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Exploring the statically screened G3W 2 correction to the GW self-energy:
Charged excitations and total energies of finite systems
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Electron correlation in finite and extended systems is often described in an effective single-particle framework
within the GW approximation. Here, we use the statically screened second-order exchange (SOX) contribution
to the self-energy (G3W 2) to calculate a perturbative correction to the GW self-energy. We use this correction to
calculate total correlation energies of atoms, relative energies, as well as charged excitations of a wide range of
molecular systems. We show that the second-order correction improves correlation energies with respect to the
random-phase approximation and also improves relative energies for many, but not all, considered systems. The
dynamically screened SOX term has previously been shown to consistently lower the highest occupied molecular
orbital (HOMO) quasiparticle (QP) energies and to increase the lowest unoccupied molecular orbitals (LUMO)
QP energies. We show here that the statically screened G3W 2 correction consistently increases the LUMO QP
energies, while no consistent trend can be observed for the HOMO levels. Also, confirming previous results, the
magnitude of the correction is much smaller with the statically screened interaction than with the dynamically
screened one. Quasiparticle self-consistent GW by itself is shown to be an excellent method for the calculation
of charged excitation of finite systems, and it cannot consistently be improved upon by the G3W 2 correction.
For range-separated hybrid starting points, the description of fundamental gaps and HOMO QP energies is
slightly worsened. However, tremendous improvements upon the GW LUMO energies, leading to almost perfect
agreement with high-level coupled cluster reference methods, are observed. The evaluation of the statically
screened G3W 2 correction only comes with small additional computational cost compared to G0W0 for systems
with up to 100 atoms and should therefore be suitable for practical applications.
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I. INTRODUCTION

Electron densities, total energies, and spectral functions
of an interacting many-electron system can be extracted
from its single-particle Green’s function [1–3]. Instead of
expanding the Green’s function directly in powers of the
electron-electron interaction, it is usually easier to expand the
irreducible self-energy and to calculate the interacting Green’s
function via Dyson’s equation [4]. The difficulty is then to
find an approximation which captures the most important
correlation effects and remains computationally tractable.

In Hedin’s GW approximation (GWA) [5], the self-energy
is obtained as the first term of an expansion in terms of a
screened electron-electron interaction [6], where screening
is (usually) calculated in the random-phase approximation
(RPA) [7]. Compared to the Hartree-Fock (HF) approxima-
tion, the first-order term in the expansion of the self-energy
in terms of the bare electron-electron interaction, it takes into
account that the electron-electron interaction at large distances
is screened by the presence of other electrons [3]. For prop-
erties which are mainly dominated by long-range correlation
effects, such as fundamental gaps or ionization potentials in
organic molecules, the GWA is therefore often very accurate
[8,9]. This is especially true for the most common computa-
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tional approach, where the full solution of Dyson’s equation is
bypassed and the quasiparticle (QP) energies are calculated
from a noninteracting propagator [10]. In the static long-range
limit, the errors introduced by the neglect of self-consistency
and the absence of higher-order terms in the polarizability
and self-energy cancel to a large extent [11] by virtue of the
Ward identity [12]. When short-range correlation becomes
important, the GWA is less accurate.

From the GW self-energy, one can calculate correlation
energies using the Klein functional [13]. Evaluated
with a Kohn-Sham (KS) Green’s function, one obtains
(particle-hole) RPA [14,15], often derived in the framework of
the adiabatic connection (AC) fluctuation-dissipation theorem
[16] or as a subset of terms in the coupled cluster (CC)
[17–21] doubles (CCD) expansion [22,23]. Since the effect of
charge screening dominates in this limit, the RPA describes
long-range electron correlation very accurately [24]. At short
electron-electron distances, charge screening is less important
and the RPA drastically overestimates the magnitude of
electron correlation [25]. In this limit, it is crucial to take into
account higher-order contributions (vertex corrections) to the
self-energy, which can then dominate [26]. These contribu-
tions are fundamentally short range and become less and less
important for large electron-electron distances [16,27].

Besides range-separation-based approaches [27–35], the
next-to-leading-order term, i.e., the second-order exchange
(SOX), is therefore the most obvious starting point to treat
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electron correlation beyond the RPA. The most common
correction is the second-order screened exchange (SOSEX)
correction [36]. SOSEX can be derived from the CCD equa-
tions by neglecting ladder and “crossed-ring” [23] diagrams
[22,23]. SOSEX has been applied to total energies of atoms
and molecules [37,38], solids [39], and uniform electron gas
[40] and several extensions to it have been proposed as well
[40–43]. In another variant, the SOX term is renormalized by
resummation of hole-hole ladder diagrams [44,45]. Typically,
these approaches improve total correlation energies [27,46],
but relative energies are not necessarily improved [16].

The close connection between RPA correlation energies
and the GW method suggests that beyond-RPA methods might
also be used to improve over the GW method for charged exci-
tations. For example, Ren et al. applied SOSEX to molecules
[47] and Maggio and Kresse [48] used a similar method to
calculate the highest occupied molecular orbital (HOMO) QP
energies for small molecules. It is, however, more common
to formulate beyond-GW schemes by taking into account ver-
tex corrections in Hedin’s equations [5]. Kutepov has solved
Hedin’s equations in a fully self-consistent fashion including
several vertex corrections [49]. He has applied the second-
order self-energy variant (coined GW + G3W 2) to a wide
range of metals, semiconductors, and insulators [50–55], and
observed major improvements over fully self-consistent GW
for spectral properties using the GW + G3W 2 approximation
to the self-energy. According to his work, the vertex-corrected
calculations should be performed without any constraining
approximations. This means that Hedin’s equations should be
solved fully self-consistently and the frequency dependence
of all quantities should be properly accounted for. As many
other authors have done [56–70], he also emphasized the
importance of vertex corrections in the polarizability.

On the other hand, the GW + G3W 2 self-energy has also
been applied by Grüneis et al. [71] to calculate QP ener-
gies in solids in a more approximate fashion. In contrast to
Kutepov, Grüneis et al. [71] used a statically screened inter-
action and calculated perturbative corrections to quasiparticle
self-consistent GW (qsGW) [11,72] QP energies. They also
combined this method with a beyond-RPA screening of the
Coulomb interaction using a static exchange-correlation ker-
nel. As Kutepov did, they reported major improvements over
the GW method for the band structures of solids. Comparing
their results to Kutepov’s, the logical conclusion would be that
the errors introduced by the static approximation, the use of
a noninteracting Green’s function, and the perturbative treat-
ment of the G3W 2 cancel to a large extent. A recent study by
Kutepov has confirmed this conjecture [55]. From a pragmatic
point of view, this is of course convenient since all of these
approximations come with drastically reduced computational
cost compared to the rigorous, self-consistent formalism [49].
In a recent study, the GW + G3W 2 self-energy has also been
employed by Wang et al. [73] to ionization potentials and
electron affinities of molecules. Wang et al. used the dynam-
ically (RPA) screened interaction and did not consider any
self-consistency in solving Dyson’s equation. Improvements
over GW were found to be substantial, especially for elec-
tron affinities, and the dependence on the starting point was
reduced [73].

Encouraged by these results, we herein follow Grüneis
et al. [71] and calculate perturbative G3W 2 corrections to the
GW self-energy. We follow their approach in using noninter-
acting Green’s functions throughout and exclusively consider
the statically screened G3W 2 self-energy. However, follow-
ing Wang et al. [73], we do not consider any beyond-RPA
screening in our work. One should expect an expansion of
the polarizability in terms of W to converge much faster for
finite than for extended systems since charge screening will
be much weaker [74]. It is known for finite systems that
inclusion of the vertex in the polarizability alone does not
improve [75,76], and might even deteriorate, the accuracy
of charged excitations compared to GW [77]. While Grüneis
et al. [71] investigated periodic systems, we focus here on
the calculation of correlation energies as well as QP energies
for a wide range of finite systems: We show that massively
improved absolute correlation energies are obtained compared
to the RPA and also that relative energies are improved for the
majority of the considered systems. For QP energies, we show
that the G3W 2 correction provides improvements over G0W0

evaluated with KS orbitals and energies from range-separated
hybrid functionals, especially for electron affinities. However,
no consistent improvements over qsGW are found, which we
show to be very accurate by itself.

The remainder of this work is organized as follows: In the
next section, we introduce the G3W 2 self-energy and discuss
how it can be used efficiently to calculate corrections to GW
QP energies and RPA correlation energies. After an outline of
our computational procedure in Sec. III, in Sec. IV, we first
benchmark the performance of the GW + G3W 2 self-energy
for absolute correlation energies as well as relative energies
of several organic molecules and then proceed to scrutinize
the effect of the G3W 2 self-energy correction to G0W0 on
ionization potentials, electron affinities, and fundamental gaps
of molecular systems. Finally, we summarize and conclude
this work in Sec. V.

II. THEORY

Dyson’s equation [4],

G(1, 2) = G0(1, 2) + G0(1, 3)�(3, 4)G(4, 2), (1)

relates the interacting Green’s function G of a many-electron
system to the Green’s function of a noninteracting reference
system G0 via the non-Hermitian self-energy operator �. We
have used the notation 1 = (r1, σ1, ω1) and integration over
indices with upper bars is implied. Following Hubbard [7],
Phillips [6], and Hedin [5], the self-energy can be expanded
in terms of the screened electron-electron interaction. The first
two terms in this expansion are

�GW +G3W 2(1, 2) = �GW (1, 2) + �G3W 2(1, 2), (2)

with

�GW (1, 2) = iG(1, 2)W (1, 2) (3)

and

�G3W 2(1, 2) = −G(1, 4)W (1, 3)G(4, 3)G(3, 2)W (4, 2).
(4)
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W is the screened Coulomb interaction which can be obtained
from the polarizability P and the bare Coulomb interaction V
via a Dyson equation,

W (1, 2) = V (1, 2) + V (1, 3)P(3, 4)W (4, 2). (5)

As �, P can be expanded in powers of the screened interaction
where, to zeroth order in W , the RPA is obtained,

PRPA(1, 2) = −iG(1, 2)G(2, 1). (6)

Solving these equations fully self-consistently is cum-
bersome due to the complicated frequency dependence of
the interacting Green’s function and the second-order self-
energy. Since we are interested in a computationally efficient
approach, we introduce a few approximations. First, all quan-
tities above are exclusively evaluated with noninteracting
Green’s functions, which implies that we need to approximate
(1). Second, �G3W 2 is evaluated perturbatively and the static
limit for W is used. We will discuss this term in more detail
in the next section. First, we outline our strategy on the GWA
level.

A. Partial self-consistency in the GWA

In a discrete basis of canonical molecular orbitals (MOs)
(we will label general MOs by p, q, r, . . . , occupied orbitals
by i, j, k, . . . , and virtual orbitals by a, b, c, . . . ), Eq. (1) can
be written in the form (see, for example, Ref. [78])
∑

r

{εpr − [vxc]pr + [�xc]pr (ωp)}Urq(ωp) = ωpUpq(ωp). (7)

Here, ε is the Hamiltonian of a noninteracting reference
system, typically calculated within the HF approximation or
KS density-functional theory (KS-DFT), and is diagonal in
the MO basis. If the off-diagonal elements of �xc − vxc are
neglected, (7) reduces to a set of independent, nonlinear equa-
tions,

εp − [vxc]pp + [�xc]pp(ωp) = ωp, (8)

for the QP corrections ωp to the single-electron energy levels
εp. If � is calculated in the GWA, this approach is referred to
as G0W0. G0W0 can give very accurate results, but this heavily
depends on the choice of the underlying exchange-correlation
functional [79–83]. If the eigenvalues of the KS Hamiltonian
are too bad of an approximation to the QP energies (for typ-
ical generalised gradient approximation (GGAs) or the local
density approximation (LDA), errors are typical of the order
of a few eV), the perturbative approach will fail [80,82].
Therefore, it is mandatory to calculate the G0W0 correction
from a potential which is already close to the GW self-energy
[84,85].

In this work, we pursue two closely related and well-known
strategies for this. The first one is to perform a G0W0 calcula-
tion using KS eigenvalues and orbitals from a range-separated
hybrid calculation as input. This is usually an excellent start-
ing point since the screened Coulomb potential in the RPA
reduces to

W (r → ∞, ω = 0) = e−λr

r
, (9)

with λ proportional to the Fermi momentum [2]. This is the
basic idea behind the construction of range-separated hy-
brid (RSH) functionals. Solving the KS equations using such
a potential emphasizes the importance of screening of the
Coulomb interaction for large electron-electron distances and
a perturbative correction with Eq. (8) is usually rather small
[86]. The range-separation parameter can then also be ad-
justed in a way that the eigenvalues from the RSH calculation
give very accurate QP energies by itself [87–89].

The second approach that we employ here is QP self-
consistent GW (qsGW) [11,72]: For a given approximation to
the self-energy, an optimized KS potential can be obtained by
solving the (linearized) [90] Sham-Schlüter equations (SSE)
[14,91]. With � = GW , the SSE can be solved as in the
exchange-only case if the self-energy is approximated as static
[92–94]. One then obtains a statically screened exchange
(SEX) correction depending on Re�(εQP ). The derivation
via the SSE leaves some ambiguity in the choice of the off-
diagonal elements. As shown by Ismail-Beigi [95], one can
also derive an optimized potential via minimization of the
gradient of the Klein functional [13], leading to the following
Hermitian form which has already been suggested by van
Schilfgaarde et al. [72]:[

vOP
xc

]
pq = 1

2 {Re[�xc]pq(εp) + Re[�xc]pq(εq)}. (10)

Using this potential, the KS equations are then solved self-
consistently. It should be stressed that in fully self-consistent
GW, an interacting Green’s function is constructed in each
iteration by solving (1), while in qsGW a noninteracting
Green’s function is constructed in each iteration. qsGW
should thus rather be seen as an approach to optimize a non-
interacting Green’s function. It can also be combined with (8)
(G0W0@qsGW) [96]. However, this is typically not done in
practice: in situations where the single QP picture is valid,
the self-energy will be varying slowly around the QP position
[97] and the effect of the G0W0 correction will vanish [98].
qsGW is also closely related to the RPA optimized effective
potential (OEP) method when the self-energy is approximated
as static in the QP approximation [96,99]. Note, however, that
only the self-energy is approximated as static, but not the
screened interaction, as in Hedin’s Coulomb hole (COH)SEX
approximation [5].

B. Evaluation of the self-energy

We now proceed with the discussion of the G3W 2 self-
energy. To this end, we first introduce the noninteracting
Green’s function. Since we exclusively work with noninteract-
ing Green’s functions, we will suppress the superscript (0) in
the following. The time-ordered free propagator G is diagonal
in the MO basis and can be expressed in terms of greater G>

(particle) and lesser G< (hole) propagators,

Gp(t1, t2) = �(t1 − t2)G>
p (t1, t2) + �(t2 − t1)G<

p (t1, t2),
(11)

where

G>
p (t1, t2) = G>

p (t1 − t2) = −i f (εp)e−iεp(t1−t2 ), (12)

G<
p (t1, t2) = G<

p (t1 − t2) = i f (εp)e−iεp(t1−t2 ). (13)
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FIG. 1. Diagrammatic representation of the lesser components of
the GW (top) and G3W 2 (bottom) self-energy parts. Time ordering
from left to right is implied. The signs at the vertices denote which
branches of the Keldysh contour are connected by W . Greater com-
ponents are obtained by exchanging plus and minus signs. Straight
lines denote propagators and the double wiggly line is the screened
Coulomb interaction.

Here, f denotes the zero-temperature Fermi function and f =
1 − f , and we have indicated that the Green’s function only
depends on the time difference at equilibrium. The single-
particle energies in (13) and (12) are understood to be relative
to the chemical potential which we place in the middle of
the HOMO–lowest unoccupied molecular orbital (HOMO-
LUMO) gap.

The structure of the self-energy terms has been scrutinized
by Stefanucci et al. and Pavlyukh et al. [100,101]. We follow
their work and use the framework of the Keldysh formal-
ism to discuss the G3W 2 self-energy [102]. In the Keldysh
formalism, we work on the contour C = C+ ∪ C−, with C+
being the backward branch and C− being the forward branch.
The time-ordered (anti-time-ordered) Green’s function G−−
(G++) is built from field operators evolving on C− (C+), while
lesser (G−+ = G<) and greater G+− = G> Green’s functions
involve both branches and describe the propagation of holes
and particles, respectively. In the same way, the dynami-
cally screened interaction can either connect both different
branches on the Keldysh contour (W +− = W > and W −+ =
W <) or not connect them (W −− and W ++).

The lesser components of both contributions to the self-
energy in (2) are given diagrammatically in Fig. 1. For the GW
self-energy, each component only consists of a single term
(upper part of Fig. 1). For finite systems, the GW self-energy
is most conveniently evaluated in a basis of localized atomic
orbitals and imaginary time,

�GW,≶
μν (iτ ) = −i

∑
μ′ν ′

G≶
μ′ν ′ (iτ )W ≶

μμ′νν ′ (iτ ), (14)

with iτ = iτ1 − iτ2. In our GW implementation [103], we
transform the self-energy to the imaginary frequency axis
and analytically continue (either the diagonal elements in
the MO basis in G0W0 or the full self-energy matrix in
qsGW) to the complex plane. Greater and lesser components
of the second-order contribution consist of four terms each,
since both intermediate vertices can connect both branches of
the Keldysh contour. Together, the four diagrams describe
three distinct scattering processes [101,104]. Among others,
they are responsible for spectral features which do not appear
in fully self-consistent GW , such as the excitation of two
plasmons and two particle-hole pairs. In this work, these terms

should be of only minor relevance since we are interested in
improving QP energies and correlation energies. The last dia-
gram in Fig. 1, however, only contributes to the 2h1p (1h2p)
space and describes the exchange of two final particles/holes
[101]. In the same way as the static SOX term, it ensures
the antisymmetry of the four-point vertex to first order in the
electron-electron interaction.

Static screening comes with two distinct advantages. Ob-
viously, it drastically reduces the computational cost. Second,
only the last diagram in the expression in Fig. 1 remains. As
an important side effect, the loss of the positive definiteness
of the spectral function [100] arising from straightforward
inclusion of all four terms is avoided. The first three diagrams
vanish since a static interaction can only connect points on the
same branch of the Keldysh contour [102]. To see this clearly,
we first write down �G3W 2 explicitly,

�G3W 2
μν (τ12) = −

∑
κκ ′λλ′
μ′ν ′

∫
dτ3dτ4Gμ′λ(τ14)Wμμ′κκ ′ (τ13)

× Gλ′κ (τ43)Gκ ′ν ′ (τ32)Wλλ′νν ′ (τ42). (15)

Using a time-independent interaction, the integrals over the
internal times can be evaluated easily and the transformation
to frequency space using

F (iω) = −i
∫

dτF (iτ )e−iωτ (16)

gives

�G3W 2
μν (iω) = i

∑
κκ ′λλ′
μ′ν ′

∫
dτ12e−iωτ12 Gμ′λ(τ12)Wμμ′κκ ′

× Gλ′κ (τ21)Gκ ′ν ′ (τ12)Wλλ′νν ′ , (17)

which corresponds to the last diagram in Fig. 1 and can be
expressed in terms of greater and lesser components of G only
(plus and minus signs alternate). Using (11), the integral has
a simple analytic solution and transforming to the MO basis
gives

[
�G3W 2]

pq(ω) =
∑
iab

WiapbWibqa

εa + εb − εi − ω

−
∑
i ja

WiajpWiq ja

εa − εi − ε j + ω
, (18)

which is the same expression already employed by Grüneis
et al. [71]. The computational effort to evaluate these terms
only grows as N3 with system size if one is only interested
in a small number of diagonal elements. Calculation of the
matrix elements of W will generally scale as N4, but these
will be available in some form when a GW calculation is
performed. The asymptotic scaling can be further reduced by
exploiting sparsity in the atomic orbital (AO) basis or in real
space [105–107], but we do not explore these possibilities
here.

For the self-energy beyond GW , we again rely on the as-
sumption that GW already gives rather accurate QP energies.
We thus expand �G3W 2 around the GW QP energies. At zeroth
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order, we obtain

εGW +G3W 2
p = εGW

p + �G3W 2
(
εGW

pp

)
. (19)

This is the most economical way to calculate the QP energy
correction due to �G3W 2. Note that on the GWA level, the
self-energy is often treated to first order, which results in mul-
tiplication with a renormalization factor Z . This is commonly
done for solids, but it has been argued that the zeroth-order
treatment is to be preferred on the GWA level [108]. Of
course, evaluating (8) directly with the �GW +G3W 2 self-energy
is possible as well, as has been done in Ref. [73]. Due to its
much smaller computational cost, all values presented in this
work have been obtained using Eq. (19).

C. Correlation energies

For a given self-energy, total energies can be evaluated
using the Klein functional [13]. Following Dahlen et al. [15],
we obtain, for the �GW +G3W 2 self-energy with a static W in
the second-order term (trace implies integration over spatial
coordinates, spin and frequency variables),

Exc = Ex[φKS] + 1
2 Tr{ln(1 − PRPAV ) + PRPAV }

+ 1
4 Tr

{
G0�

G3W 2
c

}
. (20)

The first term is the HF exchange-correlation energy expres-
sion, evaluated with KS orbitals, the second term is the usual
expression for the RPA correlation energy [24], and the third
term is equivalent to the SOX term in second-order Møller-
Plesset perturbation theory (MP2) (see, for example, Eq. (A5)
in Ref. [15]), with the bare interaction lines replaces by the
statically screened interaction lines. When discussing corre-
lation energies in the following, we refer to the last term on
the right-hand side of (20) as second-order statically screened
exchange (SOSSX). Correlation energies evaluated with (20)
are then called RPA+SOSSX, in analogy to RPA+SOSEX.

III. TECHNICAL AND COMPUTATIONAL DETAILS

All expressions presented herein have been implemented
in a locally modified development version of the Amsterdam
density functional (ADF) engine of the Amsterdam Mod-
eling Suite 2021.1 [109]. The implementation of the GWA
has been outlined in previous work [103,110,111]. In all
calculations, we expand two-point correlation functions in
correlation-consistent bases of Slater-type orbitals of triple-
and quadruple-ζ quality (TZ3P and QZ6P, respectively) [110].
Imaginary time and imaginary frequency variables are dis-
cretized using nonuniform bases T = {τα}α=1,...,Nτ

and W =
{ωα}α=1,...,Nω

of sizes Nτ and Nω, respectively, tailored to each
system. More precisely, (16) is implemented as

F (iωα ) = �
(c)
αβF (iτβ ), (21)

F (iωα ) = �
(s)
αβF (iτβ ), (22)

where F and F denote even and odd parts of F , respectively.
The transformation from imaginary frequency to imaginary
time only requires the (pseudo)inversion of �(c) and �(s),
respectively. Our procedure to calculate �(c) and �(s) as
well as T and W follows Kresse and co-workers [112–114].

The technical specifications of our implementation have been
described in the Appendix of Ref. [110]. All four-point cor-
relation functions are expressed in auxiliary basis sets of
Slater-type functions which are usually three to five times
larger than the primary bases [103,115]. The transformation
between both bases is implemented using the pair-atomic
density fitting (PADF) method [116]. For an outline of the
implementation of this method, we refer to Ref. [115].

We have implemented RPA and RPA+SOSSX correlation
energies using (20). In analogy to (18) and in the same way as
in typical MP2 implementations in quantum chemistry codes
[115,117], the last term on the right-hand side of (20) is
evaluated directly in the MO basis. The second term on the
right-hand side of (20) is evaluated in the space of auxiliary
basis functions, following our GW implementation described
in Ref. [103].

A. Energies

The correlation energies can be calculated with differ-
ent orbitals. In this work, we use orbitals from HF, PBE0
[118,119], and the exact exchange (EXX) only OEP [93,94] in
the implementation of Scuseria and co-workers [120] within
the Krieger Lee Iafrate (KLI) [121] approximation.

1. Relative energies

For relative energies, we use imaginary frequency and time
grids of 20 points. Note that 20 grid points are typically
sufficient to converge total energies to within 1e − 6 Hartree
[112]. Correlation energies are calculated using [122]

ECBS = EQZ − Ec
QZ + Ec

QZ ∗ 43 − Ec
TZ ∗ 33

43 − 33
, (23)

where Ec
QZ (Ec

TZ) denotes the correlation energy at the QZ6P
(TZ3P) level and EQZ is the total energy at the QZ6P level.
The extrapolation scheme has been shown to be suitable for
correlation-consistent basis sets, but cannot be used for KS or
HF contributions [122,123]. For the purpose of calculating rel-
ative energies, we assume these contributions to be converged
at the QZ6P level. We use the VeryGood numerical quality
for integrals over real space and distance cutoffs and the cor-
responding auxiliary basis set [115]. Dependency thresholds
[103] have been set to 5e−4.

2. Total correlation energies

We use 32 points for imaginary time and imaginary fre-
quency each. Here we use the TZ3P and QZ6P basis sets
with additional diffuse functions, as described in Ref. [110],
and additional tight 1s and 2p functions, as will be described
below (see Supplemental Material [124]). Equation (23) is
used for extrapolation and numerical quality and auxiliary
fit set quality are set to Excellent. No dependency thresholds
have been set.

B. Quasiparticle energies

Charged excitations in this work are calculated using (19).
For qsGW, we set the dependency threshold to 5e−3 and
perform a maximum of 15 iterations of the self-consistency
cycle. Following the recommendations given in Ref. [111],
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we use VeryGood numerical quality and the corresponding
auxiliary basis set. We perform G0W0 calculations using PBE,
PBE0, LRC-ωPBEh [125], and ωB97-X [126] orbitals and
eigenvalues. We use Good numerical quality and the corre-
sponding auxiliary basis set for all G0W0 calculations and
set the dependency threshold to 5e−4. In Ref. [103], these
settings have been shown to be appropriate. All QP energies
are calculated using

εCBS
n = εQZ

n − 1

NQZ
bas

εQZ
n − εTZ

n
1

NQZ
bas

− 1
NTZ

bas

, (24)

where εQZ
n (εTZ

n ) denotes the value of the QP energy using
QZ6P (TZ3P) and NQZ

bas and NTZ
bas denote the respective num-

bers of the basis functions (in spherical harmonics so that
there are five d and seven f functions). This expression is
commonly used for the extrapolation of GW QP energies to
the complete basis set limit for localized basis functions [127].
In Ref. [110], we demonstrated that by using this extrapolation
scheme with Slater-type basis sets, good agreement with other
codes is obtained for GW QP energies.

IV. RESULTS

A. Total correlation energies

To see how the inclusion of the �G3W 2 self-energy in-
fluences the description of electron correlation effects, we
first calculate the total correlation energies of 16 atoms with
2 and 36 electrons in between. For all systems with less
than or equal to 18 electrons, we compare the RPA and
RPA+SOSSX correlation energies to the almost exact values
by Froese-Fischer and coworkers et al. [128], and for the
heavier elements we use the CC with single, double, and
perturbative triple excitations (CCSD(T)) values by McCarthy
and Thakkar as a reference [129]. For argon, their CCSD(T)
energy deviates from the value from Ref. [128] by only 0.01%.
We also compare them to different beyond-RPA approaches
by Jiang and Engel [27] (RPA+RSOX and RPA+SOX) and
Gould et al. [46] (gRPA+). To be consistent with Ref. [27] and
Ref. [46], we evaluate the correlation energies with EXX-only
OEP orbitals (EXX for short), implemented within the KLI
approximation [120,121].

To obtain an idea about the numerical quality of our RPA
correlation energies, we compare them against the ones from
Engel and co-workers which are free of basis set errors [27].
We find deviations between 3 and 15% for neutral atoms and
much larger ones for cations. Clearly, our standard basis sets
are not compact enough for these systems (especially for the
cations) and do not capture the full correlation energy. There-
fore, we augment them with four tight 1s and two 2p functions
each for TZ3P and QZ6P. Using these basis sets, total energies
for all atoms deviate from the ones from Ref. [27] by about 7%
on average. This is not perfect, but accurate enough for a qual-
itative comparison of the different beyond-RPA approaches.

The relative errors of correlation energies with respect to
the reference values are shown in Fig. 2 (see Supplemental
Material [124]). Simple RPA@EXX overestimates the cor-
relation energies by typically between 25% and 100%. In
accordance with the expectation that the correlation energy
is more and more dominated by charge screening with in-

FIG. 2. Relative errors (in percent) of correlation energies cal-
culated with different methods compared to the exact values [128].
The RPA+SOX and RPA+RSOX values are taken from Engel and
co-workers [27] and the gRPA+ values are from Gould et al. [46].

creasing electron number, the agreement with the exact values
becomes better for larger atomic numbers. RPA+SOSSX
reduced the RPA correlation energy by 29% on average, im-
proving agreement with the reference considerably. Especially
for the systems with 2 or 4 electrons, the total correlation
energies are still too high. For the last three systems with 18
electrons or more, the agreement becomes much better, but the
correlation energy is still overestimated by a small amount.
As one can expect, RPA+SOX considerably underestimates
the correlation energies. RPA+RSOX shows a tendency to
underestimate the correlation energies and, out of all assessed
methods, the deviations to the reference energies are clearly
the smallest. For gRPA+, no clear trend in any direction can
be identified.

In summary, the results presented here show that the GW +
G3W 2 self-energy improves the description of electron corre-
lation over GW . This, however, does not necessarily imply
improvements for properties such as relative energies and
charged excitations in realistic systems. For example, RPA
is often very accurate for relative energies since errors in
the correlation energies tend to cancel [16]. On the other
hand, beyond-RPA methods, while improving total correla-
tion energies, often do not yield improvements for relative
energies. For this reason, we briefly assess the performance
of RPA+SOSSX in comparison to RPA for relative energies,
before we move on to charged excitations.

B. Energy differences

We now compare the accuracy of RPA+SOSSX against
RPA for relative energies (see Supplemental Material [124]).
We consider HF and PBE0 starting points. Since we do
not evaluate the singles contribution to the total energy, the
former is formally more rigorous due to Brillouin’s theo-
rem. on the other hand, RPA calculations with PBE0 starting
points (RPA@PBE0) are usually more accurate than for HF
(RPA@HF). Our benchmark is based on two datasets. The
first one consists of 84 relative energies of different con-
formers of small and medium organic molecules, including
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TABLE I. Mean absolute deviations (MADs) and mean abso-
lute percentage deviations (MAPDs) (in parentheses) for RPA and
RPA+SOSSX using PBE0 and HF orbitals for the ISO and FH51
datasets. The second column shows the average value of the data
points in each set. All values are in kcal/mol.

RPA RPA+SOSSX

Dataset |�E | PBE0 HF PBE0 HF

ISO 21.5 1.4 (14.3) 2.1 (15.1) 1.0(9.1) 1.9 (14.1)
FH51 31.0 1.6 (23.6) 1.6 (21.2) 1.6 (23.7) 1.4 (24.0)

transition states of inversion and pericyclic reactions. It is
a compilation of the ISO34 [130,131], INV24 [131,132],
and BHPERI [131,133–136] datasets, with reference values
obtained using using the W1-F12 [137–139] and W2-F12
protocols [140–142], except for the largest systems in INV24,
where reference values have been calculated on the domain
based local pair natural orbital (DLPNO)-CCSD(T)/tight
[143–145]/CBS level of theory. The second one consists of
51 reaction energies of small organic and inorganic molecules
[131,146,147] and the reference values have been obtained on
the CCSD(T)-F12/CBS limit of theory.

For RPA@HF and RPA+SOSSX@HF, we report the
MADs and mean percentage deviations in Table I. The results
are promising. PBE0 reference orbitals generally lead to better
agreement with experiment, for both RPA and RPA+SOSSX.
Also, RPA+SOSSX@HF does not lead to improvements
over RPA@HF, but RPA+SOSSX@PBE0 leads to significant
improvements over RPA@PBE0 for isomerization energies.
Relative errors are reduced from 14% to 9%. For FH51, no
improvement is found.

C. Quasiparticle energies

1. Organic acceptor molecules

We first assess the performance of the G3W 2 QP energies
in comparison to qsGW for a set of 24 organic acceptor
molecules [148]. The reference values are of CC singles
doubles and perturbative triples [CCSD(T)] quality and have
been extrapolated to the CBS limit. Comparing these val-
ues (see Supplemental Material [124]) to the experimental
data shown in Fig. 3, we see that there are sizable dif-
ferences to the CC values, especially for the fundamental
gaps. Among the factors which might contribute to the dis-
crepancies are errors in the optimized geometries, missing
zero-point vibrational energy corrections, and geometry relax-
ation after oxidation/reduction. For benzonitrile, the authors
of Ref. [148] calculated the values of the latter two corrections
to be of the order of 0.18 and 0.14 eV, respectively. The
errors in geometry or thermodynamical contributions are more
difficult to assess, but can be sizable as well: For example, the
structure used in the calculations might not correspond to a
global minimum on the potential-energy surface. Finally, we
note that the basis set extrapolation can also introduce some
errors, especially for the larger systems where no basis sets
larger than QZ were used [83]. We estimate the error of our
own CBS limit extrapolation to be of the order of 50 meV
for ionisation potential (IPs) and EAs of medium organic

(a)

(b)

(c)

FIG. 3. (a) Ionization potentials, (b) electron affinities, and
(c) fundamental gaps from qsGW and qsGW + G3W 2 for a dataset
of 24 organic acceptor molecules. The dashed black diagonal lines
are CCSD(T) reference values. Experimental results are given for
comparison as well. The values in parentheses denote mean absolute
deviations (MADs) with respect to CCSD(T). All values are in eV.

molecules [110]. Due to all these factors that affect the direct
comparison to experiment, we exclusively use the CCSD(T)
reference values for the following quantitative discussion and
only show the experimental values for comparison.
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a. Performance of qsGW. For a variety of solids and met-
als, it has been found that qsGW commonly overestimates
band gaps and IPs by about about 15–20% when screening
is calculated within the RPA [61,72,149–151]. In contrast,
the qsGW IPs shown in Fig. 3(a) are in excellent agreement
with the CC reference values, with no systematic overes-
timation. The fundamental gaps in Fig. 3(c) are (with a
few exceptions aside) even systematically underestimated by
qsGW. The overestimation of band gaps with qsGW issue
is usually explained by missing electron-hole interaction via
vertex corrections in the polarizability. Inclusion of an ef-
fective two-point kernel from time-dependent (TD) DFT or
the Bethe-Salpeter equation (BSE) has been demonstrated to
significantly improve the agreement of band gaps and IPs with
experiment [61,64,66,69–71], demonstrating the importance
of beyond-RPA screening. For polar materials, i.e., materials
with strong longitudinal-optical (LO) and transverse-optical
(TO) phonon splitting [152], electron-phonon coupling and
phonon contributions to the frequency-dependent screen-
ing can have a sizable effect on the QP spectrum as well
[152,153]. For example, qsGW overestimates the experimen-
tal band gap of V2O5 by about 100%, which to a large extent
is due to LO-TO splitting [154].

The systems we consider here are rather small and have
a planar geometry. The reduction of charge screening in
low-dimensional materials has often been emphasized, for
example, in comparative studies on bulk and layered V2O5

[154,155], MoS2 [156], or polythiophene [157]. Antiscreen-
ing has been observed in a spin chain [158] and also in finite
conjugated systems [74]. Finally, LO-TO splitting will be ab-
sent entirely. These qualitative differences most likely explain
the much higher accuracy of qsGW for the systems studied
herein as compared to periodic systems.

The data clearly demonstrate qsGW to be an excellent first-
principles method for the description of charged excitations
for these weakly correlated, organic molecules. It is worth-
while to compare the performance of this method to previous
benchmark results of different GW methods. In Ref. [83],
the accuracy of a large number of GW methods has been
assessed for the same dataset. Out of all GW -based meth-
ods, the authors found G0W0@LRC-ωPBE to perform best
(with optimized range-separation parameter), with a MAD of
0.13 eV for IPs and 0.18 eV for EAs. qsGW seems to be
superior.

b. The effect of the statically screened G3W 2 correction.
Now we look at the effect of adding the G3W 2 correction.
As can be seen in Fig. 3, on average it lowers the qsGW IPs
[see, also, the mean signed deviations (MDs) in Table II] by
a small amount and decreases the electron affinity (EAs) by
a relatively larger amount, implying increasing fundamental
gaps. For IPs, this slightly worsens the agreement with the
CC reference values, increasing the mean absolute deviation
(MAD) from 0.09 to 0.12 eV. However, given the errors from
the basis set limit extrapolation, this difference is not signif-
icant. Also, the G3W 2 correction does not alter the MAD
for the fundamental gaps. Since the statically screened G3W 2
correction tends to increase the QP energies, a method which
systematically overestimates IPs and EAs will be systemati-
cally improved by the G3W 2 correction. This is demonstrated
in Fig. 4 for G0W0@ωB97-X and G0W0@LRCωPBEh. Here,

TABLE II. Mean absolute deviations (MADs), mean signed de-
viations (MDs), and maximum errors (MAX) for IPs, EAs, and
fundamental gaps for the 24 acceptor molecules for three different
starting points for several GW -based methods plus the respective
G3W 2 corrections. All values are in eV.

GW GW + G3W 2

qsGW ωB97X ωPBEH qsGW ωB97X ωPBEH

Ionization potentials
MAD 0.09 0.26 0.16 0.12 0.16 0.13
MD 0.08 0.26 0.16 0.00 0.14 0.05
MAX 0.43 0.54 0.41 0.46 0.57 0.54

Electron affinities
MAD 0.14 0.29 0.27 0.09 0.05 0.07
MD 0.14 0.29 0.27 −0.09 −0.03 −0.06
MAX 0.25 0.38 0.36 0.23 0.15 0.20

Fundamental Gaps
MAD 0.13 0.11 0.16 0.13 0.19 0.16
MD −0.06 −0.03 −0.12 0.09 0.17 0.11
MAX 0.35 0.25 0.28 0.60 0.66 0.62

the G3W 2 correction slightly improves the MAD with re-
spect to the CC reference values for the IPs from 0.26 to
0.16 eV, and from 0.16 to 0.13 eV. For the EAs, the improve-
ments are tremendous, and the inclusion of the G3W 2 term
leads to almost perfect agreement with the reference values.
In Table II, these results are summarized. Despite the great
performance of the G3W 2 correction for the range-separated
hybrids, the description of fundamental gaps is actually de-
teriorated, which can be considered as a serious drawback of
this method.

c. Comparison of dynamically and statically screened SOX.
In Table III, we compare a few beyond-GW approaches for
the same dataset. These are GW + SOSEX from Ref. [47]
and GW + dynamically screened G3W 2 from Ref. [73]
(denoted as G0W0�

(1)
0 by the authors of Ref. [73]). These

methods have all been implemented perturbatively and only
differ in the way the electron-electron interaction in the SOX
term is screened (see, for example, Fig. 1 in Ref. [73]). The
results from Refs. [47] and [73] clearly demonstrate that
especially methods with bad or only mediocre performance,
such as G0W0@PBE or G0W0@PBE0, profit immensely
from vertex corrections with fully dynamical self-energy:
G0W0�

(1)
0 @PBE0 is very accurate, with a MAD of 0.16 eV for

the IPs and 0.09 eV for EAs. In particular, G0W0�
(1)
0 @PBE

performs much better than G0W0PBE. For EAs, the MADs
improve from 0.60 eV to 0.06 meV; however, with 0.28 eV
for IPs, G0W0�

(1)
0 @PBE is not very accurate. For EAs, with

a MAD of 0.06 eV, G0W0@PBE + SOSEX performs excel-
lently, but it is considerably less accurate for IPs (MAD =
0.33 eV). In summary, G0W0�

(1)
0 @PBE0 is the most accurate

of these methods. However, it cannot beat qsGW and also
not G0W0@ωB97-X + G3W 2 and G0W0@LRCωPBEh +
G3W 2.

For the sake of a direct comparison of dynamically and
statically screened G3W 2 corrections, we also calculated
G0W0@PB + G3W 2 or G0W0@PBE0 + G3W 2 with our
implementation. First, we note the reasonable agreement of
the results obtained with our implementation and Fritz-Haber
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TABLE III. Comparison of MADs with respect to the CC reference values for different beyond-GW methods in comparison to G0W0 for
different starting points. All values are in eV. The superscript (d ) denotes that the screened interaction is dynamic, whereas (s) denotes a static
interaction. For G0W0, the two numbers denote MADs with ADF/ Fritz-Haber Institut-ab initio materials simulation package (FHI-AIMS).

Starting point G0W0 G0W0+SOSEX G0W0 + G3W (d )2 G0W0 + G3W (s)2

IP EA IP EA IP EA IP EA

PBE 0.56/0.66 0.44/0.60 0.33 0.08 0.28 0.06 0.67 0.09
PBE0 0.19/0.22 0.39/0.39 0.12 0.16 0.16 0.09 0.28 0.06

Institut-ab initio materials simulation package (FHI-AIMS)
on the GW level, which allows for a qualitative comparison.
The differences mainly result from the different basis sets used
in the calculations [47,73]. The MADs in Table III clearly
show that the statically screened G3W 2 correction does not
give good results for these starting points. For EAs, the per-
formance of the statically screened correction is comparable
to the dynamical one. However, the description of IPs is even
worse. Here, the methods with dynamical screening are sig-
nificantly better.

In Ref. [73], it was found that the magnitude of the G3W 2
correction was much smaller, when the statically screened
interaction instead of the dynamically screened one was used.
This is in line with our results. For the HOMO QP en-
ergies, the correction often changes sign, i.e., the HOMO
QP energy is increased when the interaction is statically
screened. Also, in this case, the correction for the LUMO
level is typically much larger than the one for the HOMO
level, increasing the fundamental gaps. Due to the small
magnitude of the correction, the statically screened G3W 2

(a)

(c)

(b)

(d)

FIG. 4. Ionization potentials (left) and electron affinities (right) from G0W0@ωB97-X (+ �G3W 2) (top) and G0W0@LRCω-PBEh (+
�G3W 2) (bottom) and G0W0@ωB97-X + �G3W 2, for a dataset of 24 organic acceptor molecules. The dashed black diagonal lines are CCSD(T)
reference values and the values in parentheses denote mean absolute deviations (MADs) with respect to CCSD(T). All values are in eV.
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TABLE IV. MADs with respect to the EOM-CCSDT reference
for the first ionization potentials of a set of 40 small molecules. All
values are in eV.

Starting point GW GW + G3W 2

qsGW 0.21 0.27
ωB97-X 0.20 0.27
LRC-ωPBEh 0.12 0.21

correction works well if QP energies are already well de-
scribed on the GW level. The dynamically screened G3W 2
term leads to a correction of larger magnitude and works
best for GW methods which severely underestimate IPs and
overestimate EAs. This is the case for G0W0@PBE and (to
a smaller extent) also for G0W0@PBE0 [83] and, conse-
quently, the addition of SOSEX or dynamically screened
G3W 2 leads to large improvements [73]. On the other hand,
G0W0@HF underestimates the HOMO QP levels and overesti-
mates the LUMO QP levels [73,83]. Therefore, the addition of
dynamically screened SOX deteriorates the results for this
starting point.

2. Ionization potentials of small molecules

So far, the performance of the G3W 2 self-energy cor-
rection has only been assessed for a very specific type of
molecules. We now also consider a second database curated
by Bartlett and co-workers [159]. They calculated the IPs
of 40 small organic and inorganic molecules, using equa-
tion of motion (EOM) CCSD (EOM-CCSD)/cc-pVTZ and
cc-pVQZ and EOM-CCSDT/cc-pVTZ. The reference values
we use here are obtained as follows: From the EOM-CCSD
results obtained with the cc-pVTZ and cc-pVQZ basis sets,
we extrapolate the IPs to the CBS limit with the formula
by Helgaker et al. [122], given by Eq. (23). Note that we
used Eq. (24) to obtain our results. Subsequently, we add
the difference between the EOM-CCSD and EOM-CCSDT
IPs to the CBS limit extrapolated EOM-CCSD IPs. Thus, the
reference values should be close to EOM-CCSDT quality at
the CBS limit. The MADs of the considered methods with
respect to the EOM-CCSDT reference values are shown in
Table IV. The qsGW IPs are with a MAD of 0.21 eV, still
in reasonable agreement with the reference values, but the
agreement is worse than for the acceptor molecules. For all
tested GW starting points, the G3W 2 term worsens the IPs.

D. Timings

Before concluding this work, we briefly comment on the
computational timings shown in Table V. Compared to SO-
SEX and G3W 2 with dynamic W , our approach comes with
the advantage that it is computationally very cheap. For ex-
ample, the G3W 2 correction for azulene at the QZ6P level
can be calculated in 2 seconds each for HOMO and LUMO
on a 2.2 GHz Intel Xeon (E5-2650 v4) node (Broadwell
architecture) with 24 cores and 128 GB RAM each, while
the preceding G0W0 calculation takes 1100 seconds. We also
calculated QP energies of the borrelidin molecule (structure
taken from Ref. [160]) with 78 atoms, 266 electrons, and

TABLE V. Computational timings (in core hours) for two se-
lected molecules for different basis sets. NAO and Naux denote the
sizes of the primary and auxiliary basis, respectively.

Azulene Borrelidin

QZ6P TZ3P QZ6P

Natoms 18 78
Nfreq 18 18
NAO 782 1687 3184
Naux 2296 9612 14257
GW calc. (Core h) 7.3 17 74
G3W 2a correction (Core h) 0.015 0.40 1.6

aTiming per state.

3200 AOs. The G0W0 calculation alone took 74 core hours,
while the G3W 2 correction took 1.6 core hours per state.
In particular, if only frontier orbitals are of interest, as in
many applications, the G3W 2 correction is thus computation-
ally inexpensive. The comparison is slightly flawed since our
low-scaling GW implementation comes with a higher prefac-
tor than canonical implementations. The GW implementation
scales quadratically, while the G3W 2 corrections are naturally
implemented with N4 scaling. Consequently, for much larger
systems, the G3W 2 correction will become computationally
more demanding. The corresponding expression for the en-
ergy scales as N5 (as opposed to our quadratic scaling RPA
implementation), but in canonical implementations MP2 en-
ergies can be routinely calculated for systems with more than
100 atoms as well [117].

V. CONCLUSION

In the GWA, the electron-electron self-energy in Dyson’s
equation is expanded in terms of a screened Coulomb interac-
tion and truncated after first order [5]. In this work, we have
analyzed different aspects of the statically screened second-
order contribution to the self-energy (G3W 2) and applied it
in a perturbative fashion to calculate correlation energies of
atoms, relative energies of chemical reactions, and IPs and
EAs of a wide range of molecules. The results we have pre-
sented herein shed some light on many interesting aspects
of the second-order correction and also raise many questions
which we hope to be able to address in future work.

For correlation energies, the second-order correction
(SOSSX) reduces the RPA@EXX correlation energies by
around 25% and brings them into much better agreement with
nearly exact reference values [128,129], but the correlation
energies are still too large. Generally, relative energies are
also improved over RPA, but more detailed investigations are
needed to obtain a better understanding of in what situations
RPA+SOSSX yields improvements over the RPA.

It would also be interesting to further investigate the re-
lation between the RSOX and SOSSX terms. SOSSX and
RSOX are two different strategies to renormalize the SOX
term. RPA+RSOX is based on the resummation of the
Epstein-Nesbet series [161] of hole-hole ladder diagrams
[44,45], while SOSSX results from the resummation of ring
diagrams, with the additional approximation of static screen-
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ing. Both classes of diagrams are contained in CCD, which
also includes particle-particle ladder diagrams and a third
class of diagrams, coupling ladder and ring diagrams [23].
Thus, CCD can be seen as a first-principles method to couple
both renormalization strategies. Unfortunately, CCD scales as
N6, as opposed to N5. Since RPA+SOSSX overestimates,
and RSOX underestimates the correlation energies, it seems
worthwhile to look for alternative ways to combine SOSSX
with RSOX while retaining the N5 scaling.

For charged excitations, our work reveals qualitative dif-
ferences between the dynamically screened G3W 2 correction,
as recently tested in Ref. [73], and the statically screened
one, benchmarked herein. The magnitude of the G3W 2 cor-
rection becomes much smaller when the electron-electron
interaction is statically screened. The addition of the dy-
namically screened SOX term consistently lowers EAs and
increases IPs, while the statically screened one often decreases
the IPs.

Popular methods such as G0W0 based on PBE and PBE0
starting points predict too low ionization potentials and too
high electron affinities [73], and the addition of dynamically
screened G3W 2 correction results in major improvements for
these methods [73]. The statically screened G3W 2 correction,
on the other hand, gives improvements over GW calculations
which consistently underestimate QP energies. This is the case
for G0W0@LRCωPBEh and G0W0@ωB97-X. Especially for
EAs, improvements are tremendous. For IPs and fundamental
gaps, the improvements are not consistent and seem to be sys-
tem specific. For molecules with nearly 100 atoms, evaluating
the perturbative G3W 2 correction for a few states does not
come with significantly increased computational costs com-
pared to a GW calculation. This is a big advantage over the
dynamically screened SOX correction [73].

Also for qsGW, the statically screened G3W 2 correc-
tion does not lead to systematic improvements, even though
both corrections improve fundamental gaps. As an important
byproduct of this work, we have shown that qsGW by it-
self is an excellent method to calculate IPs and EAs for a
set of medium organic acceptor molecules. With MADs of
0.09 eV for IPs and 0.14 eV for EAs, qsGW outperforms all
other GW methods previously benchmarked for this dataset
[83]. Remarkably, fundamental gaps are underestimated by
qsGW compared to CCSD(T) reference values. This is differ-
ent from the common situation in extended systems and can
be attributed to the much weaker charge screening in finite
systems. Also for a second set of 40 small molecules where
no reference data for EAs was available, qsGW gives excellent
IPs. Charge screening can be expected to be stronger in larger
molecules and it would be interesting to see whether qsGW
also performs well for these or if beyond-RPA screening is
then necessary.

Even though the SOX correction to the self-energy leads
to improvements over GW in certain situations, our re-
sults confirm recent studies [77,162] which show that QP
approximations to GW are difficult to improve upon dia-
grammatically, at least for molecular systems. Systematic and
reliable improvements over GW are most likely only possible
starting from the fully self-consistent solution of the GW
equations.
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