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Correlated second-order Dirac semimetals with Coulomb interactions

Yu-Wen Lee*

Department of Applied Physics, Tunghai University, Taichung, Taiwan 407224, Republic of China

Yu-Li Lee †

Department of Physics, National Changhua University of Education, Changhua, Taiwan 50007, Republic of China

(Received 13 September 2021; accepted 23 February 2022; published 9 March 2022)

We investigate the effects of long-range Coulomb interactions on the low-temperature properties of a second-
order Dirac semimetal in terms of the renormalization group. In contrast to the first-order Dirac semimetal,
the full rotation symmetry is broken by further additional terms in the Hamiltonian, and thus the low-energy
physics is controlled by two dimensionless parameters: the dimensionless coupling constant and the ratio of
the anisotropy parameters. We show that the first parameter flows to zero and the second flows to a fixed
value at low energies. Thus, one may calculate physical quantities in terms of the renormalized perturbation
theory. As an application, we determine the temperature dependence of the specific heat by solving the
renormalization-group equations. Following from the breaking of the full rotation symmetry, there exists a
crossover temperature scale Tc (and a lengthscale Lc). Physical quantities approach the values for the first-order
Dirac semimetal only when the temperature is much smaller than Tc. Similarly, the screened Coulomb potential
will become anisotropic when the distance is smaller than Lc, while the unscreened form is recovered at
its tail.

DOI: 10.1103/PhysRevB.105.125110

I. INTRODUCTION

In the past 15 years, topological phases of matters have
become an active research topic in condensed matter physics.
Among these phases, there were gapped systems, such as
topological insulators (TIs) and topological superconductors
(TSCs) [1–3], and gapless systems such as Weyl semimetals
(WSMs) [4,5] and various variants, e.g., anisotropic Weyl
fermions [6], double WSMs [7,8], and tilted WSMs [9]. For
the TIs, the bulk topology was usually indicated by some
topological indices, and it was characterized by the monopole
charges in the momentum space for the WSMs. In these
systems, the bulk topology was protected by some (global)
symmetries [3], and thus were dubbed as the symmetry-
protected topological (SPT) phases. For these samples with
boundaries, there were gapless states localized at the edges,
known as the bulk-boundary correspondence. These gapless
edge states were stable against symmetry-preserving pertur-
bations.

Later, the study of topological phases was extended to a
higher order and the previously mentioned TIs now belonged
to the class of the first order [10–12]. One way to distinguish
the TIs belonging to different orders was through their edge
states. For example, a Chern insulator, which is a type of first-
order TIs characterized by the Chern number or quantized
Hall conductance, has gapless chiral states at its edge. On
the other hand, the edge states are still gapped for a second-
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order TI in two dimensions. However, if the boundaries of the
sample are compatible with the protecting symmetry, then
gapless states will exist at the corners. The robustness of these
gapless corner states is guaranteed by the second-order bulk
topology.

Recently, the notion of higher-order topology was extended
to the Dirac semimetals (DSMs) [13–15] as well as WSMs
[16–18]. A Dirac point in three dimensions can be under-
stood as two degenerate Weyl nodes with opposite monopole
charges, where crystalline symmetries forbid the two Weyl
nodes from hybridizing and opening a gap at each Dirac
point [19]. Given this picture of the bulk, a three-dimensional
(3D) DSM has two copies of arc-like surface states which
resemble Fermi-arcs in WSMs, i.e., the double Fermi arcs.
However, unlike the surface states in the WSM, the double
Fermi arcs on the surface of a DSM are not topologically
protected. They can be continuously deformed into a closed
Fermi contour without any symmetry breaking or bulk phase
transition [20]. Therefore, they are not topological conse-
quences of the bulk Dirac points themselves. In contrast, the
higher-order DSMs (HODSMs) can exhibit robust and non-
trivial topology with spectroscopic consequences [21]. It was
proposed that the HODSM can be realized in the room- (α)
and intermediate-temperature (α′′) phases of Cd3As2, KMgBi,
and rutile structure (β ′-) PiO2 [21,22].

The minimal model of HODSMs contains a pair of Dirac
points located at the same energy. For simplicity, we take
the two Dirac points at the crystal momenta ±K where K =
(0, 0, k0) with 0 < k0 < π (by setting the lattice constant to
be unit). Each plane with given kz �= ±k0 in the first Brillouin
zone (BZ) describes the band structure of a two-dimensional
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(2D) insulator. The two planes at kz = ±k0 then separate the
first BZ into two regions, each consisting of 2D insulators
by treating kz as a free parameter. In a second-order DSM,
one of the regions consists of 2D second-order TIs, while
the other consists of trivial insulators. For a cubic sample
with open boundary conditions in both the x and y directions
and periodic boundary conditions in the z direction, each 2D
second-order TI will host gapless states at its corners. (That is,
the energy of the corner states coincides with that of the Dirac
points.) Hence, these gapless corner states form Fermi arcs on
the 1D hinges terminated at the projections of the two Dirac
points. It is clear that these Fermi arcs are direct, topological
consequences of the bulk Dirac points, in contrast with the
first-order DSM.

In the present work, we study the effects of the long range
Coulomb interaction on a second-order DSM. The Coulomb
interaction is ubiquitous in condensed matter systems. Specif-
ically, its long-range nature remains intact in semimetals, in
contrast with the Fermi liquid. For the 3D first-order DSM at
weak coupling, one-loop renormalization group (RG) analysis
indicates that the Fermi velocity grows to infinity logarith-
mically at low energies, leading to the marginally irrelevant
dimensionless coupling constant [23–25]. For the second-
order DSM, the full rotation symmetry is lost by additional
terms in the Hamiltonian compared with the first-order DSM,
and thus the low-energy physics is described by two param-
eters: the dimensionless coupling constant and the ratio of
the anisotropy parameters. We employ the method of RG
and show that the coupling constant flows to zero at low
energies, similar to the first-order DSM, where as the ratio
of the ansiotropy parameters flows to a fixed value at low
energies. To illustrate the effects of the Coulomb interaction,
we calculate the temperature dependence of the specific heat
in terms of the RG equations. We find that in comparison with
the specific heat of a noninteracting second-order DSM, the
Coulomb interaction suppresses its value at all temperatures,
except at zero temperature and the temperature close to the
bandwidth.

The parameter which distinguishes the first-order and
second-order DSMs introduces a crossover temperature scale
Tc (and thus a characteristic lengthscale Lc). When the temper-
ature is smaller than Tc, the values of the physical quantities
are expected to approach the ones for a first-order DSM. How-
ever, we find that this expectation is realized only at extremely
low temperatures or long distances. We illustrate this point
by the temperature dependence of the specific heat and the
momentum dependence of the screened Coulomb potential
within the RPA approximation.

The rest of the work is organized as follows. We introduce
the model of the second-order DSM in Sec. II. The results of
the RPA approximation and the one-loop RG are presented
in Secs. III and IV, respectively. The last section is our con-
clusions. The details of the calculations are shown in two
Appendixes.

II. MODEL

A. Hamiltonian

We start with a lattice model describing the
second-order DSM. Its Bloch Hamiltonian is written as

H (k) = H0(k) + H1(k) where [14,15]

H0(t ) = k
∑
j=1,2

S j� j − t3

[
C3 +

∑
j=1,2

(1 − Cj )

]
�3,

H1(k) = t1[(C1 − C2)�4 + S1S2�5]. (1)

Here Cj = cos (k ja0), S j = sin (k ja0), a0 is the lattice con-
stant, and k = (k1, k2, k3). The five rank-4 � matrices take
the forms �1 = τ1 ⊗ σ3, �2 = τ2 ⊗ σ0, �3 = τ3 ⊗ σ0, �4 =
τ1 ⊗ σ1, and �5 = τ1 ⊗ σ2. One may verify that they are all
Hermitian and satisfy the Clifford algebra

{�i, � j} = 2δi j, (2)

for i, j = 1, . . . , 5. Here σμ and τμ with μ = 0, 1, 2, 3 are the
standard Pauli matrices acting on the spin and orbital spaces,
respectively.

In this model, the two orbitals are the eigenstates of the
space inversion P̂ = τ3 ⊗ σ0. On the other hand, the time re-
versal is implemented by the usual one for spin-1/2 fermions,
i.e., T̂ = τ0 ⊗ (iσ2)K where K takes the complex conjugation.
It is straightforward to verify that H0(k) preserves both the
space inversion (P) and time-reversal (T ) symmetries, while
H1(k) breaks both symmetries. However, H (k) has a PT sym-
metry, i.e.,

	̂H (k)	̂−1 = H (k), (3)

where 	̂ ≡ P̂T̂ . Note that 	̂2 = −1. Therefore, this sym-
metry assures that each energy level labeled by k is doubly
degenerate.

The band structure is given by E±(k) = ±E (k) where

E (k) =
√√√√ 5∑

j=1

[g j (k)]2, (4)

where g1(k) = tS1, g2(k) = tS2, g3(k) = −t3(C3 + 2 − C1 −
C2), g4(k) = t1(C1 − C2), and g5(k) = t1S1S2. Each band is
two-fold degenerate, as required by the PT symmetry. The
upper and lower bands touch each other at the points where
E (k) = 0 or gj (k) = 0 for j = 1, . . . , 5, which are the Dirac
points. In this case, the Dirac points are located at ±K where
K = (0, 0, π/2) [26]. Notice that the locations of the Dirac
points are not affected by H1(k).

When the Fermi level coincides with the energy at the
Dirac points, i.e., μ = 0, then the low-energy effective Hamil-
tonian can be obtained by expanding around the two Dirac
points, yielding

Heff(p) = h̃+(p) + h̃−(p), (5)

to the leading terms in p, where k = ±K + p and

h̃±(p) = v⊥
∑
j=1,2

p j� j ± v3 p3�3 + b
∑
j=4,5

d j (p)� j, (6)

with v⊥ = ta0, v3 = t3a0, b = t1a2
0/2, d4(p) = p2

2 − p2
1, and

d5(p) = 2p1 p2. Note that Heff(p) and H (k) share the same
symmetries. Moreover, b = 0 and b �= 0 correspond to the
first-order and second-order DSMs, respectively [27].

Now we add the Coulomb interaction to the system. The
low-energy effective Hamiltonian around the two Dirac nodes
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±K are given by

H =
∑
ξ=±

∫
d3xψ†

ξ hξψξ + Hc, (7)

where hξ is the inverse Fourier transform of h̃ξ (p) and

Hc = 1

2

∫
d3xd3yρ0(x)Vc(|x − y|)ρ0(y). (8)

Here ξ is the node index, ψξ and ψ
†
ξ obey the canonical an-

ticommutation relations, ρ0(r) = ∑
ξ ψ

†
ξ ψξ (r) is the uniform

component of the electron density, and Vc(r) = e2/(4πεr)
with the dielectric constant ε.

The action in the imaginary-time formulation is then of the
form

S =
∑
ξ=±

∫
X

ψ
†
ξ (∂τ + hξ )ψξ + i

∫
X

φρ0

+ 1

2

∫
X

[
1

g2
⊥

|∇⊥φ|2 + 1

g2
3

|∂3φ|2
]
, (9)

where X = (τ, r),
∫

X = ∫
dτd3x, ∇⊥ = (∂1, ∂2), and g2

⊥ =
g2

3 = g2 = e2/ε. We introduced a real bosonic field φ to de-
scribe the Coulomb interaction. As usual, the full rotation
symmetry is recovered in the continuum limit. In the present
case, it is not the case when b �= 0 even if we set v⊥ = v3. As
a result, the longitudinal and transverse components of |∇φ|2
will acquire different renormalization. Hence, we introduce
different coupling constants g2

⊥ and g2
3 though they have the

same bare value.

B. Specific heat of the noninteracting DSM

In the present case, one consequence of the b terms is the
introduction of a crossover temperature Tc. To show this, we
first compute the specific heat for the noninteracting second-
order DSM.

For the noninteracting second-order DSM, the specific heat
is given by

cv (T ) = T 3

2v2
⊥v3π2

∫ +∞

0
dx

g(T x/Tc)x4e−x

(1 + e−x )2
, (10)

where Tc = v2
⊥/|b| is the crossover temperature scale intro-

duced by b and

g(x) = 1√|x|
∫ 1

w(x)

dt√
1 − t

√
|x|t − √

1 − t
,

w(x) = 2√
1 + 4x2 + 1

.

The function g(x) is in a certain sense a measure of the density
of states (DOS) for the second order DSM since the DOS can
be written as

ρ(ε) = g(ε/Tc)ε2

4v2
⊥v3π2

.

FIG. 1. The DOS ρ(ε) as a function of ε. We measure ρ(ε) in
units of ρ1(ε), the DOS for the noninteracting first-order DSM, and
ε in units of εc = Tc.

When T 	 Tc, g(x) ≈ 4 and we find that ρ(ε) ≈ ρ1(ε) =
ε2/(v2

⊥v3π
2), which is the DOS for the first-order DSM, and

cv (T ) ≈ c1(T ) ≡ 7π2T 3

15v2
⊥v3

, (11)

which is the specific heat of the first-order DSM.
Figure 1 shows the DOS for the noninteracting second-

order DSM. We see that it approaches the one for the
noninteracting first-order DSM only at extremely low ener-
gies. b �= 0 suppresses the value of ρ(ε) compared with the
one for the noninteracting first-order DSM. Following from
this fact, in the most temperature ranges, the thermodynamic
properties of a second-order DSM will deviate significantly
from those of a first-order DSM.

III. RPA APPROXIMATION

There exists a characteristic lengthscale Lc associated with
the crossover temperature Tc introduced by b. The momentum
or position dependence of a physical quantity will depend on
Lc in a nontrivial way. To illustrate this point, we consider
the screened Coulomb potential. In the momentum space, its
Fourier transform Vs(q) satisfies the Dyson equation

1

Vs(q)
= 1

V0(q)
+ �(0, q), (12)

where V0(q) = g2/q2 is the Fourier transform of the bare
Coulomb potential Vc(r) and �(0, q) is the vacuum polariza-
tion at zero frequency.

Within the RPA approximation, the vacuum polarization is
given by

�(Q)

= − 1

v2
⊥v3

∑
ξ

∫ ′ d3 p̃

(2π )3

∫ +∞

−∞

d p0

2π
tr[Gξ0(P)Gξ0(P + Q)],

where Q = (iq0, q), p̃1/2 = v⊥ p1/2, p̃3 = v3 p3, b̃ = b/v2
⊥,

p̃⊥ = ( p̃1, p̃2), and

Gξ0(P)

= − ip0 + ∑
j=1,2 p̃ j� j + ξ p̃3�3 + b̃

∑
j=4,5 d j ( p̃⊥)� j

p2
0 + p̃2

⊥ + p̃2
3 + b̃2 p̃4

⊥
,
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FIG. 2. The plot of the function I3(x) (solid line). The dashed line
is the plot of the function − ln |x|/3 and π 2/(16|x|) for |x| < 1 and
|x| > 1, respectively.

is the free propagator of the fermion fields. Due to the com-
plicated form of �(0, q), we will evaluate it in two situations:
(i) q⊥ = 0 and q3 �= 0 and (ii) q⊥ �= 0 and q3 = 0. We present
the results and discuss their consequences. The details of the
calculations are left to Appendix A.

For case (i), we find that

�(0, 0, q3) = q̃2
3

v2
⊥v3π2

I3(b̃q̃3), (13)

where q̃3 = v3q3,

I3(x) =
∫ +∞

0
ds

(
1 − [ã(s, x)]2 − 1

2ã(s, x)
ln

∣∣∣∣ ã(s, x) + 1

ã(s, x) − 1

∣∣∣∣
)

,

and

ã(s, x) =
√

1 + 4s + 4x2s2.

We plot the function I3(x) in Fig. 2. One may obtain the
asymptotic behaviors of it in the limits |x| 	 1 and |x| � 1:

I3(x) =
⎧⎨
⎩

− 1
3 ln |x| |x| 	 1,

π2

16|x| |x| � 1.

Thus, in the limit |b̃q̃3| = Lc|q3| 	 1, we find that

�(0, 0, q3) ≈ − q̃2
3

3v2
⊥v3π2

ln |b̃q̃3| = − v3q2
3

3v2
⊥π2

ln (Lc|q3|),
(14)

and

�(0, 0, q3) ≈ |q̃3|
16|b̃|v2

⊥v3
= v3|q3|

16Lcv
2
⊥

, (15)

for |b̃q̃3| = Lc|q3| � 1, where Lc = v3|b|/v2
⊥ = v3/Tc.

For case (ii), we find that

�(0, q⊥, 0) = q̃2
⊥

3v2
⊥v3π2

ln

(
�

μ

)
+ · · · ,

when |b̃|q̃⊥ 	 1, and

�(0, q⊥, 0) ≈ 4q̃2
⊥

3v2
⊥v3π2

ln

(
�

μ

)
+ · · · ,

when |b̃|q̃⊥ � 1, where q̃1/2 = v⊥q1/2, q̃⊥ = (q̃1, q̃2), � is an
UV cutoff in | p̃⊥|, μ is an IR energy scale, and · · · denotes
the finite part. In the above calculation for the momentum

integrals, we follow the strategy employed by the authors of
Ref. [6] and integrate p̃⊥ and p̃3 over the ranges 0 < | p̃⊥| < �

and −∞ < p̃3 < +∞, respectively.
We see that the leading behaviors in �(0, q⊥, 0) are

�(0, q⊥, 0) ∼ q2
⊥ in both regimes q⊥ 	 1/Lc and q⊥ �

1/Lc. (We assume that the ratio v3/v⊥ is not extremely large
or extremely small.) The logarithmic divergence in front of
the q2

⊥ term can be absorbed into g2, leading to the (infinite)
renormalization of the coupling constant g2 within the RPA
(or large N) approximation. (If we replace ψξ by ψξβ with
β = 1, 2, . . . , N , then the RPA result is exact in the large N
limit.) The regimes q⊥ 	 1/Lc and q⊥ � 1/Lc correspond to
the first-order and second-order DSMs, respectively. There-
fore, the different coefficients in front of q2

⊥ ln (�/μ) imply
different renormalization of g2 in both regimes.

In view of Eq. (12), the coupling constant g2
⊥(μ) at the

scale μ can be defined as

1

g2
⊥(μ)

= 1

g2
⊥(�)

+ c

3v3π2
ln

(
�

μ

)
,

where c = 1, 4 for q⊥ 	 1/Lc and q⊥ � 1/Lc, respectively.
Thus, we find that

�
∂α

∂�
= 4c

3
α2, (16)

where α = g2
⊥/(4π2v3) is the dimensionless coupling con-

stant. Equation (16) indicates that α flows to zero at low
energies. Accordingly, the DSM is stable against the presence
of the Coulomb interaction in the large N limit.

The above analysis suggests the following behavior for
Vs(q). It acquires only a logarithmic correction at small mo-
menta, as in the case of the first-order DSM. On the other
hand, for q � 1/Lc,

Vs(q) ≈ g2

q2 + w|q3| ,
where w > 0 is a nonuniversal constant. Within the RPA
approximation, we get w = v3g2/(16Lcv

2
⊥). When Lc is very

large, the screened Coulomb potential in the real space is
approximately given by

Vs(r) ≈
∫

d3 p

(2π )3
eip·r g2

p2 + w|p3| ,
except its tail. By performing the momentum integral, we find
that

Vs(r⊥, 0) =

⎧⎪⎨
⎪⎩

g2

8π2r⊥
r⊥ 	 1/w,

g2

2π3wr2
⊥

r⊥ � 1/w,

(17)

where r⊥ = (x, y) and

Vs(0, z) ≈ g2

4πc|z| , (18)

for both |z| 	 1/w and |z| � 1/w, and c = 1, 2 when |z| 	
1/w and |z| � 1/w, respectively. (The details of the calcu-
lations are left to Appendix A.) Therefore, if we place a
charged impurity at the origin, the induced charge density
ρind(r) will be anisotropic in the intermediate distance, while
its tail (r � Lc) is approximately isotropic as in the case of
the first-order DSM.
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IV. RENORMALIZATION GROUP

A. One-loop RG equations

Now we study the effects of the Coulomb interaction in
terms of the RG. To perform the RG transformation, we de-
compose each field into the slow and fast modes: ψξ = ψξ< +
ψξ> and φ = φ< + φ> where the subscripts < and > denote
the slow and fast modes, respectively. Due to the lack of the
full rotation symmetry, we adopt the regularization scheme
employed in the anisotropic Weyl fermions [6] and double
WSMs [28,29]. That is, the fast modes consist of the Fourier
components between the cylindrical shell �/s < | p̃⊥| < �

and | p̃3| < +∞ where s = el > 1.
Now we integrate out the fast modes to the one-loop order,

and then perform the scaling transformation

x(y) → elx(y), z → ez3l z, τ → ezlτ,

ψξ< = Z−1/2
ψ ψξ , φ< = Z−1/2

φ φ.

Note that the z and transverse directions may have different
scaling exponents on account of the breaking of the full rota-
tion symmetry. The wave-function renormalization constants
Zψ and Zφ are chosen to bring the terms

∫
X ψ

†
ξ<∂τψξ< and

i
∫

X φ<ρ0< in the action back to their original forms. In this
way, we obtain an effective action for the slow modes, which
has the same form as S [Eq. (9)] but with renormalized param-
eters.

We further choose the values of z and z3 such that v3 and b
are both RG invariants, yielding

z = 2 − β3αG4(β, δ), z3 = z + βαG3(β, δ), (19)

where α = g2
⊥/(4π2v3) is the dimensionless coupling con-

stant, r = v⊥/v3 is the ratio of the components of the velocity,
η ≡ g2

3/g2
⊥ is the anisotropy parameter, β = η/r2, and δ =

b̃�. Therefore, the one-loop RG equations for these dimen-
sionless parameters are given by

drl

dl
= rl + rlβ

2
l αl [G⊥(βl , δl ) − βlG4(βl , δl )], (20)

dδl

dl
= −3δl − 2β2

l αlδl [G⊥(βl , δl ) − βlG4(βl , δl )], (21)

dαl

dl
= −α2

l [βlG3(βl , δl ) + 2F⊥(δl )], (22)

dβl

dl
= 2β2

l αl [G3(βl , δl ) − βlG⊥(βl , δl )]

+2βlαl [F⊥(δl ) − βlF3(δl )], (23)

where Al is the value of A at the scale l . In the above,

F3(z) = 2

3(1 + z2)
, F⊥(z) = 2 + 11z2 + 8z4

3(1 + z2)2
,

and

G⊥(β, z) =
∫ +∞

0

dt

(t2 + β )2
√

t2 + 1 + z2
,

G3(β, z) =
∫ +∞

0
dt

2t2

(t2 + β )2
√

t2 + 1 + z2
,

G4(β, z) =
∫ +∞

0

dt

(t2 + β )3
√

t2 + 1 + z2
.

FIG. 3. The RG flow of δ with α0 = 0.1 and β0 = 0.3.

The details of the derivation of Eqs. (20) to (23) are left to
Appendix B.

Equations (21) to (23) themselves form a closed set un-
der RG transformations. Because F3(0) = 2/3 = F⊥(0) and
G3(1, 0) = 2/3 = G⊥(1, 0), this set of one-loop RG equa-
tions has two fixed points: (α, β, δ) = (0, 0, 0) and (0,1,0).
Around the two fixed points, δ always flows to zero at low
energies, and thus it is an irrelevant parameter in the sense of
RG. (Figure 3 plots the RG flow of δ.)

The typical RG flows of α and β are depicted in Fig. 4.
We see that α is marginally irrelevant and flows to zero at
low energies. On the other hand, β flows to 1 at low energies.
These facts indicate that the fixed point (α, β, δ) = (0, 0, 0)
is IR unstable while the fixed point (α, β, δ) = (0, 1, 0) is IR

FIG. 4. Top: The RG flows of α with β0 = 0.3, δ0 = 1, and
different values of α0 (left) and the RG flows of α with α0 = 0.1,
β0 = 0.3, and different values of δ0 (right). Bottom: The RG flows
of β with α0 = 0.1, δ0 = 1, and different values of β0 (left) and the
RG flows of β with α0 = 0.1, β0 = 0.3, and different values of δ0

(right). The curves for δ0 �= 0 and δ0 = 0 almost coincide with each
other due to the irrelevancy of δ under RG transformations.
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FIG. 5. The flow diagram of α and β. It is clear that the RG flow
converges to the line β = 1.

stable. It is the latter which controls the low-energy physics of
the second-order DSM in the presence of long-range Coulomb
repulsion.

Since δ flows to zero quickly at low energies, we may set
δl = 0 in Eqs. (22) and (23), yielding

dαl

dl
= −α2

l

[
βlG3(βl , 0) + 4

3

]
, (24)

dβl

dl
= 2β2

l αl [G3(βl , 0) − βlG⊥(βl , 0)]

+ 4

3
βlαl (1 − βl ). (25)

Equations (24) and (25) correctly produce the RG flows of
α and β, as illustrated in Fig. 4. We plot the flow diagram
of α and β in Fig. 5 according to Eqs. (24) and (25), which
reveals the nature of the two fixed points (α, β, δ) = (0, 0, 0)
and (0,1,0). We see that β flows to 1 quickly under the RG
transformations, so that the RG flow converges to the line β =
1. Along the surface βl = 1 and δl = 0, Eqs. (20) and (24) can
be simplified and their solutions are

rl = r0el (1 + 2α0l )1/15, αl = α0

1 + 2α0l
, (26)

respectively.
In this problem, due to the breaking of the full rotation

symmetry, there are two anisotropy parameters r = v⊥/v3 and
η = g2

3/g2
⊥ = βr2. Within our RG scheme, both are relevant

parameters. That is, the magnitudes of both will become large
at the low energies, as shown in Fig. 6. Since β → 1 at low
energies, we will have ηl ≈ r2

l when l � 1.

B. Specific heat of the interacting DSM

We are able to calculate the specific heat for the inter-
acting DSM with the help of the RG equations [29,30]. Let
fl = f (Tl , rl , v3l , bl , αl , βl ) be the free energy density at the
scale l , which can be written as

fl = −Tl

Vl
ln Z,

where Z is the partition function and Tl , Vl are determined by
the equations

dTl

dl
= zTl , (27)

FIG. 6. The flow diagram of the anisotropy parameters r =
v⊥/v3 (solid curve) and η = g2

3/g2
⊥ (dashed curve) with α0 = 0.1,

β0 = 0.3, δ0 = 1, and r0 = 0.2.

and
dVl

dl
= −(2 + z3)Vl ,

with the initial conditions T0 = T and V0 = V , respectively.
Since we keep Z to be invariant under RG transformations, fl

satisfies the equation

dfl

dl
= (2 + z3 + z) fl ,

with the initial condition f0 = f where f is the free energy
density of the system. We define cl as

cl = −Tl
∂2 fl

∂T 2
l

.

Then, cl obeys the equation

dcl

dl
= (2 + z3)cl , (28)

with the initial condition c0 = cv where cv is the specific heat
of the system. We will run the RG transformation to the scale
l∗ such that T∗ = D where A∗ = A(l∗) and D is of the order of
the bandwidth.

According to the previous RG analysis, we have v3∗ = v3,
β∗ ≈ 1, b∗ = b, δ∗ ≈ 0, and

z = 2 − 8

15
αl , z3 = 2 + 2

15
αl .

Inserting these into Eq. (27) and using Eq. (26), we get the
solution of Eq. (27)

Tl = Te2l

(1 + 2α0l )4/15
,

which results in

D

T
= e2l∗

(1 + 2α0l∗)4/15
. (29)

Equation (29) determines l∗ as a function of T/D.
In terms of these results, the solution to Eq. (28) is

cl = cve4l (1 + 2α0l )1/15,

which leads to

cv = c∗e−4l∗

(1 + 2α0l∗)1/15
.
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FIG. 7. cv/c0 as a function of T/Tc with α0 = 0.3 and Tc/D =
0.01, where c0 is the specific heat of the first-order DSM at T = Tc.
The solid and dashed lines correspond to the cases with and without
the Coulomb interaction, respectively. The inset shows cv in units of
the specific heat for a noninteracting first-order DSM for T/Tc < 0.5.

Here c∗ is approximately given by the specific heat of a non-
interacting DSM at temperature T∗ = D, with v⊥ replaced by
v⊥∗ = v3r∗.

With the help of Eqs. (10) and (29), we get cv for the
second-order DSM

cv (T ) = T 3

2v2
⊥v3π2(1 + 2α0l∗)

×
∫ +∞

0
dx

g(T x/[Tc f (T )])x4e−x

(1 + e−x )2
, (30)

where f (T ) = (1 + 2α0l∗)2/5. The temperature dependence
of cv given by Eq. (30) is shown in Fig. 7, by assuming that
Tc 	 D. We measure cv in units of c0 where c0 = c1(Tc) is the
specific heat of the first-order DSM at T = Tc.

A few points should be emphasized. (i) First of all, the
value of cv is suppressed in the presence of the Coulomb
interaction when T 	 D. However, it approaches the one for
a noninteracting second-order DSM at high temperatures, as it
should be. (ii) Next, as shown in the inset, even in the absence
of the Coulomb interaction, the value of cv is close to the one
for a noninteracting first-order DSM only at extremely low
temperatures. In the presence of the Coulomb interaction, the
deviation is more significant.

V. CONCLUSION

We studied the effects of Coulomb interactions on a
second-order DSM. In contrast with the first-order DSM, there
exists additional terms in the Hamiltonian which break the
full rotation symmetry, so that the low-energy physics is con-
trolled by two dimensionless parameters: the dimensionless
coupling constant α and the ratio of anisotropy parameters
β. In terms of the one-loop RG equations, we show that α is
marginally irrelevant and β flows to 1 at low energies. There-
fore, physical quantities at low temperatures can be computed
in terms of a renormalized perturbative expansion in α. As
an application, we calculate the specific heat in terms of the
RG. We find that the presence of the Coulomb interaction
suppresses the value of specific heat, compared to the one for
a noninteracting second-order DSM.

Another consequence following from the terms which
distinguish the first-order and second-order DSMs is the

existence of a crossover temperature Tc and an associated
lengthscale Lc. When T 	 Tc, the values of thermodynamic
response functions will be close to those for the first-order
DSM; otherwise significant deviations will be observed. Sim-
ilar phenomena will occur in the spatial dependence of the
charge density produced by a charged impurity. When the
distance r from the impurity is smaller than Lc, the induced
charge density will be anisotropic. On the other hand, the tail
of the induced charge density is isotropic.

In the present work, we derive the RG equation for the
coupling constant within two different regimes: the large N
limit [Eq. (16)] and the perturbative expansion to the one-loop
order [Eq. (22)]. In both cases, the (dimensionless) coupling
constant flows to zero at low energies. Therefore, the stability
of the second-order DSM in the presence of the Coulomb
interaction may go beyond the weak-coupling regime.

If we set b = 0, the Hamiltonian of the second-order DSM
will reduce to the one of the first-order DSM. This corre-
sponds to the limit Tc → +∞ or Lc → 0. Our results become
those for the first-order DSM in this limit. On the other hand,
if we consider the highly anisotropic limit, i.e., v⊥ = 0, the
Hamiltonian of the second-order DSM will be similar to that
of a double WSM, except that the 2 × 2 Pauli matrices in the
double WSM are replaced the 4 × 4 � matrices in the present
case. This corresponds to the limit Tc → 0 or Lc → +∞. In
fact, the functional form of the vacuum polarization in this
limit is identical to that for a double WSM [28,29].

Recently, the effects of Coulomb interactions on other
types of four-band semimetals, i.e., the semimetal with four
bands touching at high symmetry points in the first Brillouin
zone, have been studied in terms of the RG. These include
the Luttinger semimetals [31–33] and the Rarita-Schwinger
(RS) seminetals [34,35]. In the Luttinger semimetal, the four
bands are quadratic in p near the band-touching point, while
they are linear in p in the RS seminetals. In both cases, the
full rotation symmetry SO(3) is broken down to the cubic
symmetry Oh. In general, the momentum dependence of the
quadratic part of the Hamiltonian and the symmetry of the
continuum theory will affect the RG flow around the Gaus-
sian fixed point, resulting in different phase diagrams. For
example, due to the quadratic band touching in the Luttinger
semimetal, the Coulomb interaction in that case is strongly
relevant around the Gaussian fixed point, leading to either a
non-Fermi-liquid [31] or a symmetry-breaking gapped ground
state [33]. For the RS semimetal, the Coulomb interaction is
marginally irrelevant, similar to most semimetals. Its main
effect is to renormalize the band structure such that there
are two IR stable fixed points: the Lorentz-invariant and Oh-
invariant fixed points. In our case, the Coulomb interaction
also renormalizes the band structure (reflecting on the RG
flows of the parameters characterizing the quadratic part of the
Hamiltonian) and results in logarithmic temperature depen-
dence of thermodynamic response functions. Therefore, the
second-order DSM is stable. In contrast with the WSM and
the first-order DSM, the Lorentz symmetry is not restored at
low energies in our case due to the breaking of the full rotation
symmetry. As pointed out in Ref. [34], restoration of Lorentz
invariance as a low-energy phenomenon is not universal when
several continuous symmetries are present. The properties of
a critical point depend on the underlying symmetry of the
crystal.
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Most of our results are based on the one-loop RG equa-
tions, which hold only in the weak coupling regime. At strong
coupling, the DSM may become unstable toward other phases.
For the first-order DSM, it was shown that the phase dia-
gram may depend on the number N of the species of the
Dirac fermions [36,37]. Based on a U(1) lattice gauge theory
with N = 4, a Mott insulating phase is identified when the
Coulomb interaction becomes strong [36]. By combining the
RG method and the self-consistent resolution of Schwinger-
Dyson equations, the strong Coulomb interaction results in
dynamical mass generation for N � 4 and a line of critical
points characterized by the suppression of the quasiparticle
weight at low energies for N � 1 [37]. It is interesting to see
whether or not similar phenomena will occur for the second-
order DSM.

ACKNOWLEDGMENTS

The works of Y.-W.L. and Y.-L.L. are supported by the
Ministry of Science and Technology, Taiwan, under the Grants
No. MOST 109-2112-M-029-004 and No. MOST 109-2112-
M-018-006, respectively.

APPENDIX A: VACUUM POLARIZATION

Here we present the details of the calculation for the vac-
uum polarization. Performing the trace over the � matrices,
we find that

�(0, 0, q3) = 8

v2
⊥v3

∫ ′ d3 p̃

(2π )3

∫ +∞

−∞

d p0

2π

p2
0 − p̃3( p̃3 + q̃3) − p̃2

⊥ − b̃2 p̃4
⊥(

p2
0 + p̃2

3 + p̃2
⊥ + b̃2 p̃4

⊥
)[

p2
0 + (

p̃3 + q̃3
)2 + p̃2

⊥ + b̃2 p̃4
⊥
]

= 8

v2
⊥v3

∫ 1

0
dx

∫ ′ d3 p̃

(2π )3

∫ +∞

−∞

d p0

2π

p2
0 − p̃3( p̃3 + q̃3) − p̃2

⊥ − b̃2 p̃4
⊥[

p2
0 + ( p̃3 + q̃3x)2 + p̃2

⊥ + b̃2 p̃4
⊥ + q̃2

3x(1 − x)
]2

= 2q̃2
3

v2
⊥v3π2

∫ 1

0
dxx(1 − x)

∫ �

0
d p̃⊥

p̃⊥
p̃2

⊥ + b̃2 p̃4
⊥ + q̃2

3x(1 − x)
,

and

�(0, q⊥, 0) = 8

v2
⊥v3

∫ ′ d3 p̃

(2π )3

∫ +∞

−∞

d p0

2π

p2
0 − p̃2

3 − p̃⊥ · ( p̃⊥ + q̃⊥) − b̃2 ∑
j=4,5 d j ( p̃⊥)d j ( p̃⊥ + q̃⊥)(

p2
0 + p̃2

3 + p̃2
⊥ + b̃2 p̃4

⊥
)[

p2
0 + p̃2

3 + ( p̃⊥ + q̃⊥)2 + b̃2( p̃⊥ + q̃⊥)4
]

= 8

v2
⊥v3

∫ 1

0
dx

∫ ′ d3 p̃

(2π )3

∫ +∞

−∞

d p0

2π

p2
0 − p̃2

3 − p̃⊥ · ( p̃⊥ + q̃⊥) − b̃2 ∑
j=4,5 d j ( p̃⊥)d j ( p̃⊥ + q̃⊥){

p2
0 + p̃2

3 + (1 − x)( p̃2
⊥ + b̃2 p̃4

⊥) + x[( p̃⊥ + q̃⊥)2 + b̃2( p̃⊥ + q̃⊥)4]
}2

= 2

v2
⊥v3π

∫ 1

0
dx

∫
�

d p̃1d p̃2

(2π )2

×
[

1 − p̃⊥ · ( p̃⊥ + q̃⊥) + b̃2
(
p̃2

2 − p̃2
1

)[
( p̃2 + q̃2)2 − ( p̃1 + q̃1)2

] + 4b̃2 p̃1 p̃2( p̃1 + q̃1)( p̃2 + q̃2)

(1 − x)( p̃2
⊥ + b̃2 p̃4

⊥) + x[( p̃⊥ + q̃⊥)2 + b̃2( p̃⊥ + q̃⊥)4]

]
,

where
∫ ′ d3 p̃ = ∫

| p̃⊥|<�
d p̃1d p̃2

∫ +∞
−∞ d p̃3. In the above, we used the identity

∫ +∞

−∞
d p0

p2
0 − �2

(p2
0 + �2)2

= 0,

and the dimensional regularization to perform the integration over p0 and p̃3. For the case with q⊥ = 0 and q3 �= 0, we first
perform the x integral, yielding Eq. (13).

For the case with q⊥ �= 0 and q3 = 0, without loss of generality, we choose the coordinate frame such that q̃⊥ = (q̃⊥, 0).
Therefore, we have

∂

∂�
�(0, q⊥, 0) = �

2v2
⊥v3π2

I⊥(t, b̃q̃⊥),

where t = �/q̃⊥ and

I⊥(t, s) =
∫ 1

0
dx

∫ 2π

0

dφ

π

[
1 − t2 + t cos φ + s2t2[cos (2φ) + 2t cos φ + t2]

(1 − x)(t2 + s2t4) + x[1 + 2t cos φ + t2 + s2(1 + 2t cos φ + t2)2]

]
,

For |s| 	 1, we have

I⊥(t, s) ≈
∫ 1

0
dx

∫ 2π

0

dφ

π

(
1 − t + cos φ

t + x/t + 2x cos φ

)
= 2 −

∫ 1

0

dx

x

[
1 − (1 − 2t2)x + t2√

(1 − 4t2)x2 + 2t2x + t4

]
.
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Note that t/x + 1/t > 2/x � 2. When t � 1, this equation can be written as

I⊥(t, s) = 2 − 2
∫ 1

0
dx

[
1 − 2x(1 − x)

t2

]
+ O(1/t4) = 2

3t2
+ O(1/t4).

Thus, we find that

�(0, q⊥, 0 ≈ q̃2
⊥

3v2
⊥v3π2

∫ �/q̃⊥

μ/q̃⊥

dt

t
+ · · · = q̃2

⊥
3v2

⊥v3π2
ln

(
�

μ

)
+ · · · ,

when |b̃|q̃⊥ 	 1, where μ is an IR energy scale and · · · denotes the finite part.
On the other hand, for |s| � 1, we have

I⊥(t, s) ≈
∫ 1

0
dx

∫ 2π

0

dφ

π

[
1 − 1 + (2/t ) cos φ + (1/t2) cos (2φ)

1 + (4x/t ) cos φ + (2x/t2)(1 + 2 cos2 φ) + (4x/t3) cos φ + x/t4

]
.

When t � 1, we find that

I⊥(t, s) ≈ 2

t2

∫ 1

0
dx

∫ 2π

0

dφ

π
[x + (6x − 8x2) cos2 φ]

+ O(1/t3)

= 8

3t2
+ O(1/t3),

which leads to

�(0, q⊥, 0) ≈ 4q̃2
⊥

3v2
⊥v3π2

ln

(
�

μ

)
+ · · · ,

when |b̃|q̃⊥ � 1, where μ is an IR energy scale and · · ·
denotes the finite part.

These calculations suggest that the screened Coulomb po-
tential Vs(q) in the momentum space takes the form

Vs(q) = g2

q2 + w|q3| ,

when q � 1/Lc. When Lc is very large, the screened Coulomb
potential in the real space is approximately given by

Vs(r) ≈
∫

d3qeiq·r g2

q2 + w|q3| ,

except its tail.
In the transverse direction, we have

Vs(r⊥, 0) = g2
∫ +∞

−∞

d p3

2π

∫
d p1d p2

(2π )2

eip⊥·r⊥

p2
⊥ + p2

3 + w|p3|

= g2
∫ +∞

−∞

d p3

2π

∫ +∞

0

d p⊥ p⊥
(2π )2

∫ 2π

0
dθ

eip⊥r⊥ cos θ

p2
⊥ + p2

3 + w|p3| ,

where r⊥ = (x, y) and p⊥ = (p1, p2). Using the Jacob-Auger
expansion

eip⊥r⊥ cos θ =
+∞∑

m=−∞
imeimθ Jm(p⊥r⊥),

where Jm(x) is the Bessel function of order m, we find that

Vs(r⊥, 0) = g2
∫ +∞

−∞

d p3

2π

∫ +∞

0

d p⊥ p⊥
(2π )2

J0(p⊥r⊥)

p2
⊥ + p2

3 + w|p3| .

Integration over p⊥ can be done with the help of the identity
[38]

∫ +∞

0
dx

xJ0(ax)

x2 + k2
= K0(ak),

where a, k > 0 and K0(z) is the modified Bessel function of
the second kind of order 0, yielding

Vs(r⊥, 0) = g2

4π2

∫ +∞

−∞

d p3

2π
K0

(√
p2

3 + w|p3|r⊥
)

= wg2

8π3

∫ +∞

0
dt

t√
t2 + 1

K0(wr⊥t/2)

= g2

4π3r⊥

∫ +∞

0
dt

t√
t2 + (wr⊥/2)2

K0(t ).

In terms of the identity [38]

∫ +∞

0
dxxμK0(ax) = 2μ−1

aμ+1

[
�

(
1 + μ

2

)]2

,

where Re(a) > 0 and Re(μ + 1) > 0, we get Eq. (17).
On the other hand, in the z direction, Vs is given by

Vs(0, z) = g2
∫

d p1d p2

(2π )2

∫ +∞

−∞

d p3

2π

eip3z

p2
⊥ + p2

3 + w|p3|

= g2
∫

d p1d p2

(2π )2

∫ +∞

−∞

d p3

2π

eip3|z|

p2
⊥ + p2

3 + w|p3|

= g2

|z|
∫

d p1d p2

(2π )2

∫ +∞

−∞

dt

2π

eit

p2
⊥ + t2z2 + w|z||t | .

For w|z| 	 1, Vs(0, z) can be approximated as

Vs(0, z) ≈ g2

|z|
∫

d p1d p2

(2π )2

∫ +∞

−∞

dt

2π

eit

p2
⊥ + t2z2

= g2
∫

d p1d p2

(2π )2

∫ +∞

−∞

d p3

2π

eip3|z|

p2
⊥ + p2

3

= g2

2

∫
d p1d p2

(2π )2

e−p⊥|z|

p⊥
= g2

4π |z| .
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For w|z| � 1, Vs(0, z) can be approximated as

Vs(0, z) ≈ g2

|z|
∫

d p1d p2

(2π )2

∫ +∞

−∞

dt

2π

eit

p2
⊥ + w|z||t |

= g2
∫

d p1d p2

(2π )2

∫ +∞

−∞

d p3

2π

eip3z

p2
⊥ + w|p3|

= g2

π

∫
d p1d p2

(2π )2

∫ +∞

0
d p3

cos (p3|z|)
p2

⊥ + wp3
.

The p3 integral can be performed with the help of the identity
[38]∫ +∞

0
dx

cos (ax)

x + β
= − sin (aβ )si(aβ ) − cos (aβ )ci(aβ ),

where a > 0, |arg(β )| < π , and si(x), ci(x) are, respectively,
the sine and cosine integrals, yielding

Vs(0, z) = − g2

4π3w

∫
d p1d p2 sin (zp2

⊥/w)si(zp2
⊥/w)

− g2

4π3w

∫
d p1d p2 cos (zp2

⊥/w)ci(zp2
⊥/w)

= − g2

4π2w

∫ +∞

0
dt sin (zt/w)si(zt/w)

− g2

4π2w

∫ +∞

0
dt cos (zt/w)ci(zt/w).

Note that si(−x) = −si(x) and ci(−x) = ci(x). With the help
of the identities [38]∫ +∞

0
dx sin (px)si(qx) = − π

4p
=

∫ +∞

0
dx cos (px)ci(qx),

when p2 = q2, we find that

Vs(0, z) = g2

8π |z| .

APPENDIX B: ONE-LOOP RG EQUATIONS

By decomposing the fields into slow and fast modes, the
action S[ψ,ψ†, φ] can be written as

S[ψ,ψ†, φ] = S[ψ<,ψ†
<, φ<] + S[ψ>,ψ†

>, φ>] + Sint,

where

Sint = i
∑

ξ

∫
X

[φ>(ψ†
ξ>ψξ< + ψ

†
ξ<ψξ>) + φ<ψ

†
ξ>ψξ>],

describes the coupling between the slow and fast modes. Note
that the terms with a single fast mode vanish due to momen-
tum conservation. By integrating out the fast modes, we get
an effective action for the slow modes

Seff[ψ<,ψ†
<, φ<] = S[ψ<,ψ†

<, φ<] + I[ψ<,ψ†
<, φ<],

where

e−I[ψ<,ψ†
<,φ<] =

∫
D[ψ>]D[ψ†

>]D[φ>]e−S[ψ>,ψ†
>,φ>]−Sint .

In the following, we will compute I in terms of a perturbative
expansion in powers of Sint.

Before plunging into the detailed calculations, we notice
that the action S is invariant against the U(1) gauge transfor-
mation

ψξ → e−iχ (τ )ψξ , φ → φ + ∂τχ, (B1)

where χ is a function of the imaginary time τ . This gauge
invariance results in a Ward identity, which puts a constraint
on the low-energy physics. We now derive it.

By integrating out the fast modes, the action becomes

S →
∑
ξ=±

∫
X

ψ
†
ξ [(1 + �τ )∂τ + h̄ξ ]ψξ + (1 + �v )i

∫
X

φρ0

+ 1

2

∫
X

[(
1

g2
⊥

+ �⊥

)
|∇⊥φ|2 +

(
1

g2
3

+ �3

)
|∂3φ|2

]

+ · · · ,

where h̄ξ is the renormalized Hamiltonian whose actual form
is irrelevant to our discussion and · · · denotes the terms with
higher scaling dimensions. The gauge invariance of S requires
that

�τ = �v. (B2)

Equation (B2) is the desired expression of the Ward identity.
To proceed, we write I as

I =
+∞∑
n=1

In,

where In denotes the contribution from Sn
int. We first compute

I1 which is given by

I1 = 〈Sint〉> = i
∑

ξ

∫
X

φ<〈ψ†
ξ>ψξ>〉>,

where 〈· · · 〉> denotes the functional integral over the fast
modes. Since∑

ξ

〈ψ†
ξ>(X )ψξ>(X )〉>

=
∑

ξ

∫ ′ d3 p

(2π )3

∫ +∞

−∞

d p0

2π
eip00+

tr[Gξ0(P)]

= − 8

v2
⊥v3

∫ ′ d3 p̃

(2π )3

∫ +∞

−∞

d p0

2π

ip0

p2
0 + p̃2

⊥ + p̃2
3 + b̃2 p̃4

⊥
= 0,

we conclude that I1 = 0.
Next, we calculate I2 which is given by

I2 = − 1
2

〈
S2

int

〉
>

+ 1
2 I2

1 = − 1
2

〈
S2

int

〉
>
.

In view of Sint, I2 consists of two terms:

I2 =
∑

ξ

∫
X

∫
Y

ψ
†
ξ<(X )�ξ (X − Y )ψξ<(Y )

+ 1

2

∫
X

∫
Y

φ<(X )�(X − Y )φ<(Y ),

where �ξ and � are the self-energies of ψξ< and φ<, respec-
tively.
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We first calculate the self-energy �. In the momentum space, the one-loop contribution to it is of the form

�(Q) =
∑

ξ

∫ ′ d3 p

(2π )3

∫ +∞

−∞

d p0

2π
tr[Gξ0(P)Gξ0(P + Q)].

By taking the trace over the � matrices, � can be written as

�(Q) = 8

v2
⊥v3

∫ ′ d3 p̃

(2π )3

∫ +∞

−∞

d p0

2π

p0(p0 + q0) − ∑3
j=1 p̃ j ( p̃ j + q̃ j ) − b̃2 ∑

j=4,5 d j ( p̃⊥)d j ( p̃⊥ + q̃⊥)(
p2

0 + [E ( p̃)]2
){

(p0 + q0)2 + [E ( p̃ + q̃)]2
}

= 4

v2
⊥v3

∫ ′ d3 p̃

(2π )3

E ( p̃ + q̃)[E ( p̃ + q̃) + iq0] + ∑3
j=1 p̃ j ( p̃ j + q̃ j ) + b̃2 ∑

j=4,5 d j ( p̃⊥)d j ( p̃⊥ + q̃⊥)

E ( p̃ + q̃)[E ( p̃ + q̃) − E ( p̃) + iq0][E ( p̃ + q̃) + E ( p̃) + iq0]

− 4

v2
⊥v3

∫ ′ d3 p̃

(2π )3

E ( p̃)[E ( p̃) − iq0] + ∑3
j=1 p̃ j ( p̃ j + q̃ j ) + b̃2 ∑

j=4,5 d j ( p̃⊥)d j ( p̃⊥ + q̃⊥)

E ( p̃)[E ( p̃ + q̃) − E ( p̃) + iq0][E ( p̃ + q̃) + E ( p̃) − iq0]
,

where E ( p̃) =
√

p̃2
⊥ + p̃2

3 + b̃2 p̃4
⊥. From the first equality, we

notice that � is an even function of q0, q̃1, q̃2, and q̃3. More-
over, it is invariant against the exchange of variables: q̃1 ↔ q̃2.
Therefore, the derivative expansion of � is of the form

�(Q) = �(0) + �0q2
0 + �⊥q̃2

⊥ + �3q̃2
3 + · · · ,

where · · · denotes the higher-order terms. One may verify that
limq0→0 limq→0 �(Q) = 0 = limq→0 limq0→0 �(Q), and thus
�(0) = 0. This implies that the φ field is gapless to the one-
loop order.

The expansion coefficients �3 and �⊥ are given by

�3 = 1

v2
⊥v3

∫ ′ d3 p̃

(2π )3

{
1

[E ( p̃)]3
− p̃2

3

[E ( p̃)]5

}

= l

2v2
⊥v3π2

F3(δ) + O(l2),

and

�⊥ = 1

v2
⊥v3

∫ ′ d3 p̃

(2π )3

{
1 + 4b̃2 p2

⊥
[E ( p̃)]3

− (1 + 2b̃2 p2
⊥)2 p2

⊥
2[E ( p̃)]5

}

= l

2v2
⊥v3π2

F⊥(δ) + O(l2),

respectively, where δ = b̃� is a dimensionless parameter and

F3(z) =
∫ +∞

0
dt

[
1

(t2 + 1 + z2)3/2
− t2

(t2 + 1 + z2)5/2

]

= 2

3(1 + z2)
,

F⊥(z) =
∫ +∞

0
dt

[
1 + 4z2

(t2 + 1 + z2)3/2
− (1 + 2z2)2

2(t2 + 1 + z2)5/2

]

= 2 + 11z2 + 8z4

3(1 + z2)2
.

Next, we calculate the self-energy �ξ of the
fermionic fields. The one-loop contribution to it is of the

form

�ξ (Q)

= − i2

2
· 2

∫ ′ d3 p

(2π )3

∫ +∞

−∞

d p0

2π
G0ξ (P)D0(q − p)

=
∫ ′ d3 p

(2π )3

∫ +∞

−∞

d p0

2π
G0ξ (P)D0(q − p)

= �ξ0(Q) +
5∑

j=1

�ξ j (Q)� j,

where

D0(p) = − g2
⊥g2

3

(g3/v⊥)2 p̃2
⊥ + (g⊥/v3)2 p̃2

3

,

is the free propagator of the φ field,

�ξ0(Q) = 1
4 tr[�ξ (Q)]

= −
∫ ′ d3 p

(2π )3
D0(q − p)

∫ +∞

−∞

d p0

2π

ip0

p2
0 + [E ( p̃)]2

= 0,

and

�ξ j (Q) = 1
4 tr[� j�ξ (Q)].

Consequently, we find that

�ξ j (Q)

= −
∫ ′ d3 p

(2π )3
D0(q − p)

∫ +∞

−∞

d p0

2π

p̃ j

p2
0 + [E ( p̃)]2

= −
∫ ′ d3 p

(2π )3

p̃ jD0(q − p)

2E ( p̃)
,

for j = 1, 2,

�ξ3(Q)

= −
∫ ′ d3 p

(2π )3
D0(q − p)

∫ +∞

−∞

d p0

2π

ξ p̃3

p2
0 + [E ( p̃)]2

= −
∫ ′ d3 p

(2π )3

ξ p̃3D0(q − p)

2E ( p̃)
,
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and

�ξ j (Q)

= −
∫ ′ d3 p

(2π )3
D0(q − p)

∫ +∞

−∞

d p0

2π

b̃d j (p⊥)

p2
0 + [E ( p̃)]2

= −
∫ ′ d3 p

(2π )3

b̃d j (p⊥)D0(q − p)

2E ( p̃)
,

for j = 4, 5.
To proceed, we perform the derivation expansions on

�ξ j (Q). We notice that these functions have the following
properties. (i) For j = 1, . . . , 5, �ξ j (0) = 0. This can be seen
as follows. For j = 1, 2, 3,

�ξ j (0) ∝
∫ ′ d3 p

(2π )3

p̃ jD0(p)

2E ( p̃)
= 0,

because the integrand is an odd function of pj . Next, for j =
4,

�ξ4(0) ∝
∫ ′ d3 p

(2π )3

( p̃2
2 − p̃2

1)D0(p)

2E ( p̃)
= 0,

because the integrand is odd under the exchange of variables
p̃1 ↔ p̃2. Finally, for j = 5,

�ξ5(0) ∝
∫ ′ d3 p

(2π )3

p̃1 p̃2D0(p)

2E ( p̃)
= 0,

because the integrand is an odd function of p1 and p2. The
fact �ξ j (0) = 0 implies that the fermion fields are still gapless
to the one-loop order. (ii) For j = 1, 2, 3, �ξ j (Q) are odd
functions of q j and even functions of qi �= j . (iii) �ξ4(Q) is an
even function of q1, q2, and q3. Moreover, it is odd under the
exchange of variables q1 ↔ q2. (iv) �ξ5(Q) is an odd function
of q1 and q2 and an even function of q3. Moreover, it is an even
function of q̃⊥. Based on (i) to (iv), the derivative expansions
of �ξ j (Q) are of the forms

�ξ j (Q) = �
(1)
ξ j q̃ j + · · · ,

for j = 1, 2, 3 and

�ξ j (Q) = �
(1)
ξ j b̃d j (q̃⊥) + �

(2)
ξ j q̃2

3 + · · · ,

for j = 4, 5 where · · · denotes the higher-order terms.
If �

(2)
ξ4/5 �= 0, then we have to add additional terms to

the bare action and introduce more parameters. Moreover, if
�

(1)
ξ4 �= �

(1)
ξ5 , we have to introduce two parameters b1 and b2

instead of a single one b. We will see, however, �
(2)
ξ4/5 = 0

and �
(1)
ξ4 = �

(1)
ξ5 to the one-loop order, and thus all terms

listed in the bare action form a complete set under the RG
transformations, at least to the one-loop order.

These expansions coefficients can be calculated as
follows:

�
(1)
ξ1/2 = − g2

3

v2
⊥

∫ ′ d3 p

(2π )3

p̃2
1/2D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]
= − g2

3

v4
⊥v3

∫ ′ d3 p̃

(2π )3

p̃2
1/2D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]
= β2αlG⊥(β, δ) + O(l2),

�
(1)
ξ3 = −ξg2

⊥
v2

3

∫ ′ d3 p

(2π )3

p̃2
3D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]
= − ξg2

⊥
v2

⊥v3
3

∫ ′ d3 p̃

(2π )3

p̃2
3D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]
= ξβαlG3(β, δ) + O(l2),

�
(1)
ξ4 = −2g4

3

v4
⊥

∫ ′ d3 p

(2π )3

(
p̃2

2 − p̃2
1

)
p̃2

2D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]2

= 2g2
⊥g6

3

v6
⊥v3

∫ ′ d3 p̃

(2π )3

(
p̃2

2 − p̃2
1

)
p̃2

2

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]3

= g2
⊥g6

3

8v6
⊥v3π2

∫ �

�/s
d p̃⊥ p̃⊥

∫ +∞

−∞
d p̃3

× p̃4
⊥[

(g3/v⊥)2 p̃2
⊥ + (g⊥/v3)2 p̃2

3

]3
√

p̃2
3 + p̃2

⊥ + b̃2 p̃4
⊥

= β3αlG4(β, δ) + O(l2),

�
(2)
ξ4 = −2b̃g4

⊥
v4

3

∫ ′ d3 p

(2π )3

(
p̃2

2 − p̃2
1

)
p̃2

3D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]2

+ b̃g4
⊥

2v4
3

∫ ′ d3 p

(2π )3

(
p̃2

2 − p̃2
1

)
D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]
= 0,

and

�
(1)
ξ5 = −2g4

3

v4
⊥

∫ ′ d3 p

(2π )3

2 p̃2
1 p̃2

2D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]2

= 2g2
⊥g6

3

v6
⊥v3

∫ ′ d3 p̃

(2π )3

2 p̃2
1 p̃2

2

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]3

= g2
⊥g6

3

8v6
⊥v3π2

∫ �

�/s
d p̃⊥ p̃⊥

∫ +∞

−∞
d p̃3

× p̃4
⊥[

(g3/v⊥)2 p̃2
⊥ + (g⊥/v3)2 p̃2

3

]3
√

p̃2
3 + p̃2

⊥ + b̃2 p̃4
⊥

= �
(1)
ξ4 ,

�
(2)
ξ5 = −2b̃g4

⊥
v4

3

∫ ′ d3 p

(2π )3

2 p̃1 p̃2 p̃2
3D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]2

+ b̃g4
⊥

2v4
3

∫ ′ d3 p

(2π )3

2 p̃1 p̃2D0(p)

E ( p̃)
[
(g3/v⊥)2 p̃2

⊥ + (g⊥/v3)2 p̃2
3

]
= 0,
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where β = η/r2 and

G⊥(β, z) =
∫ +∞

0

dt

(t2 + β )2
√

t2 + 1 + z2
,

G3(β, z) =
∫ +∞

0
dt

2t2

(t2 + β )2
√

t2 + 1 + z2
,

G4(β, z) =
∫ +∞

0

dt

(t2 + β )3
√

t2 + 1 + z2
.

Finally, we calculate the one-loop contribution to the vertex
function, which arises from I3:

I3 = 1
6

〈
S3

int

〉
>

+ I1I2 − 1
6 I3

1 = 1
6

〈
S3

int

〉
>

= i�v

∫
X

φ<ρ0< + · · · ,

where · · · denotes the terms with higher scaling dimensions.
In view of Sint, �v is given by

�v = (−i)
i3

6
· 3 · 2

∑
ξ

∫ ′ d3 p

(2π )3

∫ +∞

−∞

d p0

2π
[−D0(−p)]

× [G0ξ (P)]2

= −
∑

ξ

∫ ′ d3 p

(2π )3
D0(−p)

∫ +∞

−∞

d p0

2π

p2
0 − [E ( p̃)]2

(p2
0 + [E ( p̃)]2)2

= 0.

As we already showed that �τ = 0 to the one-loop order,
this result indicates that our one-loop calculation is consistent
with the Ward identity [Eq. (B2)], and thus respects the gauge
invariance.

Collecting the above results, Seff to the one-loop order is of
the form

Seff[ψ<,ψ†
<, φ<] =

∑
ξ

∫
X

ψ
†
ξ<∂τψξ< + [1 + β2αlG⊥(β, δ) + O(l2)]

∑
ξ

∑
j=1,2

∫
X

ψ
†
ξ<� jv⊥(−i∂ jψξ<)

+ [1 + βαlG3(β, δ) + O(l2)]
∑

ξ

∫
X

ψ
†
ξ<�3ξv3(−i∂3ψξ<)

+ [1 + β3αlG4(β, δ) + O(l2)]
∑

ξ

∑
j=4,5

∫
X

ψ
†
ξ<� jbd j (−i∇)ψξ< + i

∫
X

φ<ρ0<

+ 1

2

∫
X

{[
1

g2
⊥

+ l

2v3π2
F⊥(δ) + O(l2)

]
|∇⊥φ<|2 +

[
1

g2
3

+ l

2rv⊥π2
F3(δ) + O(l2)

]
|∂3φ<|2

}
+ · · · ,

where · · · denotes the terms with higher scaling dimensions. Now we perform the scaling transformation

x(y) → elx(y), z → ez3l z, τ → ezlτ, ψξ< = Z−1/2
ψ ψξ , φ< = Z−1/2

φ φ,

to bring the terms
∫

X ψ
†
ξ<∂τψξ< and i

∫
X φ<ρ0< back to their original forms, yielding Zψ = e(2+z3 )l and Zφ = e2zl . Therefore, Seff

becomes

Seff[ψ,ψ†, φ] =
∑

ξ

∫
X

ψ
†
ξ ∂τψξ + e(z−1)l [1 + β2αlG⊥(β, δ) + O(l2)]

∑
ξ

∑
j=1,2

∫
X

ψ
†
ξ � jv⊥(−i∂ jψξ )

+ e(z−z3 )l [1 + βαlG3(β, δ) + O(l2)]
∑

ξ

∫
X

ψ
†
ξ �3ξv3(−i∂3ψξ )

+ e(z−2)l [1 + β3αlG4(β, δ) + O(l2)]
∑

ξ

∑
j=4,5

∫
X

ψ
†
ξ � jbd j (−i∇)ψξ

+ 1

2
e(z3−z)l

[
1

g2
⊥

+ l

2v3π2
F⊥(δ) + O(l2)

] ∫
X

|∇⊥φ|2

+ 1

2
e(2−z−z3 )l

[
1

g2
3

+ l

2rv⊥π2
F3(δ) + O(l2)

] ∫
X

|∂3φ|2 + i
∫

X
φρ0 + · · · .

Consequently, the one-loop recursion relations for the parameters v⊥, v3, b, g2
⊥, and g2

3 are

v′
⊥

v⊥
= e(z−1)l [1 + β2αlG⊥(β, δ) + O(l2)] = 1 + (z − 1)l + β2αlG⊥(β, δ) + O(l2),

v′
3

v3
= e(z−z3 )l

[
1 + βαlG3(β, δ) + O(l2)

] = 1 + (z − z3)l + βαlG3(β, δ) + O(l2),

b′

b
= e(z−2)l

[
1 + β3αlG4(β, δ) + O(l2)

] = 1 + (z − 2)l + β3αlG4(β, δ) + O(l2),
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g2
⊥

(g′
⊥)2

= e(z3−z)l [1 + 2αlF⊥(δ) + O(l2)] = 1 − (z − z3)l + 2αlF⊥(δ) + O(l2),

g2
3

(g′
3)2

= e(2−z−z3 )l
[
1 + 2βαlF3(δ) + O(l2)

] = 1 − (z + z3 − 2)l + 2βαlF3(δ) + O(l2).

We choose the values of z and z3 such that v3 and b are both RG invariants, which leads to Eq. (19). Therefore, the one-loop
recursion relations for the other parameters become

r′

r
= 1 + [1 + β2αG⊥(β, δ) − β3αG4(β, δ)]l + O(l2),

δ′

δ
= 1 − [

3 + 2β2αG⊥(β, δ) − 2β3αG4(β, δ)
]
l + O(l2),

g2
⊥

(g′
⊥)2

= 1 + [βαG3(β, δ) + 2αF⊥(δ)]l + O(l2),
g2

3

(g′
3)2

= 1 − [2 + βαG3(β, δ) − 2β3αG4(β, δ) − 2βαF3(δ)]l + O(l2).

Note that δ′ = b′�′/(v′
⊥)2 = [b′/(v′

⊥)2]�e−l . From these one-loop recursion relations, we obtain Eqs. (20) to (23).
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