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We consider the extent to which symmetry eigenvalues reveal the topological character of bands. Specifically,
we compare distinct atomic limit phases (band representations) that share the same irreducible representations
(irreps) at all points in the Brillouin zone and, therefore, appear equivalent in a classification based on
eigenvalues. We derive examples where such “irrep-equivalent” phases can be distinguished by a quantized
Berry phase or generalization thereof. These examples constitute a generalization of the Su-Schrieffer-Heeger
chain: neither phase is topological, in the sense that localized Wannier functions exist, yet there is a topological
obstruction between them. We refer to two phases as “Berry obstructed atomic limits” if they have the same
irreps, but differ by Berry phases. This is a distinct notion from eigenvalue obstructed atomic limits, which
differ in their symmetry irreps at some point in the Brillouin zone. We compute exhaustive lists of elementary
band representations that are irrep equivalent, in all space groups, with and without time-reversal symmetry and
spin-orbit coupling, and use group theory to derive a set of necessary conditions for irrep equivalence. Finally, we
conjecture, and in some cases prove, that irrep-equivalent elementary band representations that are not equivalent
can be distinguished by a topological invariant.

DOI: 10.1103/PhysRevB.105.125115

I. INTRODUCTION

Topological band theory has revealed a subtle interplay
between symmetry and topology. Crystal symmetries can both
identify and protect topological phases of matter [1–47]. How-
ever, the inherent challenge in identifying topological phases
with crystal symmetry is that a different classification is
needed for topological phases in each of the 230 space groups.
This challenge has only recently been overcome, through
the theory of topological quantum chemistry [48–54] and,
concurrently, the introduction of symmetry-based indicators
[55–58]. Both theories make use of the symmetry of bands
at high-symmetry points in the Brillouin zone (BZ) to iden-
tify topological phases. This paradigm has been successful in
predicting topological materials [59,60]. In addition, it has led
to the discovery of entirely new phases, such as higher-order
topological phases [32–36] and fragile topological phases
[61–67].

However, not all topological phases can be determined
by their irreducible representations (irreps) at high-symmetry
points. For example, a Chern insulator or a time-reversal
invariant Z2 topological insulator can exist without any sym-
metry or with only translation symmetry. In both cases,
symmetry indicators that distinguish the topological from
trivial phase do not exist. It is not so surprising that these topo-
logical phases can be invisible to symmetry indicators since

they are not protected by crystal symmetry. What is more
surprising [57] is that topological phases protected by crystal
symmetry cannot always be distinguished by their symmetry
irreps; mirror Chern insulators [2], rotation anomaly insula-
tors [68], and hourglass fermions [27] are examples. Thus,
while symmetry indicators are a powerful tool to identify
topological bands, they render certain topological phases in-
visible.

The theory of topological quantum chemistry [48–53] is
based on band representations [69,70], and thus incorpo-
rates information about Bloch states beyond just symmetry
indicators. Band representations exactly span the space of
topologically trivial (atomic limit) phases. Therefore, topo-
logical bands are those that do not transform as band
representations. Since distinct band representations can have
the same symmetry indicators, band representations refine
the classification of symmetry-indicated topological phases.
This refinement has given rise to the discovery of fragile
topological phases, which are in the trivial class of symme-
try indicators, but can be detected via band representations
[61–66].

In this work, we further refine the classification of symme-
try indicators by comparing pairs of bands that have the same
irreps at every high-symmetry point in the BZ; we refer to
such a pair as irrep equivalent. Irrep-equivalent bands exhibit
Bloch wave functions that transform the same way as each
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other under symmetry at each point in the BZ. However, as
was pointed out in Refs. [71,72], it is possible that two bands
that transform identically under all symmetries at each point
in the BZ differ by a topologically nontrivial global gauge
transformation, thus rendering them distinct. These bands do
not need to be topological: in two and three dimensions, dis-
tinct trivial phases can be irrep equivalent, but distinguished
by topological invariants. (In one dimension, the only crystal
symmetry operation is inversion, which completely distin-
guishes distinct phases.) This is exactly the study of this
work: we will show that two distinct but irrep-equivalent band
representations can be distinguished by topological invariants,
despite both being trivial band insulators. We will further
classify all such irrep-equivalent band representations.

We start in Sec. II with a self-contained review of band
representations. In Sec. III, we review the earliest example of
two irrep-equivalent atomic limit phases, in space group F222
(No. 22) [71–73]. We derive a Berry phase invariant to prove
that the two phases are topologically distinct. We then intro-
duce in Sec. IV a second example of irrep-equivalent atomic
limit phases with time-reversal (TR) symmetry and spin-orbit
coupling (SOC) in space group P112 (No. 3), for which
we also derive a Berry phase invariant that distinguishes the
phases.

In Sec. V, using the results of topological quantum chem-
istry, we enumerate all of the irrep-equivalent elementary
band representations (EBRs) and use group theory to derive
general conditions that explain the tables. This builds on ear-
lier work by Bacry, Michel, and Zak (BMZ) [74]; importantly,
our analysis reveals one set of cases missed by BMZ. In ad-
dition, our tables are the first list of all of the irrep-equivalent
atomic limit phases with TR and/or SOC. Finally, we conjec-
ture that all irrep-equivalent, but distinct, atomic limit phases
differ by a topological invariant derived from Berry phases.
The problem of finding an invariant that distinguishes them in
each case remains outstanding.

II. REVIEW OF BAND REPRESENTATIONS

A set of orbitals from atoms residing at specific positions
in a particular space group defines a band representation in
direct (real) space, i.e., an atomic limit. Fourier transforming
the band representation completely determines the irreps that
appear at each point in the BZ, independently of energetics.
The concept of a band representation was introduced by Zak
[69,70] to understand how “k · p” representations at different
points in the BZ connect to each other. A modern interpre-
tation and extension of Zak’s theory was introduced in the
theory of topological quantum chemistry [48–53]. In order
to make this work self-contained, we review the notation for
band representations established in Ref. [49], emphasizing the
parts of the theory most relevant for this work.

Let q be one particular site (which we sometimes label by
the Wyckoff position to which it belongs) in the lattice of a
crystal invariant under the symmetries of a space group G. The
site-symmetry group Gq consists of the symmetry operations
in G that leave the site q invariant:

Gq ≡ {g ∈ G|gq = q}. (1)

Since Gq is a subgroup of G, one can choose a set of coset
representatives gα for Gq in G:

G =
n⋃

α=1

gα (Gq � Z3), (2)

where � denotes the semidirect product, g1 is the identity, and
gα �=1 /∈ Gq. Each coset representative defines a site related by
symmetry to q:

qβ ≡ gβq, (3)

such that the site-symmetry group of qβ is conjugate to that
of q: Gqβ

= gβGqg−1
β . The coset decomposition in Eq. (2) ef-

fectively maps each space-group element to an element in the
site-symmetry group. Specifically, for each h ∈ G and each
gα , there is a unique coset representative gβ and site-symmetry
group element g ∈ Gq that satisfies

hgα = {E |tβα (h)}gβg, (4)

where

tβα (h) ≡ hqα − qβ (5)

is a lattice translation. We will use Eq. (4) to build a repre-
sentation of G given a representation of Gq, which amounts to
determining the symmetry of a band from the symmetry of an
orbital.

Let ρ be a representation of Gq. Following Ref. [49], ρ

induces a band representation [69] of G, denoted ρ ↑ G or
ρG. According to Eq. (5) of Ref. [49], the matrix form of
ρG(h) consists of infinitely many blocks, labeled by pairs
(k′, k), where k′ is a row index and k is a column index. For
each symmetry element, h = {R|v} ∈ G (the notation denotes
a point-group operation R, followed by a translation v), and
each set of columns corresponding to k, there is exactly one
nonzero block, which corresponds to k′ = Rk. We denote this
block by ρk

G(h) (as in Ref. [48], although there the block
structure was not explicitly emphasized); its matrix elements
are given by

ρk
G(h) jβ,iα = e−i(Rk)·tβα (h)ρ̃ ji

(
g−1

β {E | − tβα (h)}hgα

)
, (6)

where we have defined

ρ̃i j (a) =
{
ρi j (a), a ∈ Gq

0, a /∈ Gq.
(7)

Equation (6) warrants some unpacking. The left-hand side
(LHS) of Eq. (6) is a matrix that specifies how wave functions
at hk are related to those at k. The subscripts on the LHS
run over the bands at k. The symmetry of wave functions at
k is determined by the representation ρ in direct space (real
space), which is the content of the right-hand side (RHS) of
Eq. (6). The first term on the RHS is a k-dependent phase
determined by positions of atoms in the unit cell. The second
term is equal to an element of ρ when h can be mapped to an
element of Gq using Eq. (4): specifically, this term is nonzero
if and only if g−1

β hgα is equal to an element of Gq up to a
translation determined by tβα (h).

The little group Gk of a point k in the BZ is the set of
symmetry operations whose rotational part leaves the point k
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invariant modulo a reciprocal lattice vector:

Gk ≡ {g = {R|v} ∈ G|Rk ≡ k}, (8)

where the equivalence relation Rk ≡ k is defined by equiv-
alence up to a reciprocal lattice vector, i.e., k ≡ k + K if
and only if K is a reciprocal lattice vector. When Eq. (6) is
restricted to elements in Gk, it furnishes a representation of
Gk, which we denote ρG ↓ Gk. We define the characters of
ρG ↓ Gk:

χk
G(h) ≡

∑
i,α

ρk
G(h)iα,iα =

∑
i,α

e−ik·tαα (h)ρ̃ii(hα )

=
∑

α

e−ik·tαα (h)χ̃ (hα ), (9)

where we have defined

χ̃ (h) =
∑

i

ρ̃(h)ii (10)

and defined the shorthand

hα ≡ g−1
α {E | − tαα (h)}hgα. (11)

If two band reps share the same little group irreps [i.e., yield
the same characters χk

G in Eq. (9) for all k], then we refer to
them as irrep equivalent.

Equivalent band representations are necessarily irrep
equivalent, where equivalence is defined as follows (Defini-
tion 5 of Ref. [49]): two band representations ρG and σG are
equivalent iff there exists a unitary matrix-valued function
S(k, τ, g) smooth in k and continuous in τ such that for all
g ∈ G, τ ∈ [0, 1], S(k, τ, g) is a band representation and

S(k, 0, g) = ρk
G(g) and S(k, 1, g) = σ k

G (g). (12)

An EBR is a band representation that is not equivalent to a
direct sum of other band representations.

We will now refer to the definition of equivalence in
Eq. (12) as homotopic equivalence to distinguish it from
irrep equivalence. As pointed out in Ref. [49], homotopic
equivalence implies irrep equivalence since the deformation
provided by S does not change the characters of the little
group irreps. However, the reverse is not true [48,71–73]. The
purpose of this paper is to enumerate irrep-equivalent EBRs,
study how to distinguish them by examples, and present a
general conjecture.

One of the key tools that we will use is the Wilson loop
[27,29,32,75–84], which allows for a non-Abelian general-
ization of the Berry phase. Given a Hamiltonian where the
(cell-periodic parts of the) Bloch wave functions are denoted
by |ui(k)〉, we define the Wilson-loop matrix of a set of bands
B over a closed path l in the BZ by

Wl ≡ Pei
∫

l dl·A(k), (13)

where [A(k)]i j ≡ i〈ui(k)|∇k|u j (k)〉, i, j ∈ B, is the Berry
connection, and P denotes that the exponential is path or-
dered. Equation (13) is well defined as long as the bands in
B do not touch any bands in the complement of B. When the
path l is defined by a reciprocal lattice vector K, such that
l = xK, 0 � x � 1, we will call Wl the K-directed Wilson
loop and denote it WK.

As we will show, sometimes symmetry forces the Wilson-
loop eigenvalues of the bands transforming as an EBR to be
quantized, even without specifying the Hamiltonian. In partic-
ular, if B includes all of the bands in the Hamiltonian, it has
been proven [75] that the eigenvalues of WK are given by eiK·ri ,
where ri is the real-space position of the ith degree of freedom
in the Hamiltonian. (This connection between the Wilson-loop
eigenvalue, which is a Berry phase, and the position of charge
in real space, illustrates the “Modern Theory of Polarization”
[85–87].)

More generally, we will give examples where the eigen-
values of WK remain quantized even when B is a subset
of bands in the Hamiltonian. Examples of this phenomenon
exist for topological crystalline insulators protected by inver-
sion symmetry [82,88], but, in that case, bands with distinct
Wilson-loop eigenvalues necessarily exhibit distinct inversion
eigenvalues at high-symmetry points, making them irrep in
equivalent. Similarly, EBRs with distinct rotational symmetry
eigenvalues at high-symmetry points can also have quan-
tized Wilson-loop eigenvalues [83]. In contrast, the examples
that we show here distinguish bands that transform as irrep-
equivalent EBRs. Consequently, the Wilson-loop eigenvalues
along particular high-symmetry lines serve to distinguish the
EBRs in cases where the symmetry eigenvalues cannot.

III. EXAMPLE: F222, EBRS THAT ARE IRREP
EQUIVALENT BUT NOT EQUIVALENT

As an example of irrep-equivalent EBRs that are not equiv-
alent, we show that in space group F222, for each EBR
induced from the 4a position at (0,0,0), there is an irrep-
equivalent EBR induced from the 4b position at (0, 0, 1

2 ). This
example was studied in earlier works [71–73,89,90]; here we
reprove existing results in modern language, establish a more
general Berry phase invariant, and introduce a “generalized
obstructed atomic limit” that cannot be distinguished by little
group irreps.

The space group F222 contains the symmetry operations
{C2,100|0}, {C2,010|0}, {C2,001|0} (point-group operations are
written in Schönflies notation, following Ref. [91]) and the
face-centered lattice translations; we denote the primitive lat-
tice vectors:

t1 = 1
2 (0, b, c), t2 = 1

2 (a, 0, c), t3 = 1
2 (a, b, 0). (14)

The reciprocal lattice vectors are given by

g1 = 2π

(
−1

a
,

1

b
,

1

c

)
,

g2 = 2π

(
1

a
,−1

b
,

1

c

)
,

g3 = 2π

(
1

a
,

1

b
,−1

c

)
(15)

which are related by the rotations as follows:

C2,100 : g3 ↔ g2, g1 ↔ −(g1 + g2 + g3), (16)

C2,010 : g3 ↔ g1, g2 ↔ −(g1 + g2 + g3), (17)

C2,001 : g2 ↔ g1, g3 ↔ −(g1 + g2 + g3). (18)
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FIG. 1. (a) The black lines outline the conventional unit cell
of F222 (No. 22). The blue atoms are in the 4a (0,0,0) position,
while the red atoms are at the 4b (0, 0, 1

2 ) position. (b) The (0, 0, z)
[and ( 1

2 , 1
2 , z)] lines each separately implement the Rice-Mele chain,

where C2,100 or C2,010 play the role of the inversion-symmetry oper-
ation in 1D. Since the 4a Wyckoff position has no free parameter,
it is impossible to continuously deform a single Wannier function
centered on a blue lattice site to be centered on a red lattice site while
preserving C2,100 symmetry, or vice versa. However, two Wannier
functions both centered on a blue lattice site could be deformed to be
centered on red lattice sites by moving pairwise, as indicated by the
blue dashed circles. (Similarly, two Wannier functions both centered
on a red lattice site could be deformed to be centered on blue lattice
sites by moving pairwise.) (Figure reproduced from Ref. [49].)

We are interested in band representations induced from ir-
reps on the sites (in conventional coordinates) q = (0, 0, 0)
and q′ = (0, 0, 1

2 ), shown in Fig. 1, which correspond to the
4a and 4b Wyckoff positions, respectively. (The Wyckoff
multiplicity of 4 indicates that there are four sites in the
conventional unit cell, although there is only one site in the
primitive unit cell.) The site-symmetry group Gq is generated
by {C2,110|0}, {C2,010|0}, and {C2,001|0}, while the site-
symmetry group Gq′ is generated by {C2,100|tz}, {C2,010|tz},
and {C2,001|0}, where

tz = t1 + t2 − t3 (19)

is an integer linear combination of the primitive lattice vectors
defined in Eq. (14). Gq and Gq′ are isomorphic to D2, whose
character table is in Table I.

In F222, each element in the space group can be written
as {E |t}g, where g ∈ Gq and t is a lattice vector. Thus, a
single-valued representation ρ of Gq induces an elementary

TABLE I. Character table for the irreducible representations of
the point group D2.

ρ [E ] [C2,001] [C2,010] [C2,100]

A 1 1 1 1
B1 1 1 −1 −1
B2 1 −1 1 −1
B3 1 −1 −1 1

band representation ρG, given by Eq. (6):

ρk
G({E |t}g) = e−i(gk)·tρ(g), (20)

where the indices i, j, α, β are absent because all single-
valued representations of Gq are one dimensional (the group
is Abelian) and there is only one site in the primitive unit cell
corresponding to the 4a position.

We now consider a band representation induced from a rep-
resentation of Gq′ . In this case, a generic space-group element
can be written as {E |t}g = {E |t′}g′, where g′ ∈ Gq′ and t′ is a
lattice vector. Specifically, if g = {C2,100|0} or {C2,010|0}, then
t′ = t − tz, while if g = {C2,001|0}, then t′ = t. Let ρ ′ be a
representation of the site-symmetry group Gq′ , defined by

ρ ′({C2,100(010)|tz}) = ρ({C2,100(010)|0}),

ρ ′({C2,001|0}) = ρ({C2,001|0}). (21)

Then, the induced band representation is given by

(ρ ′)k
G({E |t}g) = e−i(gk)·t′

ρ(g). (22)

We showed in Appendix D of Ref. [49] that the EBRs defined
by Eqs. (20) and (22) for the same choice of ρ are irrep equiv-
alent because e−i(gk)·t = e−i(gk)·t′

when k is a high-symmetry
point. We now show that despite being irrep equivalent, the
two EBRs are not related by a gauge transformation that
respects the periodicity of the BZ and hence are not homo-
topically equivalent [71]. (See Appendix A for a proof that
homotopic equivalence implies the existence of a BZ-periodic
gauge transformation.)

Since the band representation ρk
G(h) acting on a state

at k yields a state at hk, ρk
G(h) transforms under a gauge

transformation Mk as ρk
G(h) → M†

hkρ
k
G(h)Mk. The band rep-

resentations in Eqs. (20) and (22) are related by the gauge
transformation

(ρ ′)k
G(h) = M†

hkρ
k
G(h)Mk, (23)

where M(kx,ky,kz ) = e−ikz/2. Since there is only one band, it is
clear that Mk is the unique gauge transformation that relates
ρk

G and (ρ ′)k
G. However, since Mk does not respect the period-

icity of the BZ, we conclude that the band representations ρk
G

and (ρ ′)k
G are not related by any BZ-periodic gauge transfor-

mation and hence are distinct EBRs.
We can further show that the EBRs defined by Eqs. (20)

and (22) are distinct by comparing the values of particular
Berry phases computed within each EBR [49,72]. Following
Eq. (13), let WK denote the Berry phase acquired when the
wave function is transported from the origin 	 to K, where
K is any reciprocal lattice vector; to be concrete, we take the
path from 	 to K to be the path of shortest length between
the two points. When the Hilbert space includes only a single
orbital on either q or q′, Wg j = eig j ·q = 1 or eig j ·q′ = −1,
respectively [75]. Physically, this phase corresponds to the
polarization along the g j direction relative to the center of the
unit cell. Note that changing the unit-cell center would change
the polarization, but not the relative difference between the
two polarizations.

Generically, the Hilbert space of a real material includes
more than a single orbital. Combined with the fact that there
is no symmetry that transforms gi → −gi, the Berry phase
Wgi will cease to be quantized (as noted for this example in
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g1

g2g3

−g 1
− g 2

− g 3

FIG. 2. Reciprocal lattice vectors defining the topological invari-
ant in Eq. (26). Light gray dotted lines outline cubes in the BZ
with sides of length 2π . The vectors g1, g2, g3 and −g1 − g2 − g3

outline a loop 
. The surface � that appears in Eq. (25) can be any
surface whose boundary is 
; one such surface consists of the two
blue shaded triangles.

Refs. [89,90]). Thus, we are motivated to develop an invariant
that goes beyond the Berry phase studied in Ref. [72].

We derive an invariant that will distinguish the two EBRs
in Eqs. (20) and (22) but does not rely on them compris-
ing the entire Hilbert space. We utilize the action of the
crystal symmetry operations on the reciprocal lattice vectors
[Eqs. (16)–(18)], which enforces

Wg1 = Wg2 = Wg3 = W −1
g1+g2+g3

. (24)

Let 
 be the loop traced by putting the vectors gi and −g1 −
g2 − g3 end to end (see Fig. 2). By Stoke’s theorem, the Berry
phase acquired upon traversing 
 is equal to the flux of Berry
curvature through any surface �, whose boundary is 
:

Wg1Wg2Wg3W
−1

g1+g2+g3
= ei

∫
�

�·d�, (25)

where � = ∇ × A is the Berry curvature and � is a re-
gion whose boundary is 
; an example is shown in Fig. 2.
[Note that Eq. (25) does not hold in general for non-Abelian
Wilson loops, but is valid for a one-dimensional band repre-
sentation, even if that band representation is embedded in a
Hilbert space with other orbitals. To generalize this invariant
to higher-dimensional band representations requires a non-
Abelian version of Stoke’s theorem.] Combining Eqs. (24)
and (25) yields a topological invariant n, defined mod 4, by

e
2π in

4 = Wg1 e− i
4

∫
�

�·d�. (26)

Since bands that transform as an EBR induced from a repre-
sentation of Gq can be continuously deformed to have � = 0
and Wg1 = 1, these bands must have n = 0 in Eq. (26), while
bands that transform as an EBR induced from a represen-
tation of Gq′ can be continuously deformed to have � = 0
and Wg1 = −1 and hence have n = 2 in Eq. (26). Thus, the
two EBRs can be distinguished by knowledge of the Berry
curvature � and the Berry phase Wg1 by computing the RHS of
Eq. (26) for a given band to obtain n ∈ Z4 on the LHS, despite
the fact that Wg1 itself is not quantized. Thus, Eq. (26) serves
to distinguish the two irrep-equivalent EBRs ρG and ρ ′

G, for

TABLE II. Character table for the double group dC2. The super-
script d indicates elements that arise due to the double cover of SO(3)
by SU(2) [50]. A and B are single-valued irreps, while 1Ē and 2Ē are
double-valued (spinor) irreps.

ρ [E ] [C2] [d E ] [dC2]

A 1 1 1 1
B 1 −1 1 −1
1Ē 1 −i −1 i
2Ē 1 i −1 −i

any irrep ρ of Gq and corresponding irrep ρ ′ of Gq′ defined by
Eq. (21). We further show in the Supplemental Material [92]
that the values of n = 1 and 3 on the LHS of Eq. (26) distin-
guish the irrep-equivalent EBRs induced from the 4c position
( 1

4 , 1
4 , 1

4 ) and 4d position ( 1
4 , 1

4 , 3
4 ), expressed in conventional

basis coordinates. (Note: EBRs induced from the 4c and 4d
positions are not irrep equivalent to those induced from the 4a
and 4b positions.) Thus, Eq. (26) serves to distinguish all pairs
of irrep-equivalent single-valued EBRs in F222.

One physical consequence of this irrep equivalence is that
it allows for obstructed atomic limit [48] (also called frozen-
polarization [56,93]) phases in F222 that cannot be diagnosed
by their little group representations; we refer to these as Berry
obstructed atomic limits. The most well-known example of
an obstructed atomic limit phase is the Su-Schrieffer-Heeger
[94] (SSH) or Rice-Mele [95] chain protected by inversion
symmetry: the two phases of the SSH model each correspond
to an atomic limit phase, that is, exponentially localized and
symmetry-preserving Wannier functions exist, but the two
phases are separated by a gap-closing phase transition. Hence,
there is an obstruction to continuously deforming a band in
one phase to a band in the other phase. However, in the SSH
model, the two phases can be distinguished by the product
of their inversion eigenvalues at 	 and X , as well as by their
polarization [82]. What is unique about the Berry obstructed
atomic limit phases in F222 that we will shortly present is
that they cannot be distinguished by either their symmetry
eigenvalues or their polarizations.

To study the transition between the two Berry obstructed
atomic limit phases in F222, we utilize the intermediate site
q′′ = (0, 0, z) (in conventional coordinates), with 0 < z < 1

2 ,
that interpolates between q and q′. (A similar construction for
the SSH or Rice-Mele chain is shown in the Supplemental
Material [92].) Since Gq′′ ⊂ (Gq ∩ Gq′ ), q′′ is part of the
nonmaximal 8g Wyckoff position. The site-symmetry group
Gq′′ is generated by {C2,001|0} and thus isomorphic to C2; the
character table for C2 is shown in Table II.

Consider the trivial representation of Gq′′ , denoted Aq′′ ; the
subscript indicates the site. This irrep induces representations
of Gq and Gq′ with the same labels, i.e.,

Aq′′ ↑ Gq = Aq ⊕ B1,q,
(27)

Aq′′ ↑ Gq′ = Aq′ ⊕ B1,q′ ,

where the irreps on the right-hand sides of Eq. (27) are defined
in Table I. Equation (27) shows that bands derived from Aq′′

orbitals at the 8g position will transform as either a sum of
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EBRs induced from the 4a position or a sum of EBRs induced
from the 4b position; the two sums of EBRs on the right-hand
sides of Eq. (27) are homotopically equivalent in the sense
of Eq. (12) and the 8g position furnishes an equivalence.
Consequently, given a system whose valence band transforms
as the EBR Aq ↑ G and whose conduction band transforms
as the EBR B1,q ↑ G, it is possible to drive a quadratic gap-
closing phase transition at a high-symmetry point such that
when the gap reopens, the valence band transforms as the EBR
Aq′ ↑ G and the conduction band transforms as B1,q′ ↑ G (the
quadratic dispersion is required by symmetry). The gap must
close during the transition because the valence band in each
phase can be distinguished by the quantized invariant n ∈ Z4

defined in Eq. (26), despite being indistinguishable by their
little group irreps.

An explicit tight-binding model with this feature can be
constructed in the following way (and is elaborated on in
the Supplemental Material [92]): the Aq ⊕ B1,q representation
describes s and pz orbitals at the 4a position. In the basis of
these orbitals, a tight-binding model with hopping only in the
ẑ direction is given by

H = −ε

2
(1 + σz ) − t

2
(1 + σz cos kz + σy sin kz ). (28)

This Hamiltonian can be considered as an array of Rice-Mele
[92,94] chains oriented in the ẑ direction, and stacked accord-
ing to the face-centered lattice vectors of Eq. (14), as shown
in Fig. 1. The (spinless) C2,100 and C2,010 symmetry operations
act on these chains exactly as the inversion-symmetry oper-
ation acts in the Rice-Mele model, while C2,001 acts as the
identity. As was shown in previous work (explicitly for this
model in Ref. [48]), when t = 0, the electrons in the valence
band are localized on the lattice sites, which correspond to
the 4a position in our model, while when ε = 0, the electrons
in the valence band are localized halfway between the lattice
sites, which corresponds to the 4b position in our model. Thus,
our Berry obstructed atomic limit phase transition is exactly
the polarization transition in the Rice-Mele model. However,
unlike the Rice-Mele chain, our Berry obstructed atomic limit
cannot be diagnosed by a single Berry phase because, as
discussed above, the Berry phase Wgi need not be quantized.

Notice that the polarization along the z direction is quan-
tized because the z axis maps into itself under the rotation
C2,100, but this polarization cannot distinguish the two phases.
This is because in F222, ẑ is neither a direct nor reciprocal
primitive lattice vector. To compute the polarization in the
z direction, we must integrate the Berry connection from
k = 0 to k = g1 + g2 = 4πc(0, 0, 1) [85]. A Wannier center
at q′ thus yields the Berry phase Wg1+g2 = eiq′ ·(g1+g2 ) = 1,

corresponding to a polarization of e = 0 mod e, which is
indistinguishable from the polarization corresponding to a
Wannier center at q.

IV. EXAMPLE: P112, BERRY PHASE DISTINGUISHING
IRREP-EQUIVALENT EBRS WITH

TIME-REVERSAL SYMMETRY

We consider a second example of irrep-equivalent, but
distinct, EBRs in space group P112 (P2, No. 3), which is gen-
erated by {C2,001|0} and primitive lattice translations. There

FIG. 3. Unit cell, lattice vectors, and maximal Wyckoff positions
in P112 in the z = 0 plane.

are four maximal Wyckoff positions:

qa = (0, 0, z), qb = (
0, 1

2 , z
)
,

qc = (
1
2 , 0, z

)
, qd = (

1
2 , 1

2 , z
)
, (29)

shown in Fig. 3. The site-symmetry group Gqi of each qi is
generated by a C2,001 rotation about an axis that goes through
qi. Hence, Gqi is isomorphic to the point group C2, which has
two single-valued and two double-valued irreps, as shown in
Table II. [The parameter z in Eq. (29) is free because the site-
symmetry group Gqi is independent of z.] The EBRs induced
from these irreps are all distinguishable by their irreps at high-
symmetry points, as can be verified using the BANDREP tool on
the Bilbao Crystallographic Server (BCS) [48].

When TR is present, the EBRs induced from the single-
valued irreps remain distinguishable by their irreps at
high-symmetry points because TR does not impose extra
constraints on the high-symmetry points. However, TR is im-
portant for the double-valued irreps and their induced EBRs
because it enforces a Kramers degeneracy. Specifically, since
the pair of complex-conjugate irreps 1Ē and 2Ē of dC2 (the
superscript d indicates the double group; see Table II) are
exchanged under TR, the point group generated by dC2 and
TR has a unique double-valued irrep, which we denote 1Ē2Ē .
In real space, then, Gqi has a unique double-valued irrep,
which we denote ρi. In reciprocal space (momentum space),
the four EBRs ρi ↑ G are irrep equivalent because the little
group of each high-symmetry point, which is generated by
C2,001 and TR, has only one irrep, 1Ē2Ē .

We now show that despite being irrep equivalent, each of
the four EBRs ρi ↑ G is distinguishable by a combination of
two Berry phases. Specifically, we will consider the eigen-
values of Wg1 and Wg2 , which are the g1- and g2-directed
Wilson-loop matrices defined in Eq. (13) by transporting the
wave functions along the path kg1 or kg2 as k goes from 0 to
2π . (The reciprocal lattice vectors are defined by the usual
relation ti · g j = 2πδi j , where t1,2 are shown in Fig. 3 and
t3 is the lattice vector in the z direction.) Since each EBR
consists of two bands with time-reversal symmetry, Wg j is a
2 × 2 matrix. Following the discussion below Eq. (13), when
the Hilbert space includes only the two orbitals transforming
as ρi, the two eigenvalues of Wg j are both eig j ·qi . As shown
in Table III, the combination of eigenvalues of Wg1 and Wg2

uniquely determines the EBR.
However, as we discussed in Sec. III, the Hilbert space

generically includes other orbitals. We now prove that, unlike
in the example in Sec. III, the Wilson-loop eigenvalues remain
fixed at the values in Table III even in the presence of other
orbitals. The proof is as follows: TR requires the two Wilson-
loop eigenvalues to be degenerate [75], which forces Wgi =

125115-6



TOPOLOGY INVISIBLE TO EIGENVALUES IN … PHYSICAL REVIEW B 105, 125115 (2022)

TABLE III. Wilson-loop eigenvalues of the EBRs induced from
ρi on site qi with time-reversal symmetry in space group P112. The
second (third) column lists the eigenvalue of Wg1 (Wg2 ). As explained
in the text, the two eigenvalues of Wg1 (Wg2 ) are degenerate; hence,
only one number is listed in each column even though the Wilson-
loop matrices are 2 × 2. The combination of the eigenvalues of Wg1

and Wg2 uniquely determine the EBR.

Site Wg1 eig. Wg2 eig.

qa 1 1
qb 1 −1
qc −1 1
qd −1 −1

eiθiI, where θi is real and I indicates the 2 × 2 identity matrix.
Since {C2,001|0} reverses the orientation of the Wilson loop,
it forces Wgi to also be particle-hole symmetric [75], which
requires θi ∈ {0, π}. Thus, if other bands are introduced into
the Hilbert space, the Wilson-loop eigenvalues in Table III
remain fixed to ±1, and the four EBRs remain distinguishable.

Notice that the same argument applies in space group
P11m (Pm, No. 6), which is generated by a mirror reflection
through the z = 0 plane and translations. In this group, there
are only two maximal Wyckoff positions, 1a (x, y, 0) and
1b (x, y, 1

2 ). When spin-orbit coupling is included and time-
reversal symmetry is enforced, there is a unique double-valued
irrep of each site-symmetry group and the EBRs induced from
different sites are irrep equivalent. Since there are only two
maximal Wyckoff positions, the irrep-equivalent EBRs can be
distinguished by a single Wilson loop Wg3 , defined in Eq. (13)
by transporting the wave functions along the path (0, 0, k) as
k goes from 0 to 2π because the combination of mirror and
TR forces Wg3 = ±I.

As in Sec. III, one can construct an obstructed atomic limit
transition between two phases, where the valence bands in
the two phases are irrep equivalent, but distinguishable by the
combination of Wg1,2 eigenvalues.

V. IRREP-EQUIVALENT EBRS

We now generalize the examples in Secs. III and IV to other
space groups. Specifically, we answer the following question:
When are the EBRs induced from representations of the site-
symmetry groups Gq and Gq′ irrep equivalent? The case of
single-valued representations without time-reversal symmetry
was considered by Bacry, Michel, and Zak (BMZ) [74]. In this
paper, we present a complete answer to this question for EBRs
with and without TR and SOC by a computational search; the
results are listed in Appendix B. In addition to expanding to
include TR and SOC, our results also reveal two cases missed
by BMZ [74], which we analyze in Sec. V F.

The tables in Appendix B are obtained by computing the
irreps for each EBR at each high-symmetry point using the
BANDREP [48,50,52] application on the BCS. Once the irreps
are computed, EBRs that are irrep equivalent can be identified
by explicitly comparing their irreps. The tables in Appendix B
are separated into EBRs that are or are not “decomposable” in
the sense of Ref. [48]: when an EBR is not decomposable, all
bands corresponding to the EBR will always be connected.

To better understand our computational results, in this sec-
tion we use group theory to derive a set of necessary (but not
sufficient) conditions for irrep equivalence. For simplicity, we
apply them to the case without TR or SOC to see how the con-
ditions limit the space groups that can contain irrep-equivalent
EBRs.

A. Deriving irrep equivalence from characters
of the site-symmetry group

Although irrep equivalence is defined by the representa-
tions at each high-symmetry point, it is elegant and useful to
consider the full band representation ρG, whose blocks ρk

G we
explicitly constructed in Eq. (6) for all k in the BZ. To utilize
this formalism, we prove the following in Appendix C:

Theorem 1. Two band representations ρG and ρ ′
G of a space

group G are irrep equivalent if and only if they are related by
a unitary transformation U such that

U [ρG(g)]U † = ρ ′
G(g) for all g ∈ G. (30)

Theorem 1 eliminates the need to consider individual k
points; instead, we consider the unitary equivalence of entire
band representations at once. Further, Theorem 1 does not
place any constraints on the k dependence of U such as conti-
nuity or BZ periodicity. Thus, irrep equivalence is weaker than
the homotopic definition of equivalence in Eq. (12), which
requires that the unitary matrix be smooth and periodic in k.
This is exactly the point of this work: as was illustrated by
the examples in Secs. III and IV, band representations can be
unitarily equivalent, and thus display all the same representa-
tions at high-symmetry points, without being homotopically
equivalent. When this happens, the unitary transformation is
not smooth and periodic in the BZ, as we saw in Eq. (23)
where Mk was not BZ periodic.

We now seek conditions for when two EBRs are unitarily
equivalent. Since EBRs are induced representations, in the
language of group theory, we want to know when two induced
representations are unitarily equivalent. The question is well
defined for finite groups using character theory (we review
the representation theory of finite groups in Appendix D).
However, difficulties arise due to the infinite nature of space
groups (which have an infinite set of translation symmetries).
This motivates us, following BMZ [74] to define the finite
“Born–von Karman” space groups GN ≡ G/TN , where TN is
the subgroup of G generated by tN

i and ti are the primitive
lattice vectors (notice that TN is infinite and, as a result, GN =
G/TN is finite). These are the symmetry groups of finite-sized
crystals with periodic boundary conditions.

We restrict ourselves to choices of N such that the high-
symmetry points in the BZ of GN are identical to those of G
[96]; with this constraint on N , EBRs will be irrep equivalent
in G if and only if they are also irrep equivalent in GN . (For
example, in the case of inversion symmetry in one dimension,
the high-symmetry points are k = 0 and π , so we require N to
be even.) Thus, our search for irrep-equivalent EBRs of G is
identical to searching for irrep-equivalent EBRs of GN . With
this understanding, we will drop the subscript N and proceed
to use the representation theory of finite groups, reviewed in
Appendix D.
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Using the character theory of finite groups, we derive in
Appendix E a necessary and sufficient condition for two in-
duced representations to be unitarily equivalent. This result,
which we will utilize extensively in the following, is expressed
in the language of band representations as follows:

Theorem 2. Given a representation of Gq with characters
χ and a representation of Gq′ with characters χ ′, the induced
representations with characters χ ↑ G and χ ′ ↑ G will be
irrep equivalent if and only if, for every g ∈ Gq ∪ Gq′ ,

1

|Gq|
∑

h∈Gq∩[g]G

χ (h) = 1

|Gq′ |
∑

h′∈Gq′ ∩[g]G

χ ′(h′), (31)

where [g]G ≡ {(g′)−1gg′|g′ ∈ G} denotes the conjugacy class
of g in G.

Theorem 2 provides an algorithm to make a complete list
of irrep-equivalent EBRs in all space groups by evaluating
Eq. (31) for all pairs of sites q, q′, characters χ, χ ′, and
space-group elements g ∈ Gq ∪ Gq′ . We have compiled tables
of irrep-equivalent EBRs (described in Appendix B) in a dif-
ferent way, by explicitly comparing the irreps of each EBR
at high-symmetry momenta. Thus, Theorem 2 serves as an
independent check of the tables.

In the remainder of this paper, we will use Eq. (31) to
derive constraints on which site-symmetry groups can induce
irrep-equivalent EBRs. Ultimately, we find two main results:
first, in Sec. V D, we derive that only seven point groups
permit irrep-equivalent EBRs induced from the same Wyckoff
position. Second, in Sec. V E, we show that there are only
29 pairs of point groups that permit irrep-equivalent EBRs
induced from different Wyckoff positions.

B. Examples

Before deriving more general constraints, we provide two
examples of how to use Theorem 2 by applying it to the irrep-
equivalent EBRs studied in Secs. III and IV.

1. Application of Eq. (31) to F222

We showed in Sec. III that the EBRs ρ ↑ G and ρ ′ ↑ G,
defined in Eqs. (20) and (22), are irrep equivalent for any irrep
ρ of Gq=(0,0,0) and the corresponding irrep ρ ′ of the isomor-
phic group Gq′=(0,0, 1

2 ), where ρ ′ is defined in Eq. (21). Recall
from Sec. III that both Gq and Gq′ contain {C2,001|0}, while
each other nontrivial element of Gq is in the same conjugacy
class (with respect to the space group G) as an element in Gq′ ,
specifically,

{C2,100|tz} = {E |t2}{C2,100|0}{E |t2}−1,
(32)

{C2,010|tz} = {E |t3}{C2,010|0}{E |t3}−1,

where {C2,100(010)|tz} ∈ Gq′ , while {C2,100(010)0} ∈ Gq; the lat-
tice vectors t1,2,3 are defined in Eq. (14); and tz is defined in
Eq. (19).

We now show explicitly that Eq. (31) is satisfied (utilizing
|Gq| = |Gq′ | and taking χ and χ ′ to denote the characters of
ρ and ρ ′, respectively):

g = E In this case, Gq ∩ [g]G = Gq′ ∩ [g]G = E . Thus,
Eq. (31) yields χ (E ) = χ ′(E ) = 1.

g = {C2,001|0} In this case,

Gq ∩ [g]G = Gq′ ∩ [g]G = {C2,001|0}. (33)

Equation (31) yields χ ({C2,001|0}) = χ ′({C2,001|0}), which is
satisfied by the definition of ρ ′ in Eq. (21).

g = {C2,100(010)|0} or {C2,100(010)|tz} We showed in Eq. (32)
that {C2,100(010)|0} and {C2,100(010)|tz} are conjugate in G. Since
g only enters Eq. (31) through [g]G, the equation is the same
for either choice of g. Since

Gq ∩ [g]G = {C2,100(010)|0},
Gq′ ∩ [g]G = {C2,100(010)|tz}. (34)

Equation (31) yields χ ({C2,100(010)|0}) = χ ′({C2,100(010)|tz}),
which is satisfied by the definition of ρ ′ in Eq. (21).

Thus, the example in Sec. III of irrep-equivalent EBRs in
F222 induced from the 1a and 1b positions satisfy Eq. (31),
as of course they must, since we already showed that they are
irrep equivalent.

2. Application of Eq. (31) to P112

We showed in Sec. IV that in the double SG P112, the
EBRs induced from the double-valued 1Ē 2Ē representation
(which is irreducible with respect to time-reversal symmetry)
of the site-symmetry groups Gqi are irrep equivalent for the
four sites qi=a,b,c,d defined in Eq. (29). The site-symmetry
group for each site is generated by a twofold rotation:

Gqa = 〈{C2,001|000}〉,
Gqb = 〈{C2,001|010}〉,

(35)
Gqc = 〈{C2,001|100}〉,
Gqd = 〈{C2,001|110}〉,

where the angled brackets enclose the site-symmetry group
generator.

It is straightforward to check that, unlike in the previous
example in F222 (Sec. V B 1), none of the twofold rotations
that appear in Eq. (35) are in the same conjugacy class with
respect to the space group P112. For example, the conjugacy
class [{C2,001|000}]G only contains elements of the form

{E |n1n20}−1{C2,001|000}{E |n1n20}
= {C2,001| − 2n1,−2n2, 0}, (36)

where n1,2 ∈ Z so that {E |n1n20} ∈ G. Therefore, none of
the rotations in Gqb, Gqc , or Gqd , as defined in Eq. (35), are
conjugate to {C2,001|000}, due to the factors of two on the RHS
of Eq. (36).

We now check that Eq. (31) is satisfied when q = qa and
q′ = qb:

g = E Since Gqa ∩ [g]G = Gqb ∩ [g]G = E , Eq. (31) yields
χ (E ) = χ ′(E ) = 2.

g = {C2,001|000} Eq. (36) showed that g is not conjugate to
any element of Gqb . Thus, the RHS of Eq. (31) is zero, which
requires on the LHS χ (g) = 0. The characters in Table II
confirm this is satisfied for the 1Ē 2Ē irrep.

g = {C2,001|010} Eq. (36) showed that g is not conjugate to
any element of Gqa , so that the LHS of Eq. (31) is zero. The
characters in Table II show that the RHS is also zero because
χ (g) = 0 for the 1Ē 2Ē irrep.
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The same arguments hold for the other pairs of qa,b,c,d .
Thus, the irrep-equivalent EBRs in P112 satisfy Eq. (31), as
expected.

C. Merging conjugacy classes

We now use Eq. (31) to constrain which site-symmetry
groups can induce irrep-equivalent EBRs. It will be useful
to introduce the notion of merging conjugacy classes: two
distinct conjugacy classes [g1]Gq �= [g2]Gq , defined with re-
spect to the site-symmetry group Gq, are said to merge in
the full space group G if [g1]G = [g2]G. We use the concept
or merging conjugacy classes to rewrite the LHS of Eq. (31)
when g ∈ Gq:

Theorem 3. Given g ∈ Gq, if the conjugacy class [g]Gq

does not merge with any distinct conjugacy class [g′]Gq , where
g′ ∈ Gq, [g′]Gq �= [g]Gq , then the LHS of Eq. (31) is given by

1

|Gq|
∑

h∈[g]Gq

χ (h) = |[g]Gq |
|Gq| χ (g). (37)

Proof. Let g ∈ Gq. If [g]Gq does not merge with any dis-
tinct conjugacy class of Gq in G, then [g]Gq = Gq ∩ [g]G [for,
otherwise, there exists h ∈ (Gq ∩ [g]G), such that h /∈ [g]Gq ,
which means the conjugacy classes [h]Gq and [g]Gq are distinct
and merge in G, violating the hypothesis]. Thus, when [g]Gq

does not merge with any distinct conjugacy classes in G, the
LHS of Eq. (31) can be rewritten as the LHS of Eq. (37). The
equality in Eq. (37) follows because all elements in the same
conjugacy class have the same character, which completes the
proof. �

We now establish two theorems about merging conjugacy
classes that we will use in the following sections to show that
many site-symmetry groups cannot induce irrep-equivalent
EBRs, following BMZ [74].

The first theorem pertains to crystallographic classes: two
symmetry operations g1 and g2 are part of the same crystal-
lographic class if and only if there exists a crystallographic
symmetry operation g such that g1 = g−1g2g. For example,
{C2,100|0} and {C2,010|0} are in the same crystallographic class
because they are conjugate by {C4,001|0}, but {C2,100|0} and
{C2,110|0} are not in the same crystallographic class because
they are conjugate by the rotation {C8,001|0}, which is not a
crystallographic symmetry operation.

By the definition of a crystallographic class, we deduce the
following:

Theorem 4. If Gq is isomorphic to one of the following
point groups,

C1,Ci,C2,Cs,C2h,C4v, D∗
2d , D3,C3v,

(38)
D3d , D6,C6v, D3h, D6h, Td , O, Oh,

which do not have any distinct conjugacy classes with el-
ements in the same crystallographic class, then no two
conjugacy classes of Gq merge in any space group G. The
asterisk (∗) indicates the 4̄m2 orientation of D2d , discussed
below.

Proof. Suppose that Gq is isomorphic to a point group
listed in (38) and that two distinct conjugacy classes [g1]Gq

and [g2]Gq merge in G. Then, by definition, g1 and g2 are in

the same crystallographic class. This completes the proof by
contradiction since the groups listed in (38) do not have any
distinct conjugacy classes with elements in the same crystal-
lographic class. �

We now make a few comments on the list (38). First,
as an example, C2 appears on this list because its two con-
jugacy classes are [C2] and [E ], and C2 and E are not in
the same crystallographic class; on the other hand, D2 =
{E ,C2,100,C2,010,C2,001} is not on this list because each el-
ement in D2 is in its own conjugacy class, but all the C2

rotations in D2 are in the same crystallographic class. Second,
D2d in the 4̄m2 orientation, which contains C2,001 and C2,110

in separate conjugacy classes, appears on this list because the
two operations are not conjugated by a space-group symmetry
operation. On the other hand, D2d in the 4̄2m orientation
contains C2,001 and C2,100 in separate conjugacy classes; this
group does not appear on the list because C2,001 and C2,100

are conjugated by C4,010, which is a space-group symmetry
operation. Third, we note that one can make a similar list
for the double-crystallographic point groups. The list will be
different because the double groups have an extra generator,
due to the double cover of SO(3) by SU(2) [50], that changes
the distribution of symmetry elements into conjugacy classes.
Here, for simplicity, we exclude the double groups from our
analysis and also ignore time-reversal symmetry. However,
the tables in Appendix B are listed for both point groups and
double-point groups, with and without time-reversal symme-
try.

The second theorem results from considering the conju-
gacy class of a point-fixing symmetry, which is a symmetry
operation that has exactly one fixed point, such as the rotore-
flections S2 (inversion), S3, S4, and S6:

Theorem 5. Let g1,2 ∈ Gq be point-fixing symmetry oper-
ations. If [g1]G = [g2]G then [g1]Gq = [g2]Gq .

This is clear when g1 is an inversion operation since
there can only be one inversion operation in a site-symmetry
group. The general proof is as follows: suppose g1,2 ∈ Gq
are point-fixing symmetry operations and [g1]G = [g2]G. Then
there exists a g ∈ G such that g−1g1g = g2, which implies
g1(gq) = gg2q = gq, i.e., gq is a fixed point of g1. By hy-
pothesis, g1 only has one fixed point q; thus, it must be that
gq = q. Consequently, g ∈ Gq. Since g−1g1g = g2, this means
[g1]Gq = [g2]Gq .

We now utilize the theorems in this section to restrict
which site-symmetry groups can host irrep-equivalent EBRs.
We first consider EBRs induced from the same site-symmetry
group, i.e., q = q′ in Eq. (31), and then consider the case
q �= q′. In the former case, we prove that irrep-equivalent
EBRs are only possible when Gq is isomorphic to one of
seven possible point groups (out of the 32 point groups that
occur in crystals). Within the second case, we narrow down
the possible pairs of Gq and Gq′ to 29 possible pairs and
find examples that were missed by BMZ [74]. This provides
sufficient conditions for irrep-equivalent EBRs. The tables in
Appendix B provide an exhaustive list of all examples.

D. Same site: q = q′

We first consider the case where q = q′ in Eq. (31): we
prove using the theorems in Sec. V C that irrep-equivalent
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EBRs are only possible when Gq is isomorphic to one of the
following seven point groups:

C2v,C3,C4,C6, D2, D2h, T . (39)

We then prove by explicit computation (Table VIII) that this
list is necessary and sufficient. Recall from the discussion
below (38) that this is a list of single groups; there is a different
list for double groups that we do not derive.

We now establish the list in (39), following BMZ [74].
When q = q′, Eq. (31) gives a necessary condition for two
band representations induced from the same site to be irrep
equivalent:

Corollary 1. A necessary condition for two band repre-
sentations induced from distinct representations of the same
site-symmetry group Gq to be irrep equivalent, is that two
distinct conjugacy classes of Gq merge with respect to G.

We prove Corollary 1 by contradiction: suppose that no
distinct conjugacy classes of Gq merge in G and let χ and χ ′
be characters of two inequivalent representations of Gq such
that χ ↑ G and χ ′ ↑ G are irrep equivalent. Since no distinct
conjugacy classes of Gq merge in G, both sides of Eq. (31)
simplify according to Theorem 3:

|[g]Gq |
|Gq| χ (g) = |[g]Gq |

|Gq| χ ′(g) ⇒ χ (g) = χ ′(g), (40)

for all g ∈ Gq. Since two representations with the same
character are equivalent, our assumption that χ and χ ′ are
characters of inequivalent representations of Gq is contra-
dicted, which completes the proof.

Theorem 4 established that for the point groups listed in
(38), no two conjugacy classes of Gq merge in G, for any
choice of G. Combined with Corollary 1, it follows that when
Gq is isomorphic to a group in (38), distinct irreps of Gq will
not yield irrep-equivalent EBRs. This conclusion rules out 16
of the 32 point groups. [Notice that although 17 point groups
are listed in (38), D2d in the 4̄2m orientation is not ruled out.]

We rule out five additional groups by the following:
Corollary 2. If Gq is an Abelian group generated by a

set of point-fixing symmetry operations, then no two distinct
representations of Gq will induce irrep-equivalent EBRs.

Proof. Suppose that χ and χ ′ are characters of two distinct
representations of Gq and that χ ↑ G and χ ′ ↑ G are irrep
equivalent. Then, for each point-fixing generator gi of Gq,
Theorem 5 guarantees that [gi]G ∩ Gq = [gi]Gq . Thus, both
sides of the sum in Eq. (31) simplify according to Theorem
3, yielding exactly Eq. (40), which implies χ (gi ) = χ ′(gi )
for each point-fixing generator gi of Gq. By hypothesis, Gq
is generated by the set of gi; hence, each element g ∈ Gq
can be written as g = ∏

i gni
i . Since, also by hypothesis, Gq

is Abelian, the order of the gi in the product does not matter.
Thus, the character of g can be expressed as the product

χ (g) =
∏

i

χ (gi )
ni =

∏
i

[χ ′(gi )]
ni = χ ′(g), (41)

where we have used χ (g1g2) = χ (g1)χ (g2) for an Abelian
group (which does not necessarily hold in a non-Abelian
group) and the middle equality follows because we proved
χ (gi ) = χ ′(gi ). But χ (g) = χ ′(g) for all g ∈ Gq violates our
hypothesis that χ and χ ′ are characters of distinct representa-
tions of Gq, which completes the proof. �

There are five Abelian crystallographic point groups that
do not appear in (38) and can be generated by only point-
fixing symmetry operations:

S4 = 〈S+
4 〉, C4h = 〈S+

4 , i〉, S6 = 〈S+
6 〉,

(42)
C3h = 〈S+

3 〉, C6h = 〈S+
3 , i〉,

where the angled brackets enclose the group generators, S+
n

indicates an n-fold rotoreflection, and i indicates inversion,
following Schönflies notation [91]. Corollary 2 proves that if
Gq is isomorphic to one of the point groups in (42), then no
two distinct irreps of Gq will induce irrep-equivalent EBRs.

Finally, by using the POINT application on the BCS (see end
of Appendix F), one finds that if Gq is one of the following
four point groups:

D4, D∗∗
2d , D4h, Th, (43)

conjugacy classes with respect to Gq can merge in G, but
no distinct irreps of Gq induce irrep-equivalent EBRs. The
double asterisk (∗∗) in (43) indicates the 4̄2m orientation of
D2d , as explained below Theorem 4. We show in Appendix F
that for these groups [as well as the groups listed in (38)],
distinct irreps of the site-symmetry group induce band rep-
resentations with different little group representations at 	,
which, consequently, are not irrep-equivalent.

Thus, there are only seven possible choices of Gq, listed
in (39), from which distinct irreps can induce irrep-equivalent
EBRs. This list is not only sufficient, but also necessary: Ta-
ble VIII reveals that for each point group in (39), there exists at
least one space group with a site whose site-symmetry group
is isomorphic to one of the groups in (39) and for which
two distinct irreps induce irrep-equivalent EBRs. Table VIII
contains the complete list of irrep-equivalent EBRs induced
from the same site, without time-reversal symmetry. The table
contains both single-valued and double-valued EBRs: while
the former were enumerated in Tables 2 and 3 of BMZ [74],
the latter list is presented in this work. Also, we provide an
analogous list for irrep-equivalent time-reversal symmetric
EBRs induced from the same site in Table XII.

E. Irrep-equivalent EBRs when q and q′ are not
part of the same Wyckoff position

We now consider the case that q and q′ are not part of the
same Wyckoff position. We use the theorems in Sec. V C to
prove that certain pairs of point groups Gq and Gq′ cannot
have irreps that induce irrep-equivalent EBRs. We limit the
total number of possible cases to 29 (Gq, Gq′ ) pairs, out of 528
possible pairs of crystallographic point groups. The possible
pairs are indicated by empty squares in Table IV, which we
now derive.

We first limit the possible cases of irrep equivalence by
proving that representations whose character of a point-fixing
symmetry operation is nonzero do not induce an EBR that is
irrep equivalent to any distinct EBR:

Corollary 3. Given a site-symmetry group Gq, a point-
fixing symmetry operation g ∈ Gq, and an irrep of Gq with
character χ , if χ (g) �= 0, then χ ↑ G is not irrep equivalent to
any EBR induced from the site-symmetry group of a site that
is not part of the same Wyckoff position as q.
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TABLE IV. The possible pairs of site-symmetry groups Gq and Gq′ (rows and columns) that can induce irrep-equivalent EBRs according
to the list in (45) are indicated by empty boxes. An X indicates that a pair (Gq, Gq′ ) is ruled out because Gq has an element g in Table V that
guarantees the LHS of Eq. (31) is nonzero, while Gq′ has no element in the same crystallographic class as g, thus guaranteeing that the RHS
of Eq. (31) is zero. Of the remaining pairs, those that are ruled out because they do not have irreps that satisfy the dimensionality constraint in
Eq. (47) are marked with a D or D′ for dimension (see text for distinction). Those that are ruled out because there is no space group with both
point groups as maximal site-symmetry groups are marked with a W for Wyckoff.

C2 Cs D2 C2v C4 D4 D2d C4v C3 D3 C3v C6 D6 C6v T O Td

C2

Cs X
D2 D X
C2v D D
C4 D X
D4 D X W W
D2d D D W W
C4v D D W W W
C3 X X X X X X D X
D3 X X X X X X X X
C3v X X X X X X X X W
C6 X X X X X X X X X X X W
D6 X X X X X X X X X X X
C6v X X X X X X X X X X X W W W
T D X W W W W W X D X X X X
O D X D D D D′ W D D X X X X
Td D X D D D D′ D′ D’ X D X X X X W W

Proof. Let g ∈ Gq be a point-fixing symmetry and let χ be
the character of an irrep of Gq such that χ (g) �= 0. Theorem 5
says that [gi]G ∩ Gq = [gi]Gq ; therefore, the sum on the LHS
of Eq. (31) is over the conjugacy class [g]Gq . Then, using
Eq. (37), the LHS of Eq. (31) is proportional to χ (g). Since
χ (g) �= 0 by hypothesis, the LHS of Eq. (31) is nonzero. Now
suppose there is a site q′ and an irrep of Gq′ with character
χ ′ such that χ ↑ G and χ ′ ↑ G are irrep equivalent. Since we
have established that the LHS of Eq. (31) is nonzero, it must
also be that the RHS of Eq. (31) is nonzero. Thus, the sum
on the RHS of Eq. (31) must be over a nonempty set, i.e., g
is conjugate in G to some element g′ of Gq′ . Then there exists
h ∈ G such that h−1gh = g′. Consequently, g(hq′) = hg′q′ =
hq′ (the last equality follows because g′ ∈ Gq′), i.e., hq′ is a
fixed point of g. Since, by hypothesis, g has a single fixed point
hq′ = q, which, by definition, means that q and q′ are part of
the same Wyckoff position. This completes the proof. �

There are 14 point groups that have a point-fixing symme-
try operation whose character is nonzero in all irreps:

Ci,C2h, D2h, S4,C4h, D4h, S6, D3d ,

C3h,C6h, D3h, D6h, Th, Oh. (44)

Corollary 3 guarantees that if Gq is isomorphic to one of the
point groups in the list in (44), then no EBR induced from an
irrep of Gq will be irrep equivalent to an EBR induced from an
irrep of Gq′ when q′ is not part of the same Wyckoff position
as q.

We further rule out the case where Gq is the trivial group
(C1) because if G has the general Wyckoff position (which,
by definition, has a trivial site-symmetry group) as a maximal
Wyckoff position, then it has no special Wyckoff positions.
(Such groups are called fixed-point free space groups or
Bieberbach groups.)

There are 17 remaining choices for Gq:

C2,Cs, D2,C2v,C4, D4,C4v, D2d ,C3,

D3,C3v,C6, D6,C6v, T, O, Td . (45)

All these groups except for D2d and Td lack point-fixing
symmetry operations. While D2d and Td have point-fixing
symmetry operations, they also have irreps where the char-
acter of the point-fixing operation is zero; hence, none of the
groups listed in (45) are ruled out by Corollary 3. Thus, there
are (17 × 16/2) + 17 = 153 pairs of crystallographic groups
that could correspond to Gq and Gq′ (including the 17 pairs
where Gq and Gq′ are isomorphic even though q and q′ are
not part of the same Wyckoff position). These 153 pairs are
shown boxed in Table IV.

We will eliminate 77 of the 153 possible pairs of (Gq, Gq′ )
(marked with an X in Table IV) in the following way: suppose
Gq has an element g such that the LHS of Eq. (31) is nonzero
for any χ (we will explain below how this can happen). If,
further, [g]G ∩ Gq′ = ∅, then the RHS of Eq. (31) will be
zero for any χ ′. Therefore, Eq. (31) is not satisfied for any
irreps χ, χ ′ of Gq, Gq′ , respectively. Consequently, the pair
(Gq, Gq′ ) can be ruled out as a candidate for irrep equivalence.

To this end, for each point group listed in (45), we list in
Table V the crystallographic classes for which the LHS of
Eq. (31) is necessarily nonzero, for any χ . We now explain
how to find the entries in Table V. For the following point
groups

C2,Cs,C2v,C4,C4v, D3,C3v,

C6 (when g is C2), D6,C6v, T, O, Td , (46)

the element g listed in Table V meets two conditions:
(1) All of the elements of Gq in the crystallographic class

of g are in the conjugacy class [g]Gq and hence the conjugacy
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TABLE V. For each point group Gq in (45), the elements g are
listed for which the LHS of Eq. (31) will necessarily be nonzero, for
any space group G and any irrep χ of Gq. (No entry means that there
is no such g ∈ Gq with this property.) The orientation of the axis of
rotation is only specified when there is more than one axis of the
same order in different conjugacy classes.

Gq g

C2 C2

Cs m
D2

C2v C2

C4 C2

D4

C4v C2

C3 C3

D3 C3

C3v C3

C6 C2,C3,C6

D6 C2,001,C3,C6

C6v C2,C3,C6

T C2

O C2,001

D2d

Td C2

class [g]Gq does not merge with any distinct conjugacy classes
in G.

(2) For all irreps of Gq, χ (g) �= 0.
For example, if Gq is isomorphic to the point group C2, and

g indicates the twofold rotation in Gq, then for both irreps of
C2, χ (g) �= 0. Since Gq does not have any other conjugacy
class with a C2 rotation, it follows from Theorem 3 that the
LHS of Eq. (31) is given by

|[g]Gq |
|Gq| χ (g) = 1

2χ (g) �= 0, for any
space group G. We then deduce that if Gq′ does not have a
twofold rotation, Gq′ ∩ [g]G = ∅ and therefore the RHS of
Eq. (31) will be zero for all irreps of G′

q. Hence, there will
never be an irrep equivalence between Gq and Gq′ .

We now explain the point groups in Table V that do not
appear in (46), namely, C3 and C6 (when g = C3,C6). Consider
the case when Gq is isomorphic to C3 and generated by g =
{C3,001|0}. Table VI shows that g and g−1 are in different con-
jugacy classes with respect to Gq. If they remain in different
conjugacy classes with respect to G, then the LHS of Eq. (31)
will be nonzero according to Eq. (37) since χ (g), χ (g−1) �= 0.
If, on the other hand, their conjugacy classes merge in G
(which would happen if, for example, G contained {C2,100|0},
since {C2,100|0}−1{C3,001|0}{C2,100|0} = {C−1

3,001|0}), then the
LHS of Eq. (31) would be proportional to χ (g) + χ (g−1) �= 0.
Thus, whether or not the conjugacy classes of g and g−1 merge

TABLE VI. Character table for C3; ω = e2π i/3.

ρ [E ] [C3] [C−1
3 ]

A 1 1 1
1E 1 ω2 ω
2E 1 ω ω2

TABLE VII. Character table for C6; ω = e2π i/3.

ρ [E ] [C6] [C3] [C2] [C−1
3 ] [C−1

6 ]

A 1 1 1 1 1 1
B 1 −1 1 −1 1 −1
1E2 1 ω ω2 1 ω ω2

2E2 1 ω2 ω 1 ω2 ω
1E1 1 −ω ω2 −1 ω −ω2

2E1 1 −ω2 ω 1 ω2 −ω

in G, the LHS of Eq. (31) is always nonzero when applied to
g. This explains why C3 is in Table V with g = C3. The same
logic applies to C6 for g = C3,C6, which can be verified by
the characters in Table VII.

Constraints from dimensionality further restrict the pairs of
point groups in Table IV. Taking g to be the identity element
in Eq. (31) yields a necessary condition for χ and χ ′ to induce
irrep-equivalent EBRs:

χ (E )/|Gq| = χ ′(E )/|Gq′ |. (47)

Since χ (E ) = dim(ρ), where χ is the character of the rep-
resentation ρ, Eq. (47) can be regarded as a dimensionality
constraint. We rule out 23 additional pairs of site-symmetry
groups, marked with a D in Table IV, because they do not
have irreps that satisfy Eq. (47).

We make a finer constraint on dimensionality by looking
at specific representations: in particular, we eliminate four
additional pairs of point groups, marked by a D′ in Table IV,
because the specific irreps that satisfy the dimensionality con-
straint in Eq. (47) do not satisfy the necessary condition for
irrep equivalence in Eq. (31), which we prove in Appendix G.

For the remaining pairs of point groups in Table IV, we
mark with a W those pairs for which there does not exist
a space group with maximal Wyckoff positions whose site-
symmetry groups are given by Gq and Gq′ . This eliminates 20
additional pairs.

This analysis has narrowed our search to only 29 (Gq, Gq′ )
pairs that could yield irrep-equivalent EBRs.

In Tables IX and Table X we list the irrep-equivalent EBRs
induced from different sites. The difference between the two
tables is that in Table IX the irrep-equivalent EBRs are not
homotopically equivalent, where homotopic equivalence is
defined according to Eq. (12), while in Table X, the irrep-
equivalent EBRs are also equivalent. [Recall that homotopic
equivalence is a sufficient condition for irrep equivalence,
but not necessary, as discussed below Eq. (12).] To deter-
mine whether two irrep-equivalent EBRs are homotopically
equivalent, we explicitly checked whether there exists a third
intermediate Wyckoff position (on the line connecting the
two sites from which the irrep-equivalent EBRs are induced),
such that a band representation induced from the intermediate
Wyckoff position is irrep equivalent to the two EBRs. If such
an intermediate position exists, we deduce that the two EBRs
are not only irrep equivalent, but also homotopically equiva-
lent.

Between Tables IX and X there are only nine pairs of
site-symmetry groups with irreps that induce irrep-equivalent
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TABLE VIII. Irrep-equivalent EBRs induced from different ir-
reps of the same site-symmetry group Gq of the site q. The first
column indicates the space group, the second column indicates the
Wyckoff position that contains q, the third column indicates the point
group isomorphic to Gq, and the fourth column indicates the irreps.
The EBRs indicated above the double line are not “decomposable”
in the sense of Ref. [48], that is, all bands corresponding to the
EBR will always be connected. The EBRs below the double line are
decomposable. This tables serves as an explicit check of the list in
(39): for the single-valued irreps in the fourth column (identified by
the lack of an overbar), exactly the point groups listed in (39) appear
in the third column.

SG q Gq Irreps

26 b Cs
1Ē , 2Ē

26 a Cs
1Ē , 2Ē

27 d C2
1Ē , 2Ē

27 c C2
1Ē , 2Ē

27 b C2
1Ē , 2Ē

27 a C2
1Ē , 2Ē

36 a Cs
1Ē , 2Ē

37 b C2
1Ē , 2Ē

37 a C2
1Ē , 2Ē

39 c Cs
1Ē , 2Ē

39 b C2
1Ē , 2Ē

39 a C2
1Ē , 2Ē

42 b C2
1Ē , 2Ē

45 b C2
1Ē , 2Ē

45 a C2
1Ē , 2Ē

46 b Cs
1Ē , 2Ē

54 e C2
1Ē , 2Ē

54 d C2
1Ē , 2Ē

56 d C2
1Ē , 2Ē

56 c C2
1Ē , 2Ē

57 d Cs
1Ē , 2Ē

62 c Cs
1Ē , 2Ē

67 f C2h
1Ēu,

2Ēu

67 f C2h
1Ēg,

2Ēg

67 e C2h
1Ēu,

2Ēu

67 e C2h
1Ēg,

2Ēg

67 d C2h
1Ēu,

2Ēu

67 d C2h
1Ēg,

2Ēg

67 c C2h
1Ēu,

2Ēu

67 c C2h
1Ēg,

2Ēg

68 h C2
1Ē , 2Ē

69 e C2h
1Ēu,

2Ēu

69 e C2h
1Ēg,

2Ēg

69 d C2h
1Ēu,

2Ēu

69 d C2h
1Ēg,

2Ēg

69 c C2h
1Ēu,

2Ēu

69 c C2h
1Ēg,

2Ēg

72 d C2h
1Ēu,

2Ēu

72 d C2h
1Ēg,

2Ēg

72 c C2h
1Ēu,

2Ēu

72 c C2h
1Ēg,

2Ēg

73 e C2
1Ē , 2Ē

73 d C2
1Ē , 2Ē

73 c C2
1Ē , 2Ē

90 b D2 B2, B3

90 a D2 B2, B3

97 d D2 B2, B3

100 b C2v B1, B2

TABLE VIII. (Continued.)

SG q Gq Irreps

101 b C2v B1, B2

101 a C2v B1, B2

101 c C2
1Ē , 2Ē

102 a C2v B1, B2

103 b C4
1Ē1,

2Ē1

103 b C4
1Ē2,

2Ē2

103 a C4
1Ē1,

2Ē1

103 a C4
1Ē2,

2Ē2

103 b C4
1E , 2E

103 a C4
1E , 2E

105 b C2v B1, B2

105 a C2v B1, B2

106 b C2
1Ē , 2Ē

107 b C2v B1, B2

108 a C4
1Ē1,

2Ē1

108 a C4
1Ē2,

2Ē2

108 b C2v B1, B2

108 a C4
1E , 2E

109 a C2v B1, B2

110 a C2
1Ē , 2Ē

113 c C2v B1, B2

117 d D2 B2, B3

117 c D2 B2, B3

120 d D2 B2, B3

120 a D2 B2, B3

125 f C2h
1Ēu,

2Ēu

125 f C2h
1Ēg,

2Ēg

125 e C2h
1Ēu,

2Ēu

125 e C2h
1Ēg,

2Ēg

127 d D2h B2u, B3u

127 d D2h B2g, B3g

127 c D2h B2u, B3u

127 c D2h B2g, B3g

129 e C2h
1Ēu,

2Ēu

129 e C2h
1Ēg,

2Ēg

129 d C2h
1Ēu,

2Ēu

129 d C2h
1Ēg,

2Ēg

130 c C4
1Ē1,

2Ē1

130 c C4
1Ē2,

2Ē2

130 c C4
1E , 2E

130 a D2 B2, B3

132 f C2h
1Ēu,

2Ēu

132 f C2h
1Ēg,

2Ēg

133 c D2 B2, B3

134 f C2h
1Ēu,

2Ēu

134 f C2h
1Ēg,

2Ēg

134 e C2h
1Ēu,

2Ēu

134 e C2h
1Ēg,

2Ēg

135 c C2h
1Ēu,

2Ēu

135 c C2h
1Ēg,

2Ēg

135 d D2 B2, B3

137 d C2v B1, B2

138 d C2h
1Ēu,

2Ēu

138 d C2h
1Ēg,

2Ēg

138 c C2h
1Ēu,

2Ēu

138 c C2h
1Ēg,

2Ēg

138 e C2v B1, B2

140 d D2h B2u, B3u

140 d D2h B2g, B3g
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TABLE VIII. (Continued.)

SG q Gq Irreps

142 b D2 B2, B3

158 c C3
1Ē , 2Ē

158 c C3
1E , 2E

158 b C3
1Ē , 2Ē

158 b C3
1E , 2E

158 a C3
1Ē , 2Ē

158 a C3
1E , 2E

159 a C3
1Ē , 2Ē

159 a C3
1E , 2E

161 a C3
1Ē , 2Ē

161 a C3
1E , 2E

177 d D3
1Ē , 2Ē

177 c D3
1Ē , 2Ē

183 b C3v
1Ē , 2Ē

184 a C6
1Ē2,

2Ē2

184 a C6
1Ē3,

2Ē3

184 a C6
1Ē1,

2Ē1

184 a C6
1E2,

2E2

184 a C6
1E1,

2E1

185 a C3v
1Ē , 2Ē

185 b C3
1Ē , 2Ē

185 b C3
1E , 2E

186 b C3v
1Ē , 2Ē

186 a C3v
1Ē , 2Ē

197 b D2 B1, B2

201 d D2 B1, B2

204 b D2h B1u, B2u

204 b D2h B1g, B2g

208 a T 1E , 2E
208 c D3

1Ē , 2Ē
208 b D3

1Ē , 2Ē
208 a T 1F̄ , 2F̄
209 c T 1E , 2E
209 c T 1F̄ , 2F̄
210 b T 1E , 2E
210 a T 1E , 2E
210 b T 1F̄ , 2F̄
210 a T 1F̄ , 2F̄
211 c D3

1Ē , 2Ē
214 b D3

1Ē , 2Ē
214 a D3

1Ē , 2Ē
218 a T 1E , 2E
218 a T 1F̄ , 2F̄
219 b T 1E , 2E
219 a T 1E , 2E
219 b T 1F̄ , 2F̄
219 a T 1F̄ , 2F̄
220 c C3

1E , 2E
220 c C3

1Ē , 2Ē
224 c D3d

1Ēu,
2Ēu

224 c D3d
1Ēg,

2Ēg

224 b D3d
1Ēu,

2Ēu

224 b D3d
1Ēg,

2Ēg

228 a T 1E , 2E
229 c D3d

1Ēu,
2Ēu

229 c D3d
1Ēg,

2Ēg

230 c D2 B2, B3

64 e C2
1Ē , 2Ē

103 c C2
1Ē , 2Ē

TABLE VIII. (Continued.)

SG q Gq Irreps

104 b C2
1Ē , 2Ē

114 d C2
1Ē , 2Ē

116 i C2
1Ē , 2Ē

128 d D2 B2, B3

139 f C2h
1Ēu,

2Ēu

139 f C2h
1Ēg,

2Ēg

140 e C2h
1Ēu,

2Ēu

140 e C2h
1Ēg,

2Ēg

142 e C2
1Ē , 2Ē

165 d C3
1Ē , 2Ē

165 d C3
1E , 2E

184 b C3
1Ē , 2Ē

184 b C3
1E , 2E

184 c C2
1Ē , 2Ē

192 c D3
1Ē , 2Ē

202 d C2h
1Ēu,

2Ēu

202 d C2h
1Ēg,

2Ēg

206 d C2
1Ē , 2Ē

211 d D2 B2, B3

223 e D3
1Ē , 2Ē

228 b D3
1Ē , 2Ē

228 a T 1F̄ , 2F̄
230 b D3

1Ē , 2Ē

EBRs:

(D2, D2), (D3, D3), (D4, D4), (D6, D6),

(D2d , D2d ), (T, T ), (O, O), (Td , Td ), (T, D2). (48)

Thus, the 29 pairs that appear in Table IV provide a necessary,
but not sufficient, condition for irrep equivalence of EBRs
induced from different sites. Interestingly, the last pair in (48),
(T, D2), is the only instance where Gq is not isomorphic to
Gq′ (for single-valued representations without time-reversal
symmetry). This case was missed in the earlier analysis by
BMZ [74]; we discuss it in more detail in Sec. V F.

A necessary and sufficient condition for irrep equivalence
could be derived by computing Eq. (31) for each g ∈ G and
q, q′ that are part of a maximal Wyckoff position, whose site-
symmetry groups are given by one of the remaining (Gq, Gq′ )
pairs in Table IV. The EBRs induced from irreps of Gq and
Gq′ with characters χ and χ ′, respectively, are irrep equiva-
lent if and only if Eq. (31) is satisfied for all g ∈ G. This is
the content of our computational results in Tables IX and X
(without time reversal) and in Tables XIII and XIV (with time
reversal).

F. Differences from BMZ

Our computational analysis reveals many cases of irrep
equivalence where q �= q′, but Gq and Gq′ are isomorphic
(diagonal entries in Table IV), as well as two cases without
SOC where Gq and Gq′ are not isomorphic (off-diagonal en-
tries in Table IV). These two cases were missed by BMZ [74].
(Note: BMZ only considered the spinless case. When SOC is
included, our tables show many cases where Gq and Gq′ are
not the same point group.)
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TABLE IX. EBRs that are irrep equivalent, but not equivalent in
the sense of Eq. (12) (equivalent pairs are listed in Table X), and
induced from irreps of different site-symmetry groups Gq and Gq′ ,
such that q and q′ are not part of the same Wyckoff position. The
first column indicates the space group. The second, third, and fourth
columns indicate the Wyckoff position of the site q, point group
isomorphic to the site-symmetry group Gq, and irrep ρ of Gq. The
fifth, sixth, and seventh columns indicate the same quantities for q′.
The EBRs indicated above the double line are not “decomposable”
in the sense of Ref. [48], that is, all bands corresponding to the
EBR will always be connected. The EBRs below the double line are
decomposable.

SG q Gq ρ q′ Gq′ ρ ′

16 d D2 Ē h D2 Ē
16 c D2 Ē h D2 Ē
16 b D2 Ē h D2 Ē
16 a D2 Ē h D2 Ē
16 f D2 Ē g D2 Ē
16 e D2 Ē g D2 Ē
16 b D2 Ē g D2 Ē
16 a D2 Ē g D2 Ē
16 e D2 Ē f D2 Ē
16 c D2 Ē f D2 Ē
16 a D2 Ē f D2 Ē
16 d D2 Ē e D2 Ē
16 a D2 Ē e D2 Ē
16 c D2 Ē d D2 Ē
16 b D2 Ē d D2 Ē
16 b D2 Ē c D2 Ē
21 b D2 Ē d D2 Ē
21 a D2 Ē c D2 Ē
22 c D2 B2 d D2 B2

22 c D2 B3 d D2 B3

22 c D2 B1 d D2 B1

22 c D2 A1 d D2 A1

22 a D2 B2 b D2 B2

22 a D2 B3 b D2 B3

22 a D2 B1 b D2 B1

22 a D2 A1 b D2 A1

22 b D2 Ē d D2 Ē
22 a D2 Ē d D2 Ē
22 b D2 Ē c D2 Ē
22 a D2 Ē c D2 Ē
25 a C2v Ē d C2v Ē
25 b C2v Ē c C2v Ē
26 a Cs

1Ē b Cs
1Ē

26 a Cs
2Ē b Cs

1Ē
26 a Cs

1Ē b Cs
2Ē

26 a Cs
2Ē b Cs

2Ē
27 c C2

1Ē d C2
1Ē

27 c C2
2Ē d C2

1Ē
27 b C2

1Ē d C2
1Ē

27 b C2
2Ē d C2

1Ē
27 a C2

1Ē d C2
1Ē

27 a C2
2Ē d C2

1Ē
27 c C2

1Ē d C2
2Ē

27 c C2
2Ē d C2

2Ē
27 b C2

1Ē d C2
2Ē

27 b C2
2Ē d C2

2Ē
27 a C2

1Ē d C2
2Ē

27 a C2
2Ē d C2

2Ē

TABLE IX. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

27 b C2
1Ē c C2

1Ē
27 b C2

2Ē c C2
1Ē

27 a C2
1Ē c C2

1Ē
27 a C2

2Ē c C2
1Ē

27 b C2
1Ē c C2

2Ē
27 b C2

2Ē c C2
2Ē

27 a C2
1Ē c C2

2Ē
27 a C2

2Ē c C2
2Ē

27 a C2
1Ē b C2

1Ē
27 a C2

2Ē b C2
1Ē

27 a C2
1Ē b C2

2Ē
27 a C2

2Ē b C2
2Ē

37 a C2
1Ē b C2

1Ē
37 a C2

2Ē b C2
1Ē

37 a C2
1Ē b C2

2Ē
37 a C2

2Ē b C2
2Ē

39 b C2
1Ē c Cs

1Ē
39 b C2

2Ē c Cs
1Ē

39 a C2
1Ē c Cs

1Ē
39 a C2

2Ē c Cs
1Ē

39 b C2
1Ē c Cs

2Ē
39 b C2

2Ē c Cs
2Ē

39 a C2
1Ē c Cs

2Ē
39 a C2

2Ē c Cs
2Ē

39 a C2
1Ē b C2

1Ē
39 a C2

2Ē b C2
1Ē

39 a C2
1Ē b C2

2Ē
39 a C2

2Ē b C2
2Ē

42 a C2v Ē b C2
1Ē

42 a C2v Ē b C2
2Ē

45 a C2
1Ē b C2

1Ē
45 a C2

2Ē b C2
1Ē

45 a C2
1Ē b C2

2Ē
45 a C2

2Ē b C2
2Ē

50 b D2 Ē d D2 Ē
50 a D2 Ē c D2 Ē
54 d C2

1Ē e C2
1Ē

54 d C2
2Ē e C2

1Ē
54 d C2

1Ē e C2
2Ē

54 d C2
2Ē e C2

2Ē
56 c C2

1Ē d C2
1Ē

56 c C2
2Ē d C2

1Ē
56 c C2

1Ē d C2
2Ē

56 c C2
2Ē d C2

2Ē
68 a D2 B2 b D2 B2

68 a D2 B3 b D2 B3

68 a D2 B1 b D2 B1

68 a D2 A1 b D2 A1

68 b D2 Ē h C2
1Ē

68 a D2 Ē h C2
1Ē

68 b D2 Ē h C2
2Ē

68 a D2 Ē h C2
2Ē

70 a D2 B2 b D2 B2

70 a D2 B3 b D2 B3

70 a D2 B1 b D2 B1

70 a D2 A1 b D2 A1

73 d C2
1Ē e C2

1Ē
73 d C2

2Ē e C2
1Ē

73 c C2
1Ē e C2

1Ē
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TABLE IX. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

73 c C2
2Ē e C2

1Ē
73 d C2

1Ē e C2
2Ē

73 d C2
2Ē e C2

2Ē
73 c C2

1Ē e C2
2Ē

73 c C2
2Ē e C2

2Ē
73 c C2

1Ē d C2
1Ē

73 c C2
2Ē d C2

1Ē
73 c C2

1Ē d C2
2Ē

73 c C2
2Ē d C2

2Ē
90 a D2 B2 b D2 B2

90 a D2 B3 b D2 B2

90 a D2 B2 b D2 B3

90 a D2 B3 b D2 B3

93 d D2 Ē f D2 Ē
93 c D2 Ē f D2 Ē
93 a D2 Ē f D2 Ē
93 d D2 Ē e D2 Ē
93 c D2 Ē e D2 Ē
93 b D2 Ē e D2 Ē
93 a D2 Ē b D2 Ē
94 a D2 B3 b D2 B2

94 a D2 B2 b D2 B3

94 a D2 B1 b D2 B1

94 a D2 A1 b D2 A1

98 a D2 B2 b D2 B2

98 a D2 B3 b D2 B3

98 a D2 B1 b D2 B1

98 a D2 A1 b D2 A1

101 b C2v Ē c C2
1Ē

101 a C2v Ē c C2
1Ē

101 b C2v Ē c C2
2Ē

101 a C2v Ē c C2
2Ē

105 a C2v Ē c C2v Ē
105 a C2v Ē b C2v Ē
117 c D2 B2 d D2 B2

117 c D2 B3 d D2 B2

117 c D2 B2 d D2 B3

117 c D2 B3 d D2 B3

118 c D2 B3 d D2 B2

118 c D2 B2 d D2 B3

118 c D2 B1 d D2 B1

118 c D2 A1 d D2 A1

163 c D3
1Ē d D3

1Ē
163 c D3

2Ē d D3
2Ē

163 c D3 A2 d D3 A2

163 c D3 A1 d D3 A1

177 c D3
1Ē d D3

1Ē
177 c D3

2Ē d D3
1Ē

177 c D3
1Ē d D3

2Ē
177 c D3

2Ē d D3
2Ē

180 a D2 Ē d D2 Ē
180 b D2 Ē c D2 Ē
181 a D2 Ē d D2 Ē
181 b D2 Ē c D2 Ē
182 c D3

2Ē d D3
1Ē

182 c D3
1Ē d D3

2Ē
182 c D3 A2 d D3 A2

182 c D3 A1 d D3 A1

195 a T 1F̄ b T 1F̄

TABLE IX. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

195 a T 2F̄ b T 2F̄
195 a T Ē b T Ē
196 c T 2E d T 2E
196 c T 1E d T 1E
196 c T A d T A
196 a T 2E b T 2E
196 a T 1E b T 1E
196 a T A b T A
196 c T 1F̄ d T 1F̄
196 b T 1F̄ d T 1F̄
196 a T 1F̄ d T 1F̄
196 c T 2F̄ d T 2F̄
196 b T 2F̄ d T 2F̄
196 a T 2F̄ d T 2F̄
196 c T Ē d T Ē
196 b T Ē d T Ē
196 a T Ē d T Ē
196 b T 1F̄ c T 1F̄
196 a T 1F̄ c T 1F̄
196 b T 2F̄ c T 2F̄
196 a T 2F̄ c T 2F̄
196 b T Ē c T Ē
196 a T Ē c T Ē
196 a T 1F̄ b T 1F̄
196 a T 2F̄ b T 2F̄
196 a T Ē b T Ē
196 c T T d T T
196 a T T b T T
197 a T T b D2 B2

197 a T T b D2 B1

201 a T T d D2 B2

201 a T T d D2 B1

203 a T 2E b T 2E
203 a T 1E b T 1E
203 a T A b T A
203 a T 1F̄ b T 1F̄
203 a T 2F̄ b T 2F̄
203 a T Ē b T Ē
203 a T T b T T
207 a O F̄ b O F̄
208 b D3

1Ē c D3
1Ē

208 b D3
2Ē c D3

1Ē
208 a T 1F̄ c D3

1Ē
208 a T 2F̄ c D3

1Ē
208 b D3

1Ē c D3
2Ē

208 b D3
2Ē c D3

2Ē
208 a T 1F̄ c D3

2Ē
208 a T 2F̄ c D3

2Ē
208 a T 1F̄ b D3

1Ē
208 a T 2F̄ b D3

1Ē
208 a T 1F̄ b D3

2Ē
208 a T 2F̄ b D3

2Ē
209 a O Ē2 b O Ē2

209 a O Ē1 b O Ē1

209 a O E b O E
209 b O F̄ c T 1F̄
209 a O F̄ c T 1F̄
209 b O F̄ c T 2F̄
209 a O F̄ c T 2F̄
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TABLE IX. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

209 a O F̄ b O F̄
210 a T 2E b T 2E
210 a T 1E b T 2E
210 a T 2E b T 1E
210 a T 1E b T 1E
210 a T A b T A
210 c D3

2Ē d D3
1Ē

210 c D3
1Ē d D3

2Ē
210 c D3 A2 d D3 A2

210 c D3 A1 d D3 A1

210 a T 1F̄ b T 1F̄
210 a T 2F̄ b T 1F̄
210 a T 1F̄ b T 2F̄
210 a T 2F̄ b T 2F̄
210 a T Ē b T Ē
210 a T T b T T
211 a O F̄ c D3

1Ē
211 a O F̄ c D3

2Ē
212 a D3

2Ē b D3
1Ē

212 a D3
1Ē b D3

2Ē
212 a D3 A2 b D3 A2

212 a D3 A1 b D3 A1

213 a D3
2Ē b D3

1Ē
213 a D3

1Ē b D3
2Ē

213 a D3 A2 b D3 A2

213 a D3 A1 b D3 A1

214 a D3
1Ē b D3

1Ē
214 a D3

2Ē b D3
1Ē

214 a D3
1Ē b D3

2Ē
214 a D3

2Ē b D3
2Ē

214 c D2 B2 d D2 B2

214 c D2 B3 d D2 B3

214 c D2 B1 d D2 B1

214 c D2 A1 d D2 A1

216 c Td E d Td E
216 a Td E b Td E
219 a T 1F̄ b T 1F̄
219 a T 2F̄ b T 1F̄
219 a T 1F̄ b T 2F̄
219 a T 2F̄ b T 2F̄
227 a Td E b Td E
219 a T Ē b T Ē
228 a T 1F̄ b D3

1Ē
228 a T 2F̄ b D3

1Ē
228 a T 1F̄ b D3

2Ē
228 a T 2F̄ b D3

2Ē

The two cases missed by BMZ occur in space groups
I23 and Pn3̄; in both cases, the site-symmetry group Gq is
isomorphic to T and Gq′ is isomorphic to D2. In I23 (No. 197),
the irrep-equivalent EBRs are induced from the T irrep on the
2a position and B1 or B2 irrep on the 6b position. In Pn3̄ (No.
201), the EBR induced from the T irrep on the 2a position
and B1 or B2 irrep on the 6d position are irrep equivalent. In
the Supplemental Material [92] we explicitly verify that these
cases satisfy Eq. (31). It remains to determine whether there
is an overarching principle that describes why only the case

TABLE X. EBRs that are equivalent in the sense of Eq. (12). The
first column indicates the space group. The second, third, and fourth
columns indicate the Wyckoff position of the site q, point group
isomorphic to the site-symmetry group Gq, and irrep ρ of Gq. The
fifth, sixth, and seventh columns indicate the same quantities for q′.
The EBRs indicated above the double line are not “decomposable”
in the sense of Ref. [48], that is, all bands corresponding to the
EBR will always be connected. The EBRs below the double line are
decomposable.

SG q Gq ρ q′ Gq′ ρ ′

16 g D2 Ē h D2 Ē
16 f D2 Ē h D2 Ē
16 e D2 Ē h D2 Ē
16 d D2 Ē g D2 Ē
16 c D2 Ē g D2 Ē
16 d D2 Ē f D2 Ē
16 b D2 Ē f D2 Ē
16 c D2 Ē e D2 Ē
16 b D2 Ē e D2 Ē
16 a D2 Ē d D2 Ē
16 a D2 Ē c D2 Ē
16 a D2 Ē b D2 Ē
21 c D2 Ē d D2 Ē
21 b D2 Ē c D2 Ē
21 a D2 Ē d D2 Ē
21 a D2 Ē b D2 Ē
22 c D2 Ē d D2 Ē
22 a D2 Ē b D2 Ē
23 c D2 Ē d D2 Ē
23 b D2 Ē d D2 Ē
23 b D2 Ē c D2 Ē
23 a D2 Ē d D2 Ē
23 a D2 Ē c D2 Ē
23 a D2 Ē b D2 Ē
25 c C2v Ē d C2v Ē
25 b C2v Ē d C2v Ē
25 a C2v Ē c C2v Ē
25 a C2v Ē b C2v Ē
35 a C2v Ē b C2v Ē
38 a C2v Ē b C2v Ē
44 a C2v Ē b C2v Ē
48 c D2 Ē d D2 Ē
48 b D2 Ē d D2 Ē
48 a D2 Ē d D2 Ē
48 b D2 Ē c D2 Ē
48 a D2 Ē c D2 Ē
48 a D2 Ē b D2 Ē
50 c D2 Ē d D2 Ē
50 a D2 Ē d D2 Ē
50 b D2 Ē c D2 Ē
50 a D2 Ē b D2 Ē
59 a C2v Ē b C2v Ē
68 a D2 Ē b D2 Ē
70 a D2 Ē b D2 Ē
89 c D4 Ē1 d D4 Ē1

89 c D4 Ē2 d D4 Ē2

89 a D4 Ē1 b D4 Ē1

89 a D4 Ē2 b D4 Ē2

89 c D4 E d D4 E
89 a D4 E b D4 E
93 e D2 Ē f D2 Ē
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TABLE X. (Continued.)

SG q Gq Irreps

93 b D2 Ē f D2 Ē
93 a D2 Ē e D2 Ē
93 c D2 Ē d D2 Ē
93 b D2 Ē d D2 Ē
93 a D2 Ē d D2 Ē
93 b D2 Ē c D2 Ē
93 a D2 Ē c D2 Ē
94 a D2 Ē b D2 Ē
97 a D4 E b D4 E
97 a D4 Ē1 b D4 Ē1

97 a D4 Ē2 b D4 Ē2

98 a D2 Ē b D2 Ē
101 a C2v Ē b C2v Ē
105 b C2v Ē c C2v Ē
111 b D2d E d D2d E
111 a D2d E c D2d E
115 a D2d E d D2d E
115 b D2d E c D2d E
119 c D2d E d D2d E
119 a D2d E b D2d E
121 a D2d E b D2d E
125 a D4 Ē1 b D4 Ē1

125 a D4 Ē2 b D4 Ē2

125 c D2d E d D2d E
125 a D4 E b D4 E
126 a D4 Ē1 b D4 Ē1

126 a D4 Ē2 b D4 Ē2

126 a D4 E b D4 E
129 a D2d E b D2d E
134 a D2d E b D2d E
137 a D2d E b D2d E
141 a D2d E b D2d E
149 e D3 Ē1 f D3 Ē1

149 e D3 E f D3 E
149 c D3 Ē1 d D3 Ē1

149 c D3 E d D3 E
149 a D3 Ē1 b D3 Ē1

149 a D3 E b D3 E
150 a D3 Ē1 b D3 Ē1

150 a D3 E b D3 E
155 a D3 Ē1 b D3 Ē1

155 a D3 E b D3 E
177 a D6 Ē1 b D6 Ē1

177 a D6 Ē2 b D6 Ē2

177 a D6 Ē3 b D6 Ē3

177 a D6 E1 b D6 E1

177 a D6 E2 b D6 E2

180 c D2 Ē d D2 Ē
180 b D2 Ē d D2 Ē
180 a D2 Ē c D2 Ē
180 a D2 Ē b D2 Ē
181 c D2 Ē d D2 Ē
181 b D2 Ē d D2 Ē
181 a D2 Ē c D2 Ē
181 a D2 Ē b D2 Ē
182 a D3 Ē1 b D3 Ē1

182 a D3 E b D3 E
182 c D3 Ē1 d D3 Ē1

182 c D3 E d D3 E

TABLE X. (Continued.)

SG q Gq Irreps

187 e D3h Ē3 f D3h Ē3

187 c D3h Ē3 d D3h Ē3

187 a D3h Ē3 b D3h Ē3

189 a D3h Ē3 b D3h Ē3

194 c D3h Ē3 d D3h Ē3

212 a D3 Ē1 b D3 Ē1

212 a D3 E b D3 E
213 a D3 Ē1 b D3 Ē1

213 a D3 E b D3 E
214 a D3 Ē1 b D3 Ē1

214 a D3 E b D3 E
215 a Td F̄ b Td F̄
216 c Td F̄ d Td F̄
216 b Td F̄ d Td F̄
216 a Td F̄ d Td F̄
216 b Td F̄ c Td F̄
216 a Td F̄ c Td F̄
216 a Td F̄ b Td F̄
90 a D2 Ē b D2 Ē
117 c D2 Ē d D2 Ē
118 c D2 Ē d D2 Ē
162 c D3 Ē1 d D3 Ē1

162 c D3 E d D3 E
163 c D3 Ē1 d D3 Ē1

163 c D3 E d D3 E
177 c D3 Ē1 d D3 Ē1

177 c D3 E d D3 E
191 c D3h Ē3 d D3h Ē3

where Gq is isomorphic to T and Gq′ to D2 occurs, out of the
several other off-diagonal entries in Table IV.

VI. CONCLUSION

In this paper, we have enumerated the irrep-equivalent
EBRs with and without TR and SOC. We have described
how the pairs of irrep-equivalent EBRs can give rise to a
Berry obstructed atomic limit, which implies that there is a
required phase transition (gap closing) between two distinct
nontopological phases, which cannot be deduced from their
symmetry eigenvalues.

In addition, for two examples, in space groups F222 and
P112, without and with SOC, respectively, we have provided
topological invariants that distinguish the irrep-equivalent
bands. We expect that this result can be generalized to all
irrep-equivalent EBRs that are not homotopically equivalent.
This hypothesis is intuitive because if a pair of irrep-
equivalent EBRs are not homotopically equivalent, then there
is an obstruction to deforming them into each other; the ob-
struction itself would constitute a topological invariant.

However, the most straightforward route to prove this con-
jecture is to systematically study each pair of irrep-equivalent
EBRs and define an invariant to distinguish them, presumably
based on Wilson loops. This task is daunting both because
there are so many pairs (as we have enumerated in the tables
in Appendix B) and because there is not a recipe for finding
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TABLE XI. EBRs induced from an irrep of Gq that are irrep
equivalent to a sum of EBRs induced from irreps of other site-
symmetry groups Gqi . The first column lists the space group. The
second, third, and fourth columns indicate the Wyckoff position of
the site q, point group isomorphic to the site-symmetry group Gq,
and irrep ρ of Gq. The fifth column indicates the same quantities
for qi, grouped into triples for each i. The EBR induced from Gq

cannot be equivalent [in the sense of Eq. (12)] to the sum of other
EBRs, otherwise, it would constitute an exception [48,49], and thus
not itself be an EBR.

SG q Gq ρ Summed EBRs: (qi, Gqi , ρi )

64 e C2
1Ē (b,C2h,

1Ēu), (b,C2h,
2Ēg)

64 e C2
1Ē (b,C2h,

1Ēg), (b,C2h,
2Ēu)

64 e C2
1Ē (a,C2h,

1Ēu), (a,C2h,
2Ēg)

64 e C2
1Ē (a,C2h,

1Ēg), (a,C2h,
2Ēu)

64 e C2
2Ē (b,C2h,

1Ēu), (b,C2h,
2Ēg)

64 e C2
2Ē (b,C2h,

1Ēg), (b,C2h,
2Ēu)

64 e C2
2Ē (a,C2h,

1Ēu), (a,C2h,
2Ēg)

64 e C2
2Ē (a,C2h,

1Ēg), (a,C2h,
2Ēu)

103 c C2
1Ē (b,C4,

1Ē1), (b,C4,
1Ē2)

103 c C2
1Ē (b,C4,

1Ē1), (b,C4,
2Ē2)

103 c C2
1Ē (b,C4,

1Ē2), (b,C4,
2Ē1)

103 c C2
1Ē (b,C4,

2Ē1), (b,C4,
2Ē2)

103 c C2
1Ē (a,C4,

1Ē1), (a,C4,
1Ē2)

103 c C2
1Ē (a,C4,

1Ē1), (a,C4,
2Ē2)

103 c C2
1Ē (a,C4,

1Ē2), (a,C4,
2Ē1)

103 c C2
1Ē (a,C4,

2Ē1), (a,C4,
2Ē2)

103 c C2
2Ē (b,C4,

1Ē1), (b,C4,
1Ē2)

103 c C2
2Ē (b,C4,

1Ē1), (b,C4,
2Ē2)

103 c C2
2Ē (b,C4,

1Ē2), (b,C4,
2Ē1)

103 c C2
2Ē (b,C4,

2Ē1), (b,C4,
2Ē2)

103 c C2
2Ē (a,C4,

1Ē1), (a,C4,
1Ē2)

103 c C2
2Ē (a,C4,

1Ē1), (a,C4,
2Ē2)

103 c C2
2Ē (a,C4,

1Ē2), (a,C4,
2Ē1)

103 c C2
2Ē (a,C4,

2Ē1), (a,C4,
2Ē2)

108 b C2v Ē (a,C4,
1Ē1), (a,C4,

1Ē2)
108 b C2v Ē (a,C4,

1Ē1), (a,C4,
2Ē2)

108 b C2v Ē (a,C4,
1Ē2), (a,C4,

2Ē1)
108 b C2v Ē (a,C4,

2Ē1), (a,C4,
2Ē2)

116 i C2
1Ē (d, S4,

1Ē1), (d, S4,
1Ē2)

116 i C2
1Ē (d, S4,

2Ē1), (d, S4,
2Ē2)

116 i C2
1Ē (c, S4,

1Ē1), (c, S4,
1Ē2)

116 i C2
1Ē (c, S4,

2Ē1), (c, S4,
2Ē2)

116 i C2
2Ē (d, S4,

1Ē1), (d, S4,
1Ē2)

116 i C2
2Ē (d, S4,

2Ē1), (d, S4,
2Ē2)

116 i C2
2Ē (c, S4,

1Ē1), (c, S4,
1Ē2)

116 i C2
2Ē (c, S4,

2Ē1), (c, S4,
2Ē2)

142 e C2
1Ē (a, S4,

1Ē1), (a, S4,
1Ē2)

142 e C2
1Ē (a, S4,

2Ē1), (a, S4,
2Ē2)

142 e C2
2Ē (a, S4,

1Ē1), (a, S4,
1Ē2)

142 e C2
2Ē (a, S4,

2Ē1), (a, S4,
2Ē2)

184 c C2
1Ē (a,C6,

1Ē1), (a,C6,
1Ē2), (a,C6,

2Ē3)
184 c C2

1Ē (a,C6,
1Ē2), (a,C6,

2Ē1), (a,C6,
2Ē3)

184 c C2
1Ē (a,C6,

1Ē1), (a,C6,
1Ē2), (a,C6,

1Ē3)
184 c C2

1Ē (a,C6,
1Ē2), (a,C6,

1Ē3), (a,C6,
2Ē1)

184 c C2
1Ē (a,C6,

1Ē1), (a,C6,
2Ē2), (a,C6,

2Ē3)
184 c C2

1Ē (a,C6,
2Ē1), (a,C6,

2Ē2), (a,C6,
2Ē3)

184 c C2
1Ē (a,C6,

1Ē1), (a,C6,
1Ē3), (a,C6,

2Ē2)
184 c C2

1Ē (a,C6,
1Ē3), (a,C6,

2Ē1), (a,C6,
2Ē2)

184 c C2
2Ē (a,C6,

1Ē1), (a,C6,
1Ē2), (a,C6,

2Ē3)
184 c C2

2Ē (a,C6,
1Ē2), (a,C6,

2Ē1), (a,C6,
2Ē3)

TABLE XI. (Continued.)

SG q Gq ρ Summed EBRs: (qi, Gqi , ρi )

184 c C2
2Ē (a,C6,

1Ē1), (a,C6,
1Ē2), (a,C6,

1Ē3)
184 c C2

2Ē (a,C6,
1Ē2), (a,C6,

1Ē3), (a,C6,
2Ē1)

184 c C2
2Ē (a,C6,

1Ē1), (a,C6,
2Ē2), (a,C6,

2Ē3)
184 c C2

2Ē (a,C6,
2Ē1), (a,C6,

2Ē2), (a,C6,
2Ē3)

184 c C2
2Ē (a,C6,

1Ē1), (a,C6,
1Ē3), (a,C6,

2Ē2)
184 c C2

2Ē (a,C6,
1Ē3), (a,C6,

2Ē1), (a,C6,
2Ē2)

202 c T 1F̄ (b, Th,
1F̄g), (b, Th,

1F̄u)
202 c T 1F̄ (a, Th,

1F̄g), (a, Th,
1F̄u)

202 c T 2F̄ (b, Th,
2F̄g), (b, Th,

2F̄u)
202 c T 2F̄ (a, Th,

2F̄g), (a, Th,
2F̄u)

202 c T Ē (b, Th, Ēg), (b, Th, Ēu)
202 c T Ē (a, Th, Ēg), (a, Th, Ēu)
209 c T Ē (b, O, Ē1), (b, O, Ē2)
209 c T Ē (a, O, Ē1), (b, O, Ē2)
209 c T Ē (a, O, Ē2), (b, O, Ē1)
209 c T Ē (a, O, Ē1), (a, O, Ē2)
209 d D2 B1 (a, O, T1), (b, O, A2), (c, T, 2E )
209 d D2 B1 (a, O, T1), (b, O, A2), (c, T, 1E )
209 d D2 B1 (a, O, A2), (b, O, T1), (c, T, 2E )
209 d D2 B1 (a, O, A2), (b, O, T1), (c, T, 1E )
209 d D2 A1 (a, O, T2), (b, O, A1), (c, T, 2E )
209 d D2 A1 (a, O, T2), (b, O, A1), (c, T, 1E )
209 d D2 A1 (a, O, A1), (b, O, T2), (c, T, 2E )
209 d D2 A1 (a, O, A1), (b, O, T2), (c, T, 1E )
211 d D2 B2 (a, O, T2), (b, D4, A2)
211 d D2 B2 (a, O, T1), (b, D4, B2)
211 d D2 B3 (a, O, T2), (b, D4, A2)
211 d D2 B3 (a, O, T1), (b, D4, B2)
223 e D3

1Ē (a, Th,
1F̄g), (a, Th,

1F̄u)
223 e D3

1Ē (a, Th,
2F̄g), (a, Th,

2F̄u)
223 e D3

2Ē (a, Th,
1F̄g), (a, Th,

1F̄u)
223 e D3

2Ē (a, Th,
2F̄g), (a, Th,

2F̄u)
226 a O F̄ (b, Th,

1F̄g), (b, Th,
1F̄u)

226 a O F̄ (b, Th,
2F̄g), (b, Th,

2F̄u)

topological invariants. A first step could be to identify space
groups that share the same obstruction to deforming irrep-
equivalent EBRs into each other: for example, as we noted
at the end of Sec. IV, the invariant that we defined for P2 also
applies to Pm because these groups are isomorphic. It may
be that after identifying such isomorphic pairs, the number
of distinct cases to consider is greatly reduced. A second
step would be to identify for which groups the Wilson-loop
eigenvalues are quantized, in which case the irrep-equivalent
EBRs in that group might be distinguishable by a set of
quantized Wilson-loop eigenvalues, as we found for P2 in
Sec. IV. When the Wilson-loop eigenvalues are not quantized,
as we described for F222 in Sec. III, or when a combination
of quantized Wilson-loop eigenvalues does not distinguish
the irrep-equivalent EBRs, there is not a well-defined path to
finding a topological invariant.

Despite the use of topological invariants, the current paper
has been limited to atomic limit phases: each phase discussed
can be described by a Hamiltonian without any momentum
dependence. However, stable and fragile topological bands
can also be irrep equivalent, either to other topological bands
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TABLE XII. Time-reversal symmetric irrep-equivalent EBRs in-
duced from different irreps of the same site-symmetry group Gq of
the site q. The first column indicates the space group, the second
column indicates the Wyckoff position that contains q, the third
column indicates the point group isomorphic to Gq, and the fourth
column indicates the irreps. The EBRs indicated above the double
line are not “decomposable” in the sense of Ref. [48], that is, all
bands corresponding to the EBR will always be connected. The EBR
below the double line is decomposable.

SG q Gq Irreps

90 b D2 B2, B3

90 a D2 B2, B3

97 d D2 B2, B3

100 b C2v B1, B2

101 b C2v B1, B2

101 a C2v B1, B2

102 a C2v B1, B2

105 b C2v B1, B2

105 a C2v B1, B2

107 b C2v B1, B2

108 b C2v B1, B2

109 a C2v B1, B2

113 c C2v B1, B2

117 d D2 B2, B3

117 c D2 B2, B3

120 d D2 B2, B3

120 a D2 B2, B3

127 d D2h B2u, B3u

127 d D2h B2g, B3g

127 c D2h B2u, B3u

127 c D2h B2g, B3g

128 d D2 B2, B3

130 a D2 B2, B3

133 c D2 B2, B3

135 d D2 B2, B3

137 d C2v B1, B2

138 e C2v B1, B2

140 d D2h B2u, B3u

140 d D2h B2g, B3g

142 b D2 B2, B3

197 b D2 B1, B2

201 d D2 B1, B2

204 b D2h B1u, B2u

204 b D2h B1g, B2g

230 c D2 B2, B3

211 d D2 B2, B3

or to trivial bands. In future work we plan to extend the present
analysis to distinguish topological bands that are hidden from
symmetry labels, as predicted by the theory of topological
quantum chemistry [48].
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TABLE XIII. Time-reversal symmetric EBRs that are irrep
equivalent, but not equivalent in the sense of Eq. (12) (equivalent
pairs are listed in Table X), and induced from irreps of different
site-symmetry groups Gq and Gq′ , such that q and q′ are not part
of the same Wyckoff position. The first column indicates the space
group. The second, third, and fourth columns indicate the Wyckoff
position of the site q, point group isomorphic to the site-symmetry
group Gq, and irrep ρ of Gq. The fifth, sixth, and seventh columns
indicate the same quantities for q′. The EBRs indicated above the
double line are not “decomposable” in the sense of Ref. [48], that is,
all bands corresponding to the EBR will always be connected. The
EBRs below the double line are decomposable.

SG q Gq ρ q′ Gq′ ρ ′

3 c C2
1Ē 2Ē d C2

1Ē 2Ē
3 b C2

1Ē 2Ē d C2
1Ē 2Ē

3 a C2
1Ē 2Ē d C2

1Ē 2Ē
3 b C2

1Ē 2Ē c C2
1Ē 2Ē

3 a C2
1Ē 2Ē c C2

1Ē 2Ē
3 a C2

1Ē 2Ē b C2
1Ē 2Ē

5 a C2
1Ē 2Ē b C2

1Ē 2Ē
6 a Cs

1Ē 2Ē b Cs
1Ē 2Ē

13 e C2
1Ē 2Ē f C2

1Ē 2Ē
16 g D2 Ē h D2 Ē
16 f D2 Ē h D2 Ē
16 e D2 Ē h D2 Ē
16 d D2 Ē h D2 Ē
16 c D2 Ē h D2 Ē
16 b D2 Ē h D2 Ē
16 a D2 Ē h D2 Ē
16 f D2 Ē g D2 Ē
16 e D2 Ē g D2 Ē
16 d D2 Ē g D2 Ē
16 c D2 Ē g D2 Ē
16 b D2 Ē g D2 Ē
16 a D2 Ē g D2 Ē
16 e D2 Ē f D2 Ē
16 d D2 Ē f D2 Ē
16 c D2 Ē f D2 Ē
16 b D2 Ē f D2 Ē
16 a D2 Ē f D2 Ē
16 d D2 Ē e D2 Ē
16 c D2 Ē e D2 Ē
16 b D2 Ē e D2 Ē
16 a D2 Ē e D2 Ē
16 c D2 Ē d D2 Ē
16 b D2 Ē d D2 Ē
16 a D2 Ē d D2 Ē
16 b D2 Ē c D2 Ē
16 a D2 Ē c D2 Ē
16 a D2 Ē b D2 Ē
17 c C2

1Ē 2Ē d C2
1Ē 2Ē

17 b C2
1Ē 2Ē d C2

1Ē 2Ē
17 a C2

1Ē 2Ē d C2
1Ē 2Ē

17 b C2
1Ē 2Ē c C2

1Ē 2Ē
17 a C2

1Ē 2Ē c C2
1Ē 2Ē

17 a C2
1Ē 2Ē b C2

1Ē 2Ē
18 a C2

1Ē 2Ē b C2
1Ē 2Ē

20 a C2
1Ē 2Ē b C2

1Ē 2Ē
21 c D2 Ē d D2 Ē
21 b D2 Ē d D2 Ē
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TABLE XIII. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

21 a D2 Ē d D2 Ē
21 b D2 Ē c D2 Ē
21 a D2 Ē c D2 Ē
21 a D2 Ē b D2 Ē
22 c D2 B2 d D2 B2

22 c D2 B3 d D2 B3

22 c D2 B1 d D2 B1

22 c D2 A1 d D2 A1

22 a D2 B2 b D2 B2

22 a D2 B3 b D2 B3

22 a D2 B1 b D2 B1

22 a D2 A1 b D2 A1

22 c D2 Ē d D2 Ē
22 b D2 Ē d D2 Ē
22 a D2 Ē d D2 Ē
22 b D2 Ē c D2 Ē
22 a D2 Ē c D2 Ē
22 a D2 Ē b D2 Ē
23 c D2 Ē d D2 Ē
23 b D2 Ē d D2 Ē
23 a D2 Ē d D2 Ē
23 b D2 Ē c D2 Ē
23 a D2 Ē c D2 Ē
23 a D2 Ē b D2 Ē
24 b C2

1Ē 2Ē c C2
1Ē 2Ē

24 a C2
1Ē 2Ē c C2

1Ē 2Ē
24 a C2

1Ē 2Ē b C2
1Ē 2Ē

25 c C2v Ē d C2v Ē
25 b C2v Ē d C2v Ē
25 a C2v Ē d C2v Ē
25 b C2v Ē c C2v Ē
25 a C2v Ē c C2v Ē
25 a C2v Ē b C2v Ē
26 a Cs

1Ē 2Ē b Cs
1Ē 2Ē

27 c C2
1Ē 2Ē d C2

1Ē 2Ē
27 b C2

1Ē 2Ē d C2
1Ē 2Ē

27 a C2
1Ē 2Ē d C2

1Ē 2Ē
27 b C2

1Ē 2Ē c C2
1Ē 2Ē

27 a C2
1Ē 2Ē c C2

1Ē 2Ē
27 a C2

1Ē 2Ē b C2
1Ē 2Ē

28 b C2
1Ē 2Ē c Cs

1Ē 2Ē
28 a C2

1Ē 2Ē c Cs
1Ē 2Ē

28 a C2
1Ē 2Ē b C2

1Ē 2Ē
30 a C2

1Ē 2Ē b C2
1Ē 2Ē

32 a C2
1Ē 2Ē b C2

1Ē 2Ē
34 a C2

1Ē 2Ē b C2
1Ē 2Ē

35 a C2v Ē b C2v Ē
37 b C2

1Ē 2Ē c C2
1Ē 2Ē

37 a C2
1Ē 2Ē c C2

1Ē 2Ē
37 a C2

1Ē 2Ē b C2
1Ē 2Ē

38 a C2v Ē b C2v Ē
39 b C2

1Ē 2Ē c Cs
1Ē 2Ē

39 a C2
1Ē 2Ē c Cs

1Ē 2Ē
39 a C2

1Ē 2Ē b C2
1Ē 2Ē

40 a C2
1Ē 2Ē b Cs

1Ē 2Ē
44 a C2v Ē b C2v Ē
45 a C2

1Ē 2Ē b C2
1Ē 2Ē

46 a C2
1Ē 2Ē b Cs

1Ē 2Ē

TABLE XIII. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

48 c D2 Ē d D2 Ē
48 b D2 Ē d D2 Ē
48 a D2 Ē d D2 Ē
48 b D2 Ē c D2 Ē
48 a D2 Ē c D2 Ē
48 a D2 Ē b D2 Ē
49 g D2 Ē h D2 Ē
49 f D2 Ē h D2 Ē
49 e D2 Ē h D2 Ē
49 f D2 Ē g D2 Ē
49 e D2 Ē g D2 Ē
49 e D2 Ē f D2 Ē
50 c D2 Ē d D2 Ē
50 b D2 Ē d D2 Ē
50 a D2 Ē d D2 Ē
50 b D2 Ē c D2 Ē
50 a D2 Ē c D2 Ē
50 a D2 Ē b D2 Ē
51 e C2v Ē f C2v Ē
52 c C2

1Ē 2Ē d C2
1Ē 2Ē

54 d C2
1Ē 2Ē e C2

1Ē 2Ē
54 c C2

1Ē 2Ē e C2
1Ē 2Ē

54 c C2
1Ē 2Ē d C2

1Ē 2Ē
56 c C2

1Ē 2Ē d C2
1Ē 2Ē

57 c C2
1Ē 2Ē d Cs

1Ē 2Ē
59 a C2v Ē b C2v Ē
66 a D2 Ē b D2 Ē
67 b D2 Ē g C2v Ē
67 a D2 Ē g C2v Ē
67 a D2 Ē b D2 Ē
68 a D2 B2 b D2 B2

68 a D2 B3 b D2 B3

68 a D2 B1 b D2 B1

68 a D2 A1 b D2 A1

68 a D2 Ē b D2 Ē
70 a D2 B2 b D2 B2

70 a D2 B3 b D2 B3

70 a D2 B1 b D2 B1

70 a D2 A1 b D2 A1

70 a D2 Ē b D2 Ē
72 a D2 Ē b D2 Ē
73 d C2

1Ē 2Ē e C2
1Ē 2Ē

73 c C2
1Ē 2Ē e C2

1Ē 2Ē
73 c C2

1Ē 2Ē d C2
1Ē 2Ē

77 b C2
1Ē 2Ē c C2

1Ē 2Ē
77 a C2

1Ē 2Ē c C2
1Ē 2Ē

77 a C2
1Ē 2Ē b C2

1Ē 2Ē
89 c D4 Ē1 d D4 Ē1

89 c D4 Ē2 d D4 Ē2

89 a D4 Ē1 b D4 Ē1

89 a D4 Ē2 b D4 Ē2

89 c D4 E d D4 E
89 a D4 E b D4 E
90 a D2 B2 b D2 B2

90 a D2 B3 b D2 B2

90 a D2 B2 b D2 B3

90 a D2 B3 b D2 B3

90 a D2 Ē b D2 Ē
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TABLE XIII. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

91 b C2
1Ē 2Ē c C2

1Ē 2Ē
91 a C2

1Ē 2Ē c C2
1Ē 2Ē

91 a C2
1Ē 2Ē b C2

1Ē 2Ē
93 e D2 Ē f D2 Ē
93 d D2 Ē f D2 Ē
93 c D2 Ē f D2 Ē
93 b D2 Ē f D2 Ē
93 a D2 Ē f D2 Ē
93 d D2 Ē e D2 Ē
93 c D2 Ē e D2 Ē
93 b D2 Ē e D2 Ē
93 a D2 Ē e D2 Ē
93 c D2 Ē d D2 Ē
93 b D2 Ē d D2 Ē
93 a D2 Ē d D2 Ē
93 b D2 Ē c D2 Ē
93 a D2 Ē c D2 Ē
93 a D2 Ē b D2 Ē
94 a D2 B3 b D2 B2

94 a D2 B2 b D2 B3

94 a D2 B1 b D2 B1

94 a D2 A1 b D2 A1

94 a D2 Ē b D2 Ē
95 b C2

1Ē 2Ē c C2
1Ē 2Ē

95 a C2
1Ē 2Ē c C2

1Ē 2Ē
95 a C2

1Ē 2Ē b C2
1Ē 2Ē

97 a D4 E b D4 E
97 a D4 Ē1 b D4 Ē1

97 a D4 Ē2 b D4 Ē2

98 a D2 B2 b D2 B2

98 a D2 B3 b D2 B3

98 a D2 B1 b D2 B1

98 a D2 A1 b D2 A1

98 a D2 Ē b D2 Ē
101 a C2v Ē b C2v Ē
105 b C2v Ē c C2v Ē
105 a C2v Ē c C2v Ē
105 a C2v Ē b C2v Ē
106 a C2

1Ē 2Ē b C2
1Ē 2Ē

112 a D2 Ē c D2 Ē
112 c D2 Ē d D2 Ē
112 b D2 Ē c D2 Ē
112 a D2 Ē d D2 Ē
112 a D2 Ē b D2 Ē
112 b D2 Ē d D2 Ē
116 a D2 Ē b D2 Ē
117 c D2 B2 d D2 B2

117 c D2 B3 d D2 B2

117 c D2 B2 d D2 B3

117 c D2 B3 d D2 B3

117 c D2 Ē d D2 Ē
118 c D2 B3 d D2 B2

118 c D2 B2 d D2 B3

118 c D2 B1 d D2 B1

118 c D2 A1 d D2 A1

118 c D2 Ē d D2 Ē
120 a D2 Ē d D2 Ē
125 a D4 Ē1 b D4 Ē1

TABLE XIII. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

125 a D4 Ē2 b D4 Ē2

125 a D4 E b D4 E
126 a D4 Ē1 b D4 Ē1

126 a D4 Ē2 b D4 Ē2

126 a D4 E b D4 E
133 b D2 Ē c D2 Ē
133 a D2 Ē b D2 Ē
133 a D2 Ē c D2 Ē
138 a D2 Ē e C2v Ē
149 e D3 Ē1 f D3 Ē1

149 e D3 E f D3 E
149 c D3 Ē1 d D3 Ē1

149 c D3 E d D3 E
149 a D3 Ē1 b D3 Ē1

149 a D3 E b D3 E
149 e D3

1Ē 2Ē f D3
1Ē 2Ē

149 c D3
1Ē 2Ē d D3

1Ē 2Ē
149 a D3

1Ē 2Ē b D3
1Ē 2Ē

150 a D3 Ē1 b D3 Ē1

150 a D3 E b D3 E
150 a D3

1Ē 2Ē b D3
1Ē 2Ē

151 a C2
1Ē 2Ē b C2

1Ē 2Ē
152 a C2

1Ē 2Ē b C2
1Ē 2Ē

153 a C2
1Ē 2Ē b C2

1Ē 2Ē
154 a C2

1Ē 2Ē b C2
1Ē 2Ē

155 a D3 Ē1 b D3 Ē1

155 a D3 E b D3 E
155 a D3

1Ē 2Ē b D3
1Ē 2Ē

163 c D3 A2 d D3 A2

163 c D3 A1 d D3 A1

163 c D3 Ē1 d D3 Ē1

163 c D3 E d D3 E
163 c D3

1Ē 2Ē d D3
1Ē 2Ē

171 a C2
1Ē 2Ē b C2

1Ē 2Ē
172 a C2

1Ē 2Ē b C2
1Ē 2Ē

174 e C3h
1Ē1

2Ē1 f C3h
1Ē1

2Ē1

174 c C3h
1Ē1

2Ē1 d C3h
1Ē1

2Ē1

174 a C3h
1Ē1

2Ē1 b C3h
1Ē1

2Ē1

176 c C3h
1Ē1

2Ē1 d C3h
1Ē1

2Ē1

177 a D6 Ē1 b D6 Ē1

177 a D6 Ē2 b D6 Ē2

177 a D6 Ē3 b D6 Ē3

177 a D6 E1 b D6 E1

177 a D6 E2 b D6 E2

178 a C2
1Ē 2Ē b C2

1Ē 2Ē
179 a C2

1Ē 2Ē b C2
1Ē 2Ē

180 c D2 Ē d D2 Ē
180 b D2 Ē d D2 Ē
180 a D2 Ē d D2 Ē
180 b D2 Ē c D2 Ē
180 a D2 Ē c D2 Ē
180 a D2 Ē b D2 Ē
181 c D2 Ē d D2 Ē
181 b D2 Ē d D2 Ē
181 a D2 Ē d D2 Ē
181 b D2 Ē c D2 Ē
181 a D2 Ē c D2 Ē
181 a D2 Ē b D2 Ē
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TABLE XIII. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

182 c D3 A2 d D3 A2

182 c D3 A1 d D3 A1

182 a D3 Ē1 b D3 Ē1

182 a D3 E b D3 E
182 c D3 Ē1 d D3 Ē1

182 c D3 E d D3 E
182 c D3

1Ē 2Ē d D3
1Ē 2Ē

182 a D3
1Ē 2Ē b D3

1Ē 2Ē
187 e D3h Ē3 f D3h Ē3

187 c D3h Ē3 d D3h Ē3

187 a D3h Ē3 b D3h Ē3

188 e D3
1Ē 2Ē f C3h

1Ē1
2Ē1

188 c D3
1Ē 2Ē d C3h

1Ē1
2Ē1

188 a D3
1Ē 2Ē b C3h

1Ē1
2Ē1

189 a D3h Ē3 b D3h Ē3

190 c C3h
1Ē1

2Ē1 d C3h
1Ē1

2Ē1

190 a D3
1Ē 2Ē b C3h

1Ē1
2Ē1

194 c D3h Ē3 d D3h Ē3

195 a T Ē b T Ē
195 a T 1F̄ 2F̄ b T 1F̄ 2F̄
196 c T A d T A
196 a T A b T A
196 c T Ē d T Ē
196 b T Ē d T Ē
196 a T Ē d T Ē
196 b T Ē c T Ē
196 a T Ē c T Ē
196 a T Ē b T Ē
196 c T T d T T
196 a T T b T T
196 c T 1E 2E d T 1E 2E
196 a T 1E 2E b T 1E 2E
196 c T 1F̄ 2F̄ d T 1F̄ 2F̄
196 b T 1F̄ 2F̄ d T 1F̄ 2F̄
196 a T 1F̄ 2F̄ d T 1F̄ 2F̄
196 b T 1F̄ 2F̄ c T 1F̄ 2F̄
196 a T 1F̄ 2F̄ c T 1F̄ 2F̄
196 a T 1F̄ 2F̄ b T 1F̄ 2F̄
197 a T T b D2 B2

197 a T T b D2 B1

201 a T T d D2 B2

201 a T T d D2 B1

203 a T A b T A
203 a T Ē b T Ē
203 a T T b T T
203 a T 1E 2E b T 1E 2E
207 a O F̄ b O F̄
209 a O Ē2 b O Ē2

209 a O Ē1 b O Ē1

209 a O E b O E
209 a O F̄ b O F̄
210 a T A b T A
210 c D3 A2 d D3 A2

210 c D3 A1 d D3 A1

210 a T Ē b T Ē
210 a T T b T T
212 a D3 A2 b D3 A2

212 a D3 A1 b D3 A1

TABLE XIII. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

212 a D3 Ē1 b D3 Ē1

212 a D3 E b D3 E
212 a D3

1Ē 2Ē b D3
1Ē 2Ē

213 a D3 A2 b D3 A2

213 a D3 A1 b D3 A1

213 a D3 Ē1 b D3 Ē1

213 a D3 E b D3 E
213 a D3

1Ē 2Ē b D3
1Ē 2Ē

214 c D2 B2 d D2 B2

214 c D2 B3 d D2 B3

214 c D2 B1 d D2 B1

214 c D2 A1 d D2 A1

214 a D3 Ē1 b D3 Ē1

214 a D3 E b D3 E
215 a Td F̄ b Td F̄
216 c Td E d Td E
216 a Td E b Td E
216 c Td F̄ d Td F̄
216 b Td F̄ d Td F̄
216 a Td F̄ d Td F̄
216 b Td F̄ c Td F̄
216 a Td F̄ c Td F̄
216 a Td F̄ b Td F̄
219 a T Ē b T Ē
219 a T 1F̄ 2F̄ b T 1F̄ 2F̄
227 a Td E b Td E
89 e D2 Ē f D2 Ē
97 c D2 Ē d D2 Ē
111 e D2 Ē f D2 Ē
134 c D2 Ē d D2 Ē
162 c D3 Ē1 d D3 Ē1

162 c D3 E d D3 E
162 c D3

1Ē 2Ē d D3
1Ē 2Ē

175 c C3h
1Ē1

2Ē1 d C3h
1Ē1

2Ē1

177 c D3 Ē1 d D3 Ē1

177 c D3 E d D3 E
177 c D3

1Ē 2Ē d D3
1Ē 2Ē

177 f D2 Ē g D2 Ē
189 c C3h

1Ē1
2Ē1 d C3h

1Ē1
2Ē1

191 c D3h Ē3 d D3h Ē3

192 c D3
1Ē 2Ē d C3h

1Ē1
2Ē1

193 c C3h
1Ē1

2Ē1 d D3
1Ē 2Ē

195 c D2 Ē d D2 Ē
203 a T 1F̄ 2F̄ b T 1F̄ 2F̄
208 b D3

1Ē 2Ē c D3
1Ē 2Ē

208 a T 1F̄ 2F̄ c D3
1Ē 2Ē

208 a T 1F̄ 2F̄ b D3
1Ē 2Ē

208 b D3 Ē1 c D3 Ē1

208 b D3 E c D3 E
208 e D2 Ē f D2 Ē
208 d D2 Ē f D2 Ē
208 d D2 Ē e D2 Ē
210 a T 1E 2E b T 1E 2E
210 c D3

1Ē 2Ē d D3
1Ē 2Ē

210 b T 1F̄ 2F̄ d D3
1Ē 2Ē

210 a T 1F̄ 2F̄ d D3
1Ē 2Ē

210 b T 1F̄ 2F̄ c D3
1Ē 2Ē

210 a T 1F̄ 2F̄ c D3
1Ē 2Ē
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TABLE XIII. (Continued.)

SG q Gq ρ q′ Gq′ ρ ′

210 a T 1F̄ 2F̄ b T 1F̄ 2F̄
210 c D3 E d D3 E
210 c D3 Ē1 d D3 Ē1

214 a D3
1Ē 2Ē b D3

1Ē 2Ē
214 c D2 Ē d D2 Ē
227 a Td F̄ b Td F̄
228 a T 1F̄ 2F̄ b D3

1Ē 2Ē
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APPENDIX A: EQUIVALENCE OF BAND
REPRESENTATIONS

Recall from Eq. (12) that two band representations are
equivalent iff there exists a unitary matrix-valued function
S(k, τ, g) that interpolates between them as τ varies from 0
to 1, such that S(k, τ, g) is smooth in k, continuous in τ , and
for all g ∈ G, τ ∈ [0, 1], S(k, τ, g) is a band representation.
We will prove that if two band representations S(k, 0, g) and
S(k, 1, g) are equivalent, then there exists a unitary matrix
U (k), which satisfies

S(k, 0, g) = U †(gk)S(k, 1, g)U (k) (A1)

and which has the periodicity of the BZ, i.e., U (k + K) =
U (k) for any reciprocal lattice vector K. U must be Brillouin-
zone periodic so that it does not change the boundary
conditions of the Hilbert space on which the band represen-
tation acts.

We now derive a construction for U in the Hilbert space
defined by the set of Wannier functions on which the band
representation acts. (In Appendix C, we present an alternative
derivation.) In real space, we define the localized Wannier
functions Wiα (r − t, τ ), where i indexes a basis vector for the
irrep of the site-symmetry group from which the band repre-
sentation is induced, α indexes a site in the Wyckoff position,
t is a lattice vector, and τ is the parameter that appears in the
family of band representations S(k, τ, g). The induced band
representation acts on the Fourier-transformed functions

aiα (k, r, τ ) =
∑

t

eik·tWiα (r − t, τ ) (A2)

[cf. Eq. (4) of Ref. [49]]. Because the Hilbert space is fixed
as τ varies, the basis of Wannier functions on which the band
representation acts evolves according to a unitary transforma-

tion Uiα, jβ (t, τ ), defined by

Wiα (r − t, τ ) =
∑
jβ,t′

Uiα, jβ (t − t′, τ )Wjβ (r − t′, 0). (A3)

It follows that

aiα (k, r, τ ) =
∑

jβ

Uiα, jβ (k, τ )a jβ (k, r, 0), (A4)

where, suppressing the indices iα, jβ,

U (k, τ ) ≡
∑

t

eik·tU (t, τ ). (A5)

By its definition in Eq. (A5), U (k) has the periodicity of the
BZ. Further, since the Fourier-transformed Wannier functions
transform according to U , the band representation transforms
according to Eq. (A1). Thus, the matrix U (k, τ = 1) is exactly
the matrix U (k) that appears in Eq. (A1), which completes the
proof.

APPENDIX B: TABLES OF IRREP-EQUIVALENT EBRS

We present tables of all irrep-equivalent EBRs, with and
without time-reversal symmetry. The results are derived from
(and can be checked via) the BANDREP [48,50,52] application
on the BCS.

We first consider EBRs without enforcing time-reversal
symmetry. In Table VIII, we indicate irrep-equivalent EBRs
induced from two distinct irreps of the same site-symmetry
group, Gq. In Table IX, we indicate irrep-equivalent EBRs
induced from irreps of different site-symmetry groups Gq, Gq′

of the sites q and q′, respectively, such that q and q′ are
not part of the same Wyckoff position; excluded from this
list are EBRs that are homotopically equivalent, in the sense
of Eq. (12). The homotopically equivalent EBRs, which are
necessarily also irrep equivalent, are listed in Table X. In
Table XI, we list the EBRs which are irrep equivalent to a
sum of two EBRs.

We then move to the time-reversal symmetric EBRs and
compute the analogous tables. In Table XII, we indicate time-
reversal symmetric irrep-equivalent EBRs induced from two
distinct irreps of the same site-symmetry group Gq. In Ta-
ble XIII, we indicate time-reversal symmetric irrep-equivalent
EBRs induced from irreps of different site-symmetry groups
Gq, Gq′ of the sites q and q′, respectively, such that q and q′
are not part of the same Wyckoff position; again, we exclude
the homotopically equivalent EBRs from Table IX and list
them separately in Table XIV. In Table XV, we list the time-
reversal symmetric EBRs which are irrep equivalent to a sum
of two EBRs.

APPENDIX C: PROOF OF THEOREM 1:
IRREP EQUIVALENCE IS THE SAME

AS UNITARY EQUIVALENCE

Here we prove that two band representations are irrep
equivalent if and only if they are related by a unitary trans-
formation, thus proving Theorem 1. However, it is important
to emphasize, the main point of this paper, that unitary equiv-
alence is not the same as homotopic equivalence! In other
words, given two irrep-equivalent EBRs, there is a unitary
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TABLE XIV. Time-reversal symmetric EBRs that are equivalent
in the sense of Eq. (12). The first column indicates the space group.
The second, third, and fourth columns indicate the Wyckoff position
of the site q, point group isomorphic to the site-symmetry group Gq,
and irrep ρ of Gq. The fifth, sixth, and seventh columns indicate the
same quantities for q′. None of the pairs of equivalent EBRs in this
table are decomposable in the sense of Ref. [48], that is, all bands
corresponding to the EBR will always be connected.

SG q Gq ρ q′ Gq′ ρ ′

81 c S4
1E 2E d S4

1E 2E
81 a S4

1E 2E b S4
1E 2E

82 c S4
1E 2E d S4

1E 2E
82 a S4

1E 2E b S4
1E 2E

85 a S4
1E 2E b S4

1E 2E
86 a S4

1E 2E b S4
1E 2E

88 a S4
1E 2E b S4

1E 2E
111 b D2d E d D2d E
111 a D2d E c D2d E
113 a S4

1E 2E b S4
1E 2E

114 a S4
1E 2E b S4

1E 2E
115 a D2d E d D2d E
115 b D2d E c D2d E
117 a S4

1E 2E b S4
1E 2E

118 a S4
1E 2E b S4

1E 2E
119 c D2d E d D2d E
119 a D2d E b D2d E
121 a D2d E b D2d E
122 a S4

1E 2E b S4
1E 2E

125 c D2d E d D2d E
129 a D2d E b D2d E
134 a D2d E b D2d E
137 a D2d E b D2d E
141 a D2d E b D2d E
220 a S4

1E 2E b S4
1E 2E

transformation that acts on the entire representation (all k
points), but the unitary need not be Brillouin-zone periodic
nor smooth in k. (Recall from Appendix A that homotopic
equivalence requires the existence of a smooth BZ-periodic
unitary matrix.)

Following the discussion in Sec. V, we will replace the
infinite space groups with their finite Born–von Karman coun-
terparts, although we omit the subscript N to avoid clutter.

Let ρ be an nq-dimensional representation of the site-
symmetry group Gq, where q is a Wyckoff position of
multiplicity n. As shown in Eq. (6) and discussed in the
surrounding text, the matrix form of a band representation
consists of (nnq) × (nnq) blocks, where each block is labeled
by a pair (k′, k); k′ is a row index and k is a column index.
Each symmetry operation h = {R|v} ∈ G maps k �→ k′ = Rk.
For each set of columns corresponding to k, there is exactly
one nonzero block, which we denote ρk

G(h). Define χk
G(h) =

Trρk
G(h).

Recall from Eq. (8) that Gk denotes the little group of
k, which is the set of all space-group elements that leave
k invariant. If h ∈ Gk, then h leaves k unchanged and the
nonzero block corresponds to k = Rk = k′. The collection of

blocks ρk=Rk
G (h), for all h ∈ Gk, gives a representation of Gk.

We define irrep equivalence by the following:
Definition 1. Two band representations ρG and ρ ′

G of a
space group G are irrep equivalent if for each k and each
h ∈ Gk, χk

G(h) = (χ ′)k
G(h).

We define the character of the band representation (as op-
posed to the character at a particular k) by summing over the
diagonal elements at all k. This is why it is important to utilize
the finite Born–von Karman groups defined in Sec. V A: the
character of an infinite-dimensional representation is ill de-
fined because the sum over diagonal elements may diverge.
(In particular, the trace of the identity element will always
diverge.) In a finite space group, the character of a band
representation can be defined by

χG(h) ≡ TrρG(h) =
∑

k|h∈Gk

χk
G(h), (C1)

where the second equality follows because the trace is a sum
over diagonal elements, which are only nonzero when Rk =
k, i.e., h ∈ Gk.

We now present an example to show how Eq. (C1) works.
Let G be the space group generated by inversion and transla-
tions. Consider a finite space group where, for some even N ,
the translations tN

1,2,3, are identified with the identity element,
so that k1,2,3 is a multiple of 2π

N , for a total of N3 points in
the first BZ. Let ρG be a band representation induced from
a one-dimensional irrep of one of the maximal Wyckoff po-
sitions of G. Now, let h = {E |0} in Eq. (C1): since {E |0} is
in the little group of all k, χG(h) = ∑

k χk
G(h) = N3 since

χk
G(h) = 1. This sum would diverge in the full space group

where N → ∞. Thus, the finite group is necessary so that the
characters χG(h) are well defined for all choices of h. As a
second example, let h be the inversion-symmetry operation
in Eq. (C1). Since inversion is only in the little group of k
when k1,2,3 ∈ {0, π} (the time-reversal-invariant momenta, or
TRIM, points), χG(h) = ∑

k∈TRIM χk
G(h), where the sum on

the RHS is finite for any choice of N , but only contains all
TRIM points when N is even. This second example shows
that, as noted in Sec. V A, it is necessary to choose N such
that the high-symmetry points of the infinite space group and
those of the finite group are identical: if N was odd, then the
only TRIM point would be (0,0,0) and the character of χG(h)
would be incomplete.

We are now ready to prove that two band representations
are irrep equivalent by Definition 1 if and only if they are
related by a unitary transformation. In the “only if” direction,
if two band representations ρG, ρ ′

G with characters χG, χ ′
G are

irrep equivalent, then, by Definition 1, χk
G(h) = (χ ′)k

G(h) for
each k and h ∈ Gk. From Eq. (C1), it follows that χG(h) =
χ ′

G(h), for all h. Consequently, ρG and ρ ′
G are related by a uni-

tary transformation (using the fact that two finite-dimensional
representations with the same characters are related by a uni-
tary transformation) [97].

In the other direction, consider two band representations
ρ

(1)
G and ρ

(2)
G that are related by a unitary transformation U .

U must be block diagonal in k because different k specify
different irreps that transform differently under translation,
i.e., they acquire a different phase e−ik·t. Since U is block
diagonal in k, the blocks ρ

(1),k
G (h) and ρ

(2),k
G (h) are related
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TABLE XV. Time-reversal symmetric EBRs induced from an irrep of Gq that are irrep equivalent to a sum of EBRs induced from irreps of
other site-symmetry groups Gqi . The first column lists the space group. The second, third, and fourth columns indicate the Wyckoff position
of the site q, point group isomorphic to the site-symmetry group Gq, and irrep ρ of Gq. The fifth column indicates the same quantities for qi,
grouped into triples for each i. The EBR induced from Gq cannot be equivalent [in the sense of Eq. (12)] to the sum of other EBRs, otherwise
it would constitute an exception [48,49], and thus not itself be an EBR.

SG q Gq ρ Summed EBRs: (qi, Gqi , ρi )

21 k C2
1Ē 2Ē (d, D2, Ē ), (d, D2, Ē )

21 k C2
1Ē 2Ē (c, D2, Ē ), (d, D2, Ē )

21 k C2
1Ē 2Ē (b, D2, Ē ), (d, D2, Ē )

21 k C2
1Ē 2Ē (a, D2, Ē ), (d, D2, Ē )

21 k C2
1Ē 2Ē (c, D2, Ē ), (c, D2, Ē )

21 k C2
1Ē 2Ē (b, D2, Ē ), (c, D2, Ē )

21 k C2
1Ē 2Ē (a, D2, Ē ), (c, D2, Ē )

21 k C2
1Ē 2Ē (b, D2, Ē ), (b, D2, Ē )

21 k C2
1Ē 2Ē (a, D2, Ē ), (b, D2, Ē )

21 k C2
1Ē 2Ē (a, D2, Ē ), (a, D2, Ē )

35 c C2
1Ē 2Ē (b,C2v, Ē ), (b,C2v, Ē )

35 c C2
1Ē 2Ē (a,C2v, Ē ), (b,C2v, Ē )

35 c C2
1Ē 2Ē (a,C2v, Ē ), (a,C2v, Ē )

42 b C2
1Ē 2Ē (a,C2v, Ē ), (a,C2v, Ē )

53 g C2
1Ē 2Ē (d,C2h,

1Ēg
2Ēg), (d,C2h,

1Ēu
2Ēu)

53 g C2
1Ē 2Ē (c,C2h,

1Ēg
2Ēg), (c,C2h,

1Ēu
2Ēu)

53 g C2
1Ē 2Ē (b,C2h,

1Ēg
2Ēg), (b,C2h,

1Ēu
2Ēu)

53 g C2
1Ē 2Ē (a,C2h,

1Ēg
2Ēg), (a,C2h,

1Ēu
2Ēu)

64 e C2
1Ē 2Ē (b,C2h,

1Ēg
2Ēg), (b,C2h,

1Ēu
2Ēu)

64 e C2
1Ē 2Ē (a,C2h,

1Ēg
2Ēg), (a,C2h,

1Ēu
2Ēu)

68 h C2
1Ē 2Ē (b, D2, Ē ), (b, D2, Ē )

68 h C2
1Ē 2Ē (a, D2, Ē ), (b, D2, Ē )

68 h C2
1Ē 2Ē (a, D2, Ē ), (a, D2, Ē )

69 f D2 Ē (b, D2h, Ēg), (b, D2h, Ēu)
69 f D2 Ē (a, D2h, Ēg), (a, D2h, Ēu)
75 c C2

1Ē 2Ē (b,C4,
1Ē1

2Ē1), (b,C4,
1Ē2

2Ē2)
75 c C2

1Ē 2Ē (a,C4,
1Ē1

2Ē1), (a,C4,
1Ē2

2Ē2)
79 b C2

1Ē 2Ē (a,C4,
1Ē1

2Ē1), (a,C4,
1Ē2

2Ē2)
81 g C2

1Ē 2Ē (d, S4,
1Ē1

2Ē1), (d, S4,
1Ē2

2Ē2)
81 g C2

1Ē 2Ē (c, S4,
1Ē1

2Ē1), (c, S4,
1Ē2

2Ē2)
81 g C2

1Ē 2Ē (b, S4,
1Ē1

2Ē1), (b, S4,
1Ē2

2Ē2)
81 g C2

1Ē 2Ē (a, S4,
1Ē1

2Ē1), (a, S4,
1Ē2

2Ē2)
86 e C2

1Ē 2Ē (b, S4,
1Ē1

2Ē1), (b, S4,
1Ē2

2Ē2)
86 e C2

1Ē 2Ē (a, S4,
1Ē1

2Ē1), (a, S4,
1Ē2

2Ē2)
89 f D2 Ē (d, D4, Ē1), (d, D4, Ē2)
89 f D2 Ē (c, D4, Ē2), (d, D4, Ē1)
89 f D2 Ē (c, D4, Ē1), (d, D4, Ē2)
89 f D2 Ē (c, D4, Ē1), (c, D4, Ē2)
89 f D2 Ē (b, D4, Ē1), (b, D4, Ē2)
89 f D2 Ē (a, D4, Ē2), (b, D4, Ē1)
89 f D2 Ē (a, D4, Ē1), (b, D4, Ē2)
89 f D2 Ē (a, D4, Ē1), (a, D4, Ē2)
89 e D2 Ē (d, D4, Ē1), (d, D4, Ē2)
89 e D2 Ē (c, D4, Ē2), (d, D4, Ē1)
89 e D2 Ē (c, D4, Ē1), (d, D4, Ē2)
89 e D2 Ē (c, D4, Ē1), (c, D4, Ē2)
89 e D2 Ē (b, D4, Ē1), (b, D4, Ē2)
89 e D2 Ē (a, D4, Ē2), (b, D4, Ē1)
89 e D2 Ē (a, D4, Ē1), (b, D4, Ē2)
89 e D2 Ē (a, D4, Ē1), (a, D4, Ē2)
94 d C2

1Ē 2Ē (b, D2, Ē ), (b, D2, Ē )
94 d C2

1Ē 2Ē (a, D2, Ē ), (b, D2, Ē )
94 d C2

1Ē 2Ē (a, D2, Ē ), (a, D2, Ē )
97 c D2 Ē (a, D4, Ē1), (a, D4, Ē2)
97 c D2 Ē (a, D4, Ē1), (b, D4, Ē2)
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97 c D2 Ē (a, D4, Ē2), (b, D4, Ē1)
97 c D2 Ē (b, D4, Ē1), (b, D4, Ē2)
97 d D2 Ē (a, D4, Ē1), (a, D4, Ē2)
97 d D2 Ē (a, D4, Ē1), (b, D4, Ē2)
97 d D2 Ē (a, D4, Ē2), (b, D4, Ē1)
97 d D2 Ē (b, D4, Ē1), (b, D4, Ē2)
98 f C2

1Ē 2Ē (b, D2, Ē ), (b, D2, Ē )
98 f C2

1Ē 2Ē (a, D2, Ē ), (b, D2, Ē )
98 f C2

1Ē 2Ē (a, D2, Ē ), (a, D2, Ē )
99 c C2v Ē (b,C4v, Ē1), (b,C4v, Ē2)
99 c C2v Ē (a,C4v, Ē1), (a,C4v, Ē2)
101 c C2

1Ē 2Ē (b,C2v, Ē ), (b,C2v, Ē )
101 c C2

1Ē 2Ē (a,C2v, Ē ), (b,C2v, Ē )
101 c C2

1Ē 2Ē (a,C2v, Ē ), (a,C2v, Ē )
102 b C2

1Ē 2Ē (a,C2v, Ē ), (a,C2v, Ē )
103 c C2

1Ē 2Ē (b,C4,
1Ē1

2Ē1), (b,C4,
1Ē2

2Ē2)
103 c C2

1Ē 2Ē (a,C4,
1Ē1

2Ē1), (a,C4,
1Ē2

2Ē2)
104 b C2

1Ē 2Ē (a,C4,
1Ē1

2Ē1), (a,C4,
1Ē2

2Ē2)
107 b C2v Ē (a,C4v, Ē1), (a,C4v, Ē2)
111 f D2 Ē (d, D2d , Ē1), (d, D2d , Ē2)
111 f D2 Ē (c, D2d , Ē1), (c, D2d , Ē2)
111 f D2 Ē (b, D2d , Ē1), (b, D2d , Ē2)
111 f D2 Ē (a, D2d , Ē1), (a, D2d , Ē2)
111 e D2 Ē (d, D2d , Ē1), (d, D2d , Ē2)
111 e D2 Ē (c, D2d , Ē1), (c, D2d , Ē2)
111 e D2 Ē (b, D2d , Ē1), (b, D2d , Ē2)
111 e D2 Ē (a, D2d , Ē1), (a, D2d , Ē2)
114 d C2

1Ē 2Ē (b, S4,
1Ē1

2Ē1), (b, S4,
1Ē2

2Ē2)
114 d C2

1Ē 2Ē (a, S4,
1Ē1

2Ē1), (a, S4,
1Ē2

2Ē2)
115 g C2v Ē (d, D2d , Ē1), (d, D2d , Ē2)
115 g C2v Ē (c, D2d , Ē1), (c, D2d , Ē2)
115 g C2v Ē (b, D2d , Ē1), (b, D2d , Ē2)
115 g C2v Ē (a, D2d , Ē1), (a, D2d , Ē2)
116 i C2

1Ē 2Ē (d, S4,
1Ē1

2Ē1), (d, S4,
1Ē2

2Ē2)
116 i C2

1Ē 2Ē (c, S4,
1Ē1

2Ē1), (c, S4,
1Ē2

2Ē2)
116 i C2

1Ē 2Ē (b, D2, Ē ), (b, D2, Ē )
116 i C2

1Ē 2Ē (a, D2, Ē ), (b, D2, Ē )
116 i C2

1Ē 2Ē (a, D2, Ē ), (a, D2, Ē )
121 c D2 Ē (b, D2d , Ē1), (b, D2d , Ē2)
121 c D2 Ē (a, D2d , Ē1), (a, D2d , Ē2)
122 d C2

1Ē 2Ē (b, S4,
1Ē1

2Ē1), (b, S4,
1Ē2

2Ē2)
122 d C2

1Ē 2Ē (a, S4,
1Ē1

2Ē1), (a, S4,
1Ē2

2Ē2)
124 f D2 Ē (c, D4, Ē1), (c, D4, Ē2)
124 f D2 Ē (a, D4, Ē1), (a, D4, Ē2)
126 c D2 Ē (b, D4, Ē1), (b, D4, Ē2)
126 c D2 Ē (a, D4, Ē2), (b, D4, Ē1)
126 c D2 Ē (a, D4, Ē1), (b, D4, Ē2)
126 c D2 Ē (a, D4, Ē1), (a, D4, Ē2)
132 e D2 Ē (d, D2d , Ē1), (d, D2d , Ē2)
132 e D2 Ē (c, D2h, Ēg), (c, D2h, Ēu)
132 e D2 Ē (b, D2d , Ē1), (b, D2d , Ē2)
132 e D2 Ē (a, D2h, Ēg), (a, D2h, Ēu)
134 d D2 Ē (b, D2d , Ē1), (b, D2d , Ē2)
134 d D2 Ē (a, D2d , Ē1), (a, D2d , Ē2)
134 c D2 Ē (b, D2d , Ē1), (b, D2d , Ē2)
134 c D2 Ē (a, D2d , Ē1), (a, D2d , Ē2)
137 d C2v Ē (b, D2d , Ē1), (b, D2d , Ē2)
137 d C2v Ē (a, D2d , Ē1), (a, D2d , Ē2)
142 e C2

1Ē 2Ē (a, S4,
1Ē1

2Ē1), (a, S4,
1Ē2

2Ē2)
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142 e C2
1Ē 2Ē (b, D2, Ē ), (b, D2, Ē )

168 c C2
1Ē 2Ē (a,C6,

1Ē1
2Ē1), (a,C6,

1Ē2
2Ē2), (a,C6,

1Ē3
2Ē3)

177 g D2 Ē (b, D6, Ē1), (b, D6, Ē2), (b, D6, Ē3)
177 g D2 Ē (a, D6, Ē3), (b, D6, Ē1), (b, D6, Ē2)
177 g D2 Ē (a, D6, Ē2), (b, D6, Ē1), (b, D6, Ē3)
177 g D2 Ē (a, D6, Ē2), (a, D6, Ē3), (b, D6, Ē1)
177 g D2 Ē (a, D6, Ē1), (b, D6, Ē2), (b, D6, Ē3)
177 g D2 Ē (a, D6, Ē1), (a, D6, Ē3), (b, D6, Ē2)
177 g D2 Ē (a, D6, Ē1), (a, D6, Ē2), (b, D6, Ē3)
177 g D2 Ē (a, D6, Ē1), (a, D6, Ē2), (a, D6, Ē3)
177 f D2 Ē (b, D6, Ē1), (b, D6, Ē2), (b, D6, Ē3)
177 f D2 Ē (a, D6, Ē3), (b, D6, Ē1), (b, D6, Ē2)
177 f D2 Ē (a, D6, Ē2), (b, D6, Ē1), (b, D6, Ē3)
177 f D2 Ē (a, D6, Ē2), (a, D6, Ē3), (b, D6, Ē1)
177 f D2 Ē (a, D6, Ē1), (b, D6, Ē2), (b, D6, Ē3)
177 f D2 Ē (a, D6, Ē1), (a, D6, Ē3), (b, D6, Ē2)
177 f D2 Ē (a, D6, Ē1), (a, D6, Ē2), (b, D6, Ē3)
177 f D2 Ē (a, D6, Ē1), (a, D6, Ē2), (a, D6, Ē3)
183 c C2v Ē (a,C6v, Ē1), (a,C6v, Ē2), (a,C6v, Ē3)
184 c C2

1Ē 2Ē (a,C6,
1Ē1

2Ē1), (a,C6,
1Ē2

2Ē2), (a,C6,
1Ē3

2Ē3)
192 f D2 Ē (a, D6, Ē1), (a, D6, Ē2), (a, D6, Ē3)
195 d D2 Ē (b, T, 1F̄ 2F̄ ), (b, T, Ē )
195 d D2 Ē (a, T, 1F̄ 2F̄ ), (b, T, Ē )
195 d D2 Ē (a, T, Ē ), (b, T, 1F̄ 2F̄ )
195 d D2 Ē (a, T, 1F̄ 2F̄ ), (a, T, Ē )
195 c D2 Ē (b, T, 1F̄ 2F̄ ), (b, T, Ē )
195 c D2 Ē (a, T, 1F̄ 2F̄ ), (b, T, Ē )
195 c D2 Ē (a, T, Ē ), (b, T, 1F̄ 2F̄ )
195 c D2 Ē (a, T, 1F̄ 2F̄ ), (a, T, Ē )
197 b D2 Ē (a, T, 1F̄ 2F̄ ), (a, T, Ē )
201 d D2 Ē (a, T, 1F̄ 2F̄ ), (a, T, Ē )
202 c T Ē (b, Th, Ēg), (b, Th, Ēu)
202 c T Ē (a, Th, Ēg), (a, Th, Ēu)
202 c T 1F̄ 2F̄ (b, Th,

1F̄g
2F̄g), (b, Th,

1F̄u
2F̄u)

202 c T 1F̄ 2F̄ (a, Th,
1F̄g

2F̄g), (a, Th,
1F̄u

2F̄u)
207 d D4 Ē1 (a, O, Ē1), (b, O, F̄ )
207 d D4 Ē1 (a, O, Ē1), (a, O, F̄ )
207 d D4 Ē2 (a, O, Ē2), (b, O, F̄ )
207 d D4 Ē2 (a, O, Ē2), (a, O, F̄ )
207 c D4 Ē1 (b, O, Ē1), (b, O, F̄ )
207 c D4 Ē1 (a, O, F̄ ), (b, O, Ē1)
207 c D4 Ē2 (b, O, Ē2), (b, O, F̄ )
207 c D4 Ē2 (a, O, F̄ ), (b, O, Ē2)
207 d D4 E (a, O, T1), (a, O, T2)
207 c D4 E (b, O, T1), (b, O, T2)
208 f D2 Ē (a, T, Ē ), (c, D3,

1Ē 2Ē )
208 f D2 Ē (a, T, Ē ), (b, D3,

1Ē 2Ē )
208 f D2 Ē (a, T, 1F̄ 2F̄ ), (a, T, Ē )
208 e D2 Ē (a, T, Ē ), (c, D3,

1Ē 2Ē )
208 e D2 Ē (a, T, Ē ), (b, D3,

1Ē 2Ē )
208 e D2 Ē (a, T, 1F̄ 2F̄ ), (a, T, Ē )
208 d D2 Ē (a, T, Ē ), (c, D3,

1Ē 2Ē )
208 d D2 Ē (a, T, Ē ), (b, D3,

1Ē 2Ē )
208 d D2 Ē (a, T, 1F̄ 2F̄ ), (a, T, Ē )
209 c T Ē (b, O, Ē1), (b, O, Ē2)
209 c T Ē (a, O, Ē1), (b, O, Ē2)
209 c T Ē (a, O, Ē2), (b, O, Ē1)
209 c T Ē (a, O, Ē1), (a, O, Ē2)
209 c T 1F̄ 2F̄ (b, O, F̄ ), (b, O, F̄ )
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209 c T 1F̄ 2F̄ (a, O, F̄ ), (b, O, F̄ )
209 c T 1F̄ 2F̄ (a, O, F̄ ), (a, O, F̄ )
209 d D2 Ē (c, T, 1F̄ 2F̄ ), (c, T, Ē )
209 d D2 Ē (b, O, Ē1), (b, O, Ē2), (c, T, 1F̄ 2F̄ )
209 d D2 Ē (a, O, Ē1), (b, O, Ē2), (c, T, 1F̄ 2F̄ )
209 d D2 Ē (a, O, Ē2), (b, O, Ē1), (c, T, 1F̄ 2F̄ )
209 d D2 Ē (a, O, Ē1), (a, O, Ē2), (c, T, 1F̄ 2F̄ )
209 d D2 Ē (b, O, F̄ ), (b, O, F̄ ), (c, T, Ē )
209 d D2 Ē (a, O, F̄ ), (b, O, F̄ ), (c, T, Ē )
209 d D2 Ē (a, O, F̄ ), (a, O, F̄ ), (c, T, Ē )
209 d D2 Ē (b, O, Ē1), (b, O, Ē2), (b, O, F̄ ), (b, O, F̄ )
209 d D2 Ē (a, O, F̄ ), (b, O, Ē1), (b, O, Ē2), (b, O, F̄ )
209 d D2 Ē (a, O, F̄ ), (a, O, F̄ ), (b, O, Ē1), (b, O, Ē2)
209 d D2 Ē (a, O, Ē1), (b, O, Ē2), (b, O, F̄ ), (b, O, F̄ )
209 d D2 Ē (a, O, Ē1), (a, O, F̄ ), (b, O, Ē2), (b, O, F̄ )
209 d D2 Ē (a, O, Ē1), (a, O, F̄ ), (a, O, F̄ ), (b, O, Ē2)
209 d D2 Ē (a, O, Ē2), (b, O, Ē1), (b, O, F̄ ), (b, O, F̄ )
209 d D2 Ē (a, O, Ē2), (a, O, F̄ ), (b, O, Ē1), (b, O, F̄ )
209 d D2 Ē (a, O, Ē2), (a, O, F̄ ), (a, O, F̄ ), (b, O, Ē1)
209 d D2 Ē (a, O, Ē1), (a, O, Ē2), (b, O, F̄ ), (b, O, F̄ )
209 d D2 Ē (a, O, Ē1), (a, O, Ē2), (a, O, F̄ ), (b, O, F̄ )
209 d D2 Ē (a, O, Ē1), (a, O, Ē2), (a, O, F̄ ), (a, O, F̄ )
211 d D2 B2 (a, O, T2), (b, D4, A2)
211 d D2 B2 (a, O, T1), (b, D4, B2)
211 d D2 B3 (a, O, T2), (b, D4, A2)
211 d D2 B3 (a, O, T1), (b, D4, B2)
211 c D3

1Ē 2Ē (a, O, F̄ ), (a, O, F̄ )
211 b D4 Ē1 (a, O, Ē1), (a, O, F̄ )
211 b D4 Ē2 (a, O, Ē2), (a, O, F̄ )
211 b D4 E (a, O, T1), (a, O, T2)
211 c D3 Ē1 (a, O, Ē2), (b, D4, Ē1)
211 c D3 Ē1 (a, O, Ē1), (b, D4, Ē2)
211 c D3 Ē1 (a, O, Ē1), (a, O, Ē2), (a, O, F̄ )
211 c D3 E (a, O, E ), (b, D4, E )
211 c D3 E (a, O, E ), (a, O, T1), (a, O, T2)
211 d D2 Ē (a, O, F̄ ), (c, D3, Ē1)
211 d D2 Ē (b, D4, Ē1), (b, D4, Ē2)
211 d D2 Ē (a, O, Ē1), (a, O, Ē2), (c, D3,

1Ē 2Ē )
211 d D2 Ē (a, O, Ē2), (a, O, F̄ ), (b, D4, Ē1)
211 d D2 Ē (a, O, Ē1), (a, O, F̄ ), (b, D4, Ē2)
211 d D2 Ē (a, O, Ē1), (a, O, Ē2), (a, O, F̄ ), (a, O, F̄ )
218 b D2 Ē (a, T, 1F̄ 2F̄ ), (a, T, Ē )
222 b D4 Ē1 (a, O, Ē1), (a, O, F̄ )
222 b D4 Ē2 (a, O, Ē2), (a, O, F̄ )
222 b D4 E (a, O, T1), (a, O, T2)
223 e D3

1Ē 2Ē (a, Th,
1F̄g

2F̄g), (a, Th,
1F̄u

2F̄u)
224 f D2 Ē (d, D2d , Ē1), (d, D2d , Ē2)
224 f D2 Ē (a, Td , F̄ ), (c, D3d , Ē1g), (c, D3d , Ē1u)
224 f D2 Ē (a, Td , F̄ ), (b, D3d , Ē1g), (b, D3d , Ē1u)
224 f D2 Ē (a, Td , Ē1), (a, Td , Ē2), (c, D3d ,

1Ēg
2Ēg), (c, D3d ,

1Ēu
2Ēu)

224 f D2 Ē (a, Td , Ē1), (a, Td , Ē2), (b, D3d ,
1Ēg

2Ēg), (b, D3d ,
1Ēu

2Ēu)
224 f D2 Ē (a, Td , Ē1), (a, Td , Ē2), (a, Td , F̄ ), (a, Td , F̄ )
225 c Td F̄ (b, Oh, F̄g), (b, Oh, F̄u)
225 c Td F̄ (a, Oh, F̄g), (a, Oh, F̄u)
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by a unitary transformation. Consequently, χk
G(h) = (χ ′)k

G(h).
Then by Definition 1, ρ

(1)
G and ρ

(2)
G are irrep equivalent, which

completes the proof.
Notice that applying Theorem 1 to the case of equiva-

lent band representations provides a derivation of the unitary
matrix that transforms the band representations, which we
derived previously in Appendix A. Consider an equivalence
S(k, τ, g) between two band representations, as defined in
Eq. (12). Since equivalent band representations are necessar-
ily irrep equivalent, and since for each τ, S(k, τ, g) is a band
representation, Theorem 1 implies the existence of a family of
unitary matrices U (k, τ ) satisfying

S(k, τ, g) = U (gk, τ )S(k, 0, g)U †(k, τ ), (C2)

where U (k, 0) = I, the identity matrix. Since S(k, τ, g) is an
equivalence, it must be continuous in τ and smooth in k.
Equation (C2) then implies that U (k, τ ) must also be con-
tinuous in τ and smooth in k. Further, U (k, τ ) is BZ periodic
since equivalent band representations act on the same Hilbert
space (with the same boundary conditions). Thus, U (k, 1) is a
smooth, periodic unitary transformation that relates S(k, 0, g)
and S(k, 1, g). This provides an alternative proof of Eq. (A1).

APPENDIX D: REPRESENTATION THEORY
OF FINITE GROUPS

In this Appendix, we provide some of the fundamentals of
the representation theory of finite groups. These can be found
in BMZ [74] or, for a more complete reference, the book by
Serre [97]. The results in this Appendix are not specific to
crystallographic groups, therefore, we adopt a more general
notation.

1. Notation

Following BMZ [74], throughout this Appendix, we use
χ

(α)
G to denote the characters of an irrep ρ (α) of a group G. We

define the conjugacy class of g in G by [g]G ≡ {(g′)−1gg′|g′ ∈
G}; |[g]G| denotes the number of elements in [g]G.

2. Orthogonality of characters

We first review the orthogonality of characters. The inner
product of two characters χ (α) and χ (β ) of irreps ρ (α) and ρ (β )

of G is defined by

〈
χ

(α)
G

∣∣χ (β )
G

〉 = 1

|G|
∑
g∈G

(χ (α)(g))∗χ (β )(g). (D1)

This inner product gives rise to an orthogonality relation〈
χ

(α)
G

∣∣χ (β )
G

〉 = δαβ. (D2)

A second orthogonality relation is given by summing over all
the irreps in G:

∑
α

χ
(α)
G (g)

(
χ

(α)
G (h)

)∗ =
{|[g]G| if h ∈ [g]G,

0 else.
(D3)

3. Induced characters

We now review the theory of induced representations. In-
duction provides an algorithm to construct a representation of

a group G from a representation of a subgroup H ⊂ G, as we
will shortly describe.

Let H be a subgroup of G, with coset decomposition G =
∪αgαH . A representation of G with characters χG subduces
to a representation of H , denoted χG ↓ H or ResG

HχG, with
characters

(χG ↓ H )(h) ≡ ResG
HχG(h) ≡ χG(h). (D4)

The adjoint of subduction is induction. A representation of
H with characters χH induces a representation in G whose
characters are given by

(χH ↑ G)(g) ≡ IndG
HχH (g) ≡

∑
α

χ̃H (g−1
α ggα ), (D5)

where we use a tilde to denote

χ̃ (g) =
{
χ (g) if g ∈ H,

0 else.
(D6)

The Frobenius reciprocity relation (which we will not
prove) says that〈

IndG
Hχ

(ρ)
H

∣∣χ (α)
G

〉 = 〈
χ

(ρ)
H

∣∣ResG
Hχ

(α)
G

〉
, (D7)

where the greek superscripts indicate an irrep of the corre-
sponding group and the inner product is given by Eq. (D1).
The inner product on the LHS is with respect to the group G
(since IndG

Hχ
(ρ)
H and χ

(α)
G are representations of G), while the

inner product on the RHS is with respect to H (since χ
(ρ)
H and

ResG
Hχ

(α)
G are representations of H).

APPENDIX E: NECESSARY AND SUFFICIENT
CONDITIONS FOR IRREP EQUIVALENCE

In this Appendix, we derive the necessary and sufficient
condition for irrep equivalence in Eq. (31) using the funda-
mentals of representation theory reviewed in Appendix D.

Let H and K be two subgroups of G and let χH and χK

be characters corresponding to representations of H and K . If
χH and χK induce the same representation in G, then for any
representation α of G the characters χ

(α)
G satisfy〈

IndG
HχH

∣∣χ (α)
G

〉 = 〈
IndG

KχK

∣∣χ (α)
G

〉
. (E1)

Frobenius reciprocity [Eq. (D7)] yields〈
χH

∣∣ResG
Hχ

(α)
G

〉 = 〈
χK

∣∣ResG
Kχ

(α)
G

〉
. (E2)

Applying the definition of the inner product in Eq. (D1),

1

|H |
∑
h∈H

χ∗
H (h)χ (α)

G (h) = 1

|K|
∑
k∈K

χ∗
K (k)χ (α)

G (k). (E3)

Given an element g ∈ G, multiplying the whole equation by
χ

(α)
G (g) and summing over α using Eq. (D3) yields

1

|H |
∑

h∈H∩[g]G

χH (h) = 1

|K|
∑

k∈K∩[g]G

χK (k), ∀ g ∈ G. (E4)

If g is not conjugate to an element of H or an element of
K , then both sides of Eq. (E4) are zero. Thus, we need only
consider Eq. (E4) when g is conjugate to an element of H
or an element of K (or both). Further, since Eq. (E4) only
depends on the conjugacy class [g]G, rather than on g directly,
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if Eq. (E4) is satisfied for all g ∈ H ∪ K , then it is satisfied
for all g conjugate to an element of H or K . Thus, Eq. (E4)
provides the following necessary and sufficient condition for
χH and χK to yield the same induced character:

1

|H |
∑

h∈H∩[g]G

χH (h) = 1

|K|
∑

k∈K∩[g]G

χK (k) ∀ g ∈ H ∪ K, (E5)

which is exactly Eq. (31).
Now consider the special case where H = K and χ, χ ′

are characters of two representations ρ, ρ ′ of H . Then, from
Eq. (E5), ρ, ρ ′ induce the same representation in G if and only
if ∑

h∈H∩[g]G

χH (h) =
∑

h∈H∩[g]G

χ ′
H (h) ∀ g ∈ H. (E6)

We now prove the following:
Theorem 6. A necessary condition for two distinct repre-

sentations ρ and ρ ′ of H to induce the same representation in
G is for two conjugacy classes of H to merge in G.

Recall, as defined in Sec. V B, two conjugacy classes in H
merge in G if there exist h, h′ ∈ H such that [h]H �= [h′]H but
[h]G = [h′]G. We now prove Theorem 6 by contradiction: sup-
pose no conjugacy classes of H merge in G. Then, H ∩ [g]G ⊂
[g]H because if g′ ∈ H and g′ ∈ [g]G, since no conjugacy
classes of H merge in G, it must be that g′ ∈ [g]H . Since, by
definition, [g]H ⊂ H ∩ [g]G, it follows that H ∩ [g]G = [g]H .
Thus, Eq. (E6) can be rewritten as∑

h∈[g]H

χH (h) =
∑

h∈[g]H

χ ′
H (h) ∀ g ∈ H, (E7)

which implies that χ (g) = χ ′(g) for all g ∈ H because the
characters are invariant over the conjugacy class. Hence, χ =
χ ′, which completes the proof of Theorem 6. �

APPENDIX F: LITTLE GROUP CHARACTERS AT �

We now show that in a band representation ρ ↑ G, the rep-
resentation of the little group at 	 is determined by mapping
ρ into the point group P of G. We start by defining a map from
G to P:

h = {R|v} �→ h̄ ≡ R, (F1)

which maps each element of G to its point-group part. Under
this map, a site-symmetry group Gq maps to

Pq ≡ {h̄|h ∈ Gq} (F2)

and each representation ρ of Gq defines a representation ρ̄ of
Pq by ρ̄(h̄) = ρ(h), whose characters satisfy

χ̄ (h̄) = χ (h). (F3)

It follows that the little group character at 	 is given by

χ	
G (h) ≡

∑
α

χ̃
(
g−1

α {E | − tαα (h)}hgα

)

=
∑

α

˜̄χ
(
ḡ−1

α h̄ḡα

)

= (χ̄ ↑ P)(h̄), (F4)

where the first line is exactly the definition of the little group
character [Eq. (9)] at 	, where k = 0; the second line drops
the translation parts of all space-group elements following
Eq. (F3); and the third line follows from the definition of an
induced representation [Eq. (D5)].

Since a necessary condition for irrep equivalence is for two
EBRs to have the same little group irreps at 	, an immediate
consequence of this result is as follows:

Corollary 4. A necessary condition for two irreducible
representations ρ and ρ ′ of Gq to induce irrep-equivalent
EBRs in G is that the representations ρ̄ and ρ̄ ′ of Pq induce
the same representation in P.

We now return to the point groups that we ruled out for
irrep equivalence in Secs. V C and V D. Theorem 6 says that a
necessary condition for two distinct irreps of Pq to induce the
same representation of P is that two conjugacy classes with
respect to Pq merge in P. Since the 16 point groups in (38) do
not have different conjugacy classes with elements in the same
crystallographic class, the conjugacy classes with respect to
these point groups will not merge in P; hence, when Pq is
one of the point groups in (38), distinct representations of Pq
induce distinct representations of P. It follows from Corollary
4 that when Gq is isomorphic to one of the point groups
in (38), distinct irreps of Gq will yield EBRs with distinct
representations at 	 and hence will not be irrep equivalent.

Furthermore, using the tables on the POINT application of
the BCS [98], we have checked that when Pq is one of the
four point groups in (43), distinct irreps always induce distinct
representations of P, although different reducible representa-
tions can induce the same representation in P [which is why
these groups are not listed in (38)]. Consequently, if Gq is
equivalent to one of the point groups in (38), distinct irreps of
Gq will induce EBRs with distinct representations at 	, which,
consequently, will not be irrep equivalent.

APPENDIX G: PAIRS (Gq, Gq′ ) MARKED D′

IN TABLE IV

We used Eq. (47) to eliminate pairs of (Gq, Gq′ ) as can-
didates for irrep equivalence if they had no irreps of the
compatible dimension; such pairs are marked by a D in Ta-
ble IV (if they are not already marked by an X). Here we
explain why the additional pairs marked by a D′ in Table IV
can also be eliminated as candidates for irrep equivalence
based on a combination of dimensionality and zero characters:
Gq = Td , Gq′=D4 or Gq = Td , Gq′ = C4v Character tables of
Td , D4, and C4v are shown in Tables XVI and XVII. Using

TABLE XVI. Character table for Td (conjugacy classes in first
row) and O (conjugacy classes in second row). Notation follows
Ref. [91].

ρ \ Td [E ] [C3] [C2] [S4] [m]
ρ \ O [E ] [C3] [C2] [C4] [C′

2]

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
T1 3 0 −1 1 −1
T2 3 0 −1 −1 1
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TABLE XVII. Character table for D4 (conjugacy classes in first
row), D2d (conjugacy classes in second row), and C4v (conjugacy
classes in third row). Notation follows Ref. [91].

ρ \ D4 [E ] [C2] [C4] [C′
2] [C′′

2 ]
ρ \ D2d [E ] [C2] [S4] [C′

2] [m]
ρ \C4v [E ] [C2] [C4] [mv] [md ]

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1
E 2 −2 0 0 0

|Td | = 24, |D4| = |C4v| = 8, the dimensionality constraint in
Eq. (47) requires dim(ρ)/dim(ρ ′) = 3. This constraint is only

satisfied if ρ is one of the three-dimensional irreps T1 or T2

of Td . Now, let g be the S+
4 rotoreflection in Gq. Since in

the T1,2 irreps, χ (g) �= 0, Corollary 3 immediately applies and
enforces that no EBRs induced from these groups will be irrep
equivalent.

Gq = D2d , Gq′ = O or Gq = D2d , Gq′ = Td The logic is
identical to the previous case. The characters of D2d , O, and
Td are in Tables XVI and XVII. Using |D2d | = 8 and |O| =
|Td | = 24 the dimensionality constraint in Eq. (47) requires
dim(ρ)/dim(ρ ′) = 1

3 . This constraint is only satisfied if ρ is
one of the one-dimensional irreps A1, A2, B1, or B2 of D2d .
Now let g be the S+

4 rotoreflection in Gq. Since in the one-
dimensional irreps of D2d , χ (g) �= 0, Corollary 3 immediately
applies, enforcing that no EBRs induced from these groups
will be irrep equivalent.
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