons describes the Halperin (221)
states [29].

III. THEORETICAL SCENARIOS

In two-component quantum Hall systems, a non-Abelian
phase at a given filling ν could be achieved from two copies
of Abelian states at filling ν/2 which are coupled together
by tuning the intercomponent tunneling and/or intercompo-
nent repulsion [40–42]. Examples include the non-Abelian
Moore-Read ν = 1 phase from two bosonic Laughlin 1/2
FQH states [43], and non-Abelian phase at ν = 2/3 from
two fermionic Laughlin 1/3 FQH states [42], which are de-
scribed by an SU(N )1 × SU(N )1 → SU(N )2 Chern-Simons-
Higgs symmetry-breaking transition mechanism. Across the

continuous transition, the final Chern number of the emerging
non-Abelian state is given by σH = ν = ν/2 + ν/2, which
is the sum of the Chern numbers of two identical Abelian
states.

Alternatively, Ref. [34] proposed a series of non-Abelian
spin-singlet quantum Hall phases at filling factors ν =
2k/(2kM + 3) with spinful SU(2) symmetry (labeled by a
pseudospin quantum number). Here, we claim that the NASS
quantum Hall states can be identified by a class of Chern-
number matrices

C =
(

C↑↑ C↑↓
C↓↑ C↓↓

)
= k

2kM + 3

(
kM + 2 −(kM + 1)

−(kM + 1) kM + 2

)
, (5)

where even M for bosons and odd M for fermions. This
form of the Chern-number matrix satisfies the following two
sufficient conditions. First, we recover the total charge Chern
number as Ctot = ∑

σ,σ ′ Cσσ ′ = ν which is exactly conserved
to the filling factor, thus topological invariant Ctot is connected
to the total Hall conductance, as it should be. Second, akin to
the Halperin state, the Chern-number matrix elements deter-
mine the strength of the intracomponent and intercomponent
correlations, respectively, through the variational many-body
wave function (apart from a constant conformal product
factor) [34]:

�ν ∝
∏
i< j

(z↑
i − z↑

j )l↑↑ (w↓
i − w

↓
j )l↓↓

∏
i, j

(z↑
i − w

↓
j )l↑↓ ,

where z↑
i ,w

↓
i are the coordinates of spin up and spin down and

the rational exponents l↑↑ = l↓↓ and l↑↓ = l↓↑ are recognized
to meet the relation(

l↑↑ l↑↓
l↓↑ l↓↓

)
= C−1 = 1

k

(
kM + 2 kM + 1
kM + 1 kM + 2

)
. (6)

In effective conformal field theory for NASS, in the
simplest case M = 0 where the SU(3)k symmetry is pre-
served [for M �= 0 the SU(3)k symmetry is broken], the
SU(3)k field theory can be constructed by pairing k copies
of the SU(3)1 field theory of the Abelian Halperin (221)
state together. For instance, let us consider the case of
the SU(3)2 NASS state at filling ν = 4/3 by coupling two
SU(3)1 Halperin (221) states at filling ν = 2/3 with a symme-
try breaking SU(3)1 × SU(3)1 → SU(3)2. In consideration
of the Chern-number matrix C221 = 1

3 ( 2 −1
−1 2 ) of Halperin

(221) states [29], the associated matrix from Eq. (4) shows
the coincidence Cν=4/3 = C221 + C221 = 2 × C221, similar to
the above case of the Moore-Read state obtained from two
coupled Abelian states. More generally, we can construct the
Chern-number matrix Cν=2k/3 = k × C221 of SU(3)k NASS
quantum Hall states at ν = 2k/3 (k > 2) as the integer k
multiples of C221, with the symmetry breaking SU(3)1 ×
SU(3)1 × · · · SU(3)1 → SU(3)k . In this context, we believe
the Chern-number matrix provides a faithful description of
charged quantum Hall responses of the NASS state. For
k > 1, however, to our best knowledge the study of their
Chern-number matrices in microscopic lattice systems is still
lacking, which is the focus of the present work. We shall
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FIG. 2. Low-energy spectrum of two-component bosonic sys-
tems N↑ + N↓ = 8, Ns = 2 × 2 × 3 with different spin sectors Sz for
infinite three-body interaction in different topological lattices: (a) π -
flux checkerboard lattice and (b) Haldane-honeycomb lattice.

elucidate the characteristic topological degeneracy, topologi-
cally invariant Chern number, and fractional charge pumping,
to dissect the topological information of two-component
systems.

IV. NUMERICAL RESULTS FOR CHERN-NUMBER
MATRIX

Following the last section, we begin to systematically
present numerical results for the topological properties of
many-body ground states at ν = 4/3 with infinite three-
body interaction (k = 2) in the model Hamiltonians, Eqs. (1)
and (2). For (k + 1)-body interaction, the ground state degen-
eracy is (k + 1)(k + 2)/2 for non-Abelian spin-singlet FQH
states at ν = 2k/3. In the ED study of finite system sizes,
we plot the low-energy spectrum for different topological
lattice models as shown in Figs. 2(a) and 2(b). We find that
the ground states host a sixfold degeneracy with a robust
protecting gap separated from higher energy levels. These
sixfold degenerate ground energies E0(Sz ) always fall into the
total spin sector Sz = (N↑ − N↓)/2 = 0, and they satisfy with
E0(Sz ) < E0(Sz + 1), Sz � 0, in consistency with spin-singlet
nature.

Further, in order to demonstrate the robustness of these
topologically degenerate ground manifolds, we calculate the
low-energy spectra flux under the insertion of flux quanta θα

σ

(α = x, y). As indicated in Figs. 3(a) and 3(b), these sixfold
ground states at different momentum sectors K = (0, i) (i =
0, 1, 2) are shifted into each other without mixing with the
higher energy levels, and the system goes back to itself upon
the insertion of three flux quanta for both θα

↑ = θα
↓ = θ and

θα
↑ = θ, θα

↓ = 0, implying the fractional quantization of topo-
logical invariant.

Next we extract the Chern-number matrix C by numer-
ically calculating the Berry curvatures using m × m mesh
squares in the boundary phase space with m � 10. For the two
ground states at momentum K = (0, 0) of the two-component
bosonic system N↑ = N↓ = 4, Ns = 2 × 2 × 3, we find that
intracomponent Berry curvatures F xy

↑↑ have an opposite sign to
that of intercomponent Berry curvatures F xy

↑↓, and obtain the

quantized Chern numbers
∑2

i=1 Ci
↑↑ = 8/3 and

∑2
i=1 Ci

↑↓ =
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FIG. 3. Low-energy spectral flow of two-component bosonic
systems N↑ = N↓ = 4, Ns = 2 × 2 × 3 for infinite three-body in-
teraction in topological checkerboard lattice under the inser-
tion of two different types of flux quanta: (a) θ

y
↑ = θ, θ

y
↓ = 0

and (b) θ
y
↑ = θ

y
↓ = θ .

−4/3 with the symmetric relation C↑↑ = C↓↓,C↑↓ = C↓↑, as
indicated in Figs. 4(a) and 4(b), respectively. Similarly, for
six quasidegenerate ground states at momentum sectors K =
(0, i) (i = 0, 1, 2), we obtain the relationship

∑6
i=1 Ci

↑↑ = 8

and
∑6

i=1 Ci
↑↓ = −4. The above results imply a symmetric

Chern-number matrix

C =
(

C↑↑ C↑↓
C↓↑ C↓↓

)
= 1

3

(
4 −2

−2 4

)
. (7)

It is exactly the same with the case of M = 0, k = 2 in Eq. (4).
For larger system sizes, we further carry out the charge

pumping under the insertion of a flux quantum θ
y
σ on infinite

cylinder systems using the DMRG [44]. In the parameter
period θ

y
σ ⊆ [0, 2π ], due to the Berry curvature the particles

of pseudospin σ ′ is pumped along the x direction determined
by the topological invariant Cσ ′,σ in connection with the quan-
tized Hall conductance. Numerically we cut the cylinder along
the x direction into two halves. The charge increment of the
particles of pseudospin σ ′ on the left part of infinite cylinder

FIG. 4. Distribution of Berry curvatures F xy
σ,σ ′�θ x

σ �θ
y
σ ′/2π of

the two ground states at momentum K = (0, 0) of two-component
bosonic systems N↑ = N↓ = 4, Ns = 2 × 2 × 3 for infinite three-
body interaction in topological checkerboard lattice under different
twisted angles: (a) (θ x

↑, θ
y
↑) with θ x

↓ = 0, θ
y
↓ = 0 and (b) (θ x

↑, θ
y
↓) with

θ x
↓ = 0, θ

y
↑ = 0.
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FIG. 5. Quantized charge transfers of two-component bosonic
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insertion of flux quantum θ

y
↑ = θ, θ

y
↓ = 0 on an infinite Ny = 3 cylin-

der of different topological lattices: (a) π -flux checkerboard lattice
and (b) Haldane-honeycomb lattice.

systems is encoded by the particle number of pseudospin σ on
the left cylinder part Nσ ′ (θ y

σ ) = tr [̂ρL(θ y
σ )N̂σ ′ ] (here ρ̂L is the

reduced density matrix of the left part). At ν↑ = ν↓ = 2/3,
as shown in Figs. 5(a) and 5(b) for different topological lat-
tice models, we obtain the universal charge transfers of the
particles of pseudospin σ =↑,↓ with fractionally quantized
pumping values

�N↑ = N↑(θ y
↑ = 2π ) − N↑(θ y

↑ = 0) 
 C↑↑ = 4
3 ,

�N↓ = N↓(θ y
↑ = 2π ) − N↓(θ y

↑ = 0) 
 C↓↑ = − 2
3

within one flux quantum period from θ
y
↑ = 0 to θ

y
↑ = 2π with

θ
y
↓ = 0 for two-component bosons. Thus our DMRG study, in

line with the ED study, confirms the formulation of the Chern-
number matrix for the ν = 4/3 NASS state.

V. CONCLUSION AND OUTLOOK

To summarize, we have opened up a particular sketch
of the Chern-number matrix given by Eq. (4) to describe
the multicomponent non-Abelian spin-singlet quantum Hall
states, and numerically verified it using two-component in-
teracting bosons on topological lattice models. We study a
microscopic model of two-component interacting bosons in
two typical topological lattices which can realize non-Abelian
spin-singlet FQH states at a commensurate partial filling ν =
4/3 in the lowest Chern band with tailored three-body in-
teractions. We have proved numerically that the many-body
ground states are topologically characterized by the six-
fold degenerate manifold. Crucially, the fractional quantized
charge pumping is faithfully consistent with the elements in
the Chern-number matrix. We anticipate that the universal
formulation of the Chern-number matrix holds for sequential
fillings ν = 2k/3 with k > 2.

Finally, several remarks are given in order. Physically, the
Chern-number matrix, Eq. (4), reveals the charge response
of the NASS state, which is experimentally accessible in
transport measurements directly using electric Hall conduc-
tance, while the exotic pairing neutral modes are beyond the
scope of the above description. A more general paradigm
capturing all non-Abelian features deserves exploration.
Each element Cσ,σ ′ in the Chern-number matrix determines
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FIG. 6. Numerical ED results for the low-energy spectrum of
two-component bosonic systems N↑ = N↓ = 4, Ns = 2 × 2 × 3 in
different topological lattices: (a) π -flux checkerboard lattice and
(b) Haldane-honeycomb lattice, as finite on-site three-body interac-
tion U is tuned from weak repulsion U/t = 0.01 to strong repulsion
U/t = 10. Only the lowest five energy states in each momentum
sector are shown.

either the intracomponent Hall transport (when σ = σ ′) or
the intercomponent drag Hall transport (when σ �= σ ′), as
demonstrated for interlayer quantum Hall effect in a cou-
pled graphene double layer [45,46]. Nevertheless the present
work based on the Chern-number matrix C would provide
us a possible route for the identification of other nontrivial
non-Abelian two-component FQH states through the relation
(l↑↑ l↑↓
l↓↑ l↓↓) = C−1, such as possible fermionic non-Abelian ν =

4/5, 4/7, 4/9 states in bilayer electronic systems [41], with
the similar wave function structure

�ν ∝
∏
i< j

(z↑
i − z↑

j )l↑↑ (w↓
i − w

↓
j )l↓↓

∏
i, j

(z↑
i − w

↓
j )l↑↓ .

In conclusion, this current work also shows that our two-
component flat-band model is a fascinating playground to
realize bosonic non-Abelian spin-singlet phases which may
be testable for cold atom experiments [47].
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APPENDIX: FINITE INTERACTION EFFECTS

In contrast to infinite three-body repulsion U → ∞, here
we consider the effect of finite softening repulsion U on the
low-energy spectrum of the model Hamiltonians, Eqs. (1)
and (2). In Fig. 6, we plot the low-energy spectrum as a
function of U for different topological lattices. For very weak
repulsions U/t � 1, bosons in each layer are nearly decou-
pled to each other, and the low-energy spectrum hosts a
large dense energy density, implying a gapless compressible

125128-5



TIAN-SHENG ZENG AND W. ZHU PHYSICAL REVIEW B 105, 125128 (2022)

liquid. However, for very strong repulsions U/t � 1, a robust
ground degenerate manifold is preserved. Our calculation of
different model systems of a finite size gives a small critical
repulsion Uc 
 0.1t , in order to maintain sixfold topological

degeneracy. Actually this critical value Uc is determined by
looking into the point where the sixfold degeneracy disappears
when these ground states begin to mix with excited energy
levels.
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