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Spin current density functional theory of Weyl semimetals
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Weyl fermions are massless solutions of the Dirac equation described by two-component (2c) complex
spinors. Such elusive objects emerge as quasiparticles in so-called Weyl semi-metals (WSM). We discuss the
generalization of the standard one-component density functional theory (DFT) to a 2c approach (the spin-current
density functional theory, SCDFT), and its application to the practical quantum-mechanical description of WSMs
through a self-consistent treatment of the spin-orbit coupling (SOC) and nonlocal Fock exchange. For hybrid
exchange-correlation functionals in the local density approximation or generalized gradient approximation of
the SCDFT, we use Levy’s constrained search formalism to map specific blocks of the SCDFT potential to
specific blocks of the one-electron density matrix, which allows for a straightforward comparison of SCDFT
with DFT. We show how a three-dimensional doubly degenerate bulk Dirac node is present in the TaAs WSM in
the absence of SOC, lying on the kx = 0 mirror plane, which is split into two singly degenerate Weyl nodes off
the mirror plane by the SOC. This breaking of the degeneracy and the corresponding splitting of the two Weyl
nodes with opposite chirality offers a measurable way to assess different theories. We show how an SCDFT
formulation is essential to a correct quantitative description of the electronic features of WSMs.
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I. INTRODUCTION

Weyl fermions are chiral massless spin-1/2 particles
named after Hermann Weyl who theorized them as possi-
ble solutions of the two-component Weyl equation back in
1929 [1–3]. The actual existence of such particles remained
elusive until about the early 2010s when it was theoreti-
cally understood that they could emerge as quasiparticles in
certain crystals with peculiar features in the electronic band
structure: the so-called Weyl semimetals (WSMs) [4–7]. A
WSM is characterized by singly degenerate electronic bands,
which cross at specific points (referred to as Weyl nodes) in
the Brillouin zone with a linear dispersion along all three
directions in momentum space. Pictorially, Weyl nodes can
be interpreted as three-dimensional (3D) analogs of the two-
dimensional (2D) Dirac cones of graphene [8]. At variance
with topological insulators where only surface states are rele-
vant to their peculiar electronic properties [9,10], WSMs also
exhibit bulk states responsible for a variety of exotic phe-
nomena such as the anomalous Hall effect, nonlocal transport,
negative magnetoresistance, unusual optical conductivity, and
local nonconservation of the ordinary current [11–14]. Many
crystals have since been theoretically suggested as possible
WSM candidates, with a broken space inversion symmetry
[15–20] or time-reversal symmetry [21,22]. However, none
of them proved stable and simple enough to be successfully
synthesized.
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In 2015, an ideal, stoichiometric, time reversal symmetry-
preserving WSM candidate was found through a com-
putational screening over hundreds of possible non-
centrosymmetric crystals: tantalum arsenide, TaAs, in its
tetragonal I41md space group. Standard density functional
theory (DFT) was used to characterize its 3D electronic band
structure, as well as its electronic surface states [23]. The
inclusion of spin-orbit coupling (SOC) into the DFT treatment
proved crucial to be able to find, locate, and characterize
the Weyl nodes in its electronic structure [23,24]. A total
of 24 Weyl nodes were found in the bulk Brillouin zone
of the crystal that could be grouped into two independent
families: 8 nodes (denoted as W1) lying on the kz = 1 plane
(in units of 2π/c), and 16 nodes (denoted as W2) lying off
this plane. In turn, each Weyl node belongs to a pair of nodes
with opposite chirality. Shortly after, in 2015, building on
these theoretical predictions, came the experimental confir-
mation of the WSM character of TaAs through a soft x-ray
angle-resolved photoemission spectroscopy (XS-ARPES) in-
vestigation of its bulk and surface electronic structure: the 3D
linearly dispersed Weyl cones and the corresponding Fermi
arc surface states were first revealed [25] and then confirmed
[26–28]. Quantum-mechanical simulations based on the DFT
not only initially predicted the WSM nature of TaAs [23], but
were systematically used since to characterize its many pe-
culiar electronic, optical, and mechanical properties [29–37].
DFT simulations also proved key to the prediction of a high-
pressure hexagonal phase of TaAs belonging to the P6m2
space group [38]. The new phase emerges above about 14 GPa
of pressure, can be stabilized at ambient conditions, and, re-
markably, is in turn a WSM with 12 Weyl nodes of just one
type [39].
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II. FORMAL ASPECTS

We briefly recalled above the crucial role that DFT
simulations have played and likely will keep playing in
the prediction and characterization of WSMs, representing
the method-of-choice for affordable solid-state quantum-
mechanical simulations. However, Weyl fermions are in-
trinsically two-component (2c) complex spinors [1] while
standard DFT approaches are devised on a one-component
(1c) real spinor representation of the wave function [40],
which makes them unsuitable to a quantitative description
of many electronic properties of WSMs, as illustrated below.
The generalization of the standard 1c DFT to a more general
description where the wave function is expressed in the basis
of 2c Pauli spinors, known as spin current density functional
theory (SCDFT), was first developed for a treatment of arbi-
trarily oriented magnetic fields [41] and later extended to the
treatment of SOC [42]. To fully capture the complex 2c nature
of the wave function, exchange-correlation (xc) functionals
of the SCDFT must depend on an extended set of density
variables [41–47]:

DFT: Fxc[n], (1)

collinear SDFT: Fxc[n, mz], (2)

noncollinear SDFT: Fxc[n, mx, my, mz], (3)

SCDFT: Fxc[n, mx, my, mz, j, Jx, Jy, Jz], (4)

where n is the particle-number density; mx, my, and mz are the
Cartesian components of the magnetization vector m; j is the
particle current; and Jx, Jy, Jz the three spin-current vector
densities. For the different DFT schemes outlined in Eqs. (1)
to (4), xc potentials v̂xc are defined through appropriate func-
tional derivatives of the xc energy, Exc. For instance,

DFT: v̂xc = δExc

δn
, (5)

collinear SDFT: v̂xc = δExc

δn
+ σ z δExc

δmz
, (6)

noncollinear SDFT: v̂xc = δExc

δn
+

x,y,z∑
c

σ c δExc

δmc
, (7)

where σ x, σ y, and σ z are Pauli spin matrices. We refer to
Eqs. (7) to (9) of Ref. [48] for analogous expressions for the
case of SCDFT. For time reversal symmetry (TRS) preserving
crystals, such as TaAs, the magnetization m and particle-
current j are vanishing, hence Eq. (4) reduces to [41,42,47]

SCDFT (TRS): Fxc[n, Jx, Jy, Jz]. (8)

Thus, in analogy with scalar-relativistic theories, j and m
in SCDFT are nonvanishing in open-shell systems only, and
characterize field-free, as well as Abelian field-response prop-
erties of the system [41,49–51]. On the other hand, Jx, Jy, Jz

are nonvanishing even in closed-shell systems and may be
interpreted as responses to an effective, non-Abelian field
produced by the SOC effect [49,52].

The explicit parametrization of xc functionals of the type
(4) or (8) is a formidable task and has never been attempted,
which explains the very limited application of the SCDFT
in condensed matter physics to date [53]. Recently, a for-
mal analysis of the nonlocal Fock exchange operator X̂ in a
2c complex spinor basis has allowed us to identify specific
spin-blocks associated to specific density variables [54]. The
matrix representation X of X̂ in a given single-particle orbital
basis in spin space is

X = Re

(
X↑↑ X↑↓

X↓↑ X↓↓

)
+ Im

(
X↑↑ X↑↓

X↓↑ X↓↓

)
. (9)

For instance, in a basis of pure real local orbitals
(φμ, φν, φρ, φω, . . . ), the matrix elements of X are written
[47]

X σσ ′
μν =

∑
ρω

Pσσ ′
ρω (μρ|ων), (10)

where σ and σ ′ =↑,↓ are spin indices, (. . . | . . . ) is a two-
electron integral written in Mulliken notation, and Pσσ ′

μν are
elements of the one-electron density matrix P. Equation (10)
provides a one-to-one mapping of the spin-blocks of the one-
electron density matrix to those of the Fock exchange matrix.
The spin-blocks of P (and hence of X) are, in turn, linked to
individual density variables. Specifically [47,54],

ReX↑↑ + ReX↓↓ ←→ n,

ReX↓↑ + ReX↑↓ ←→ mx,

ImX↓↑ − ImX↑↓ ←→ my,

ReX↑↑ − ReX↓↓ ←→ mz,

ImX↑↑ + ImX↓↓ ←→ j,

ImX↓↑ + ImX↑↓ ←→ Jx,

ReX↓↑ − ReX↑↓ ←→ Jy,

ImX↑↑ − ImX↓↓ ←→ Jz. (11)

Stemming from this analysis and from that of the short range
behavior of the exchange hole [49] we propose a formally
sound, and yet practical, version of the SCDFT, which con-
sists in the inclusion of a fraction α of Fock exchange into
otherwise standard xc potentials v̂xc of the SDFT or DFT [48]
as follows:

SCDFT: v̂xc[n, m, j, Jx, Jy, Jz] = v̂c[n, m] + (1 − α) × v̂x[n, m] + α × X̂ [n, m, j, Jx, Jy, Jz], (12a)

SCDFT (TRS): v̂xc[n, Jx, Jy, Jz] = v̂c[n] + (1 − α) × v̂x[n] + α × X̂ [n, Jx, Jy, Jz], (12b)

where α is a single tunable parameter in the theory, as in the
well-known global hybrid standard xc functionals [55,56]. In
Eq. (12), v̂c and v̂x are the correlation and exchange potential

operators in either a local density approximation (LDA) or
generalized gradient approximation (GGA) treatment [48].
To assess the effect of the current densities (such as j and
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Jx, Jy, Jz) on the electronic structure, we devise a strategy
to selectively “turn-off” their contributions in the exchange
operator X̂ , as worked out in the electronic supporting infor-

mation (ESI) [57]. This procedure leads to an operator X̂ ′ that
does not depend on the current densities. Thus, in terms of X̂ ′,
Eqs. (12a) and (12b) reduce to

SCDFT → SDFT: v̂xc[n, m] = v̂c[n, m] + (1 − α) × v̂x[n, m] + α × X̂ ′[n, m], (13a)

SCDFT (TRS) → DFT: v̂xc[n] = v̂c[n] + (1 − α) × v̂x[n] + α × X̂ ′[n]. (13b)

Hence, the comparison of predictions from Eqs. (12b) and
(13b) allows for a clearer understanding of the role played by
the spin current densities in the two-electron potential.

III. COMPUTATIONAL DETAILS

All calculations are performed with a developmental ver-
sion of the CRYSTAL17 package [58,59], which has recently
been generalized to the self-consistent treatment of SOC
[46,47,60], and where we implemented the approach de-
scribed in Sec. II. We used the ECP60MDF and ECP28MDF
effective-core potentials of Dolg and coworkers, for Ta
and As, respectively [61,62]. These were derived from
multiconfigurational four-component Dirac-Coulomb Breit
calculations and were used with valence basis sets derived
from the associated quadruple-zeta ones [61,62]. For Ta, we
removed all polarization functions with exponents below 0.1
a.u., resulting in a final (9s8p5d)/[5s5p3d] valence basis
set for the 13 valence electrons in the solid. Also for As,
polarization functions with exponents below 0.1 a.u. were
removed, resulting in a final (5s4p)/[3s2p] contraction for the
five valence electrons in the solid. Reciprocal space is sam-
pled on a regular 30 × 30 × 30 Monkhorst-Pack net within
the reciprocal primitive cell, which corresponds to 27 000
independent k points when symmetry is not exploited (for
single-point calculations upon inclusion of SOC) or to 1992
independent k points when symmetry is exploited (for ge-
ometry optimizations without SOC). Convergence is achieved
when the difference in energy between two successive cycles
does not exceed 1 × 10−8 a.u. Calculations are performed
using the SVWN5 exchange-correlation (xc) functional of the
LDA. Truncation of the Coulomb and exchange infinite lattice
series is controlled by five parameters, which are here set to 8,
8, 8, 8, 20 (see TOLINTEG keyword in the Manual).

IV. RESULTS AND DISCUSSION

In this paper, we report the first application of the SCDFT
to a WSM, TaAs, where the simultaneous self-consistent treat-
ment of SOC and Fock exchange proves key to a correct
description of its peculiar bulk electronic features (notably,
of its Weyl nodes). Predictions from the SCDFT are com-
pared to those from standard DFT and assessed on available
ARPES experimental data. We show how a 3D bulk Dirac
node is present in the absence of SOC, lying on the kx = 0
mirror plane, which is split into two W1 Weyl nodes off the
mirror plane by the SOC. This breaking of the degeneracy
and the corresponding splitting of the two W1 nodes with
opposite chirality offers a measurable way to assess different
theories. We discuss how an SCDFT formulation is essential

to a correct quantitative description of the electronic features
of WSMs.

Calculations are performed on fully relaxed TaAs struc-
tures under the only constraints imposed by the I41md
tetragonal space group. Figure 1 (left) shows the atomic struc-
ture of the TaAs tetragonal lattice. We start by discussing
the orbital relaxation of the spin current densities Jx, Jy,
and Jz during the self-consistent-field (SCF) process with
SOC included for the different theories introduced in Sec. II.
Figure 1 (right) reports the differences of spin current densi-
ties between the final electronic solution and the initial one
(where the initial one corresponds to the so-called “second
variational” density obtained after the first diagonalization of
the full Hamiltonian matrix starting from the scalar relativistic
solution) of the SCF process: 
Jc = Jc

final − Jc
initial, with c =

x, y, z. The various panels show color maps of the spatial dis-
tribution of such differences in a plane defined by the a and c
lattice vectors of TaAs, which passes through Ta and As atoms
shown in the upper left panel. The color identifies the absolute
value of the reported quantity while the length and direction
of the superimposed black arrows represent the magnitude and
direction of their in-plane Cartesian components. It is clearly
seen that both a nonhybrid standard DFT (with α = 0) and a

FIG. 1. (Left) Atomic structure of the I41md tetragonal lattice
of TaAs. (Right) Effect of orbital-relaxation on spin-current densi-
ties during the self-consistent-field process. The reported quantities
are differences between the final electronic solution and the initial
one: 
Jc = Jc

final − Jc
initial, with c = x, y, z. A plane defined by the a

and c lattice vectors of the TaAs WSM was selected, which passes
through Ta and As atoms shown in the upper left panel. The various
panels show color maps of the spatial distribution of 
Jx , 
Jy, and

Jz in such a plane. The color identifies the absolute value of the
reported quantity while the length and direction of the superimposed
black arrows represent the magnitude and direction of their in-plane
Cartesian components (no arrows are visible for 
Jx and 
Jz as they
happen to be orthogonal to the selected plane).
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FIG. 2. Bulk electronic structure of TaAs from SCDFT: (a) Electronic band structure along the �–N–�1–M path within the conventional
Brillouin zone [shown between panels (a) and (b)] without SOC and with SOC both in a DFT and SCDFT formulation. (b) Electronic band
structure along the �–�–N–�1–M–�–X path as obtained without inclusion of Fock exchange (α = 0) and with inclusion of 25% of Fock
exchange (α = 0.25). Available experimental data from ARPES measurements are also reported [26]. (c1, c2) 3D representation of the band
structure in the region of the W1 Weyl nodes, without and with inclusion of SOC, respectively. (d) Location of W1 Weyl nodes along the kx

coordinate without SOC and with SOC both in a DFT and SCDFT formulation. The experimental location derived from ARPES measurements
is marked by a vertical red line [26]. (e1, e2) 3D representation of the band structure in the region of the W2 Weyl nodes, without and with
inclusion of SOC, respectively.

hybrid DFT (with α �= 0) of the type (13b) are not capable
of accounting for the relaxation of such density variables.
Instead, a SCDFT approach of the type (12b) allows for the
effective relaxation of the spin-current densities throughout
the SCF process as a result of the coupling with the spin-orbit
interaction.

As introduced in Eq. (12b), the only tunable parameter
of our theory is the fraction α of Fock exchange. There-
fore, we started by determining the optimal value for such
parameter by exploring the range 0–50% at steps of 5%
through comparison of computed electronic band structures
to available experimental data from ARPES measurements
[26]. An optimal value of α = 25% was found, as shown
in Fig. 2(b) where the electronic structure of TaAs (top of
valence and bottom of conduction bands only) is shown along
the �–�–N–�1–M–�–X path in the conventional Brillouin
zone, with SOC being taken into account. The results obtained
with other values of α are given in the ESI. It is worth pointing
out that an optimal value of α = 25% is very consistent
with typical values used in standard hybrid DFT functionals
[56,63]. To highlight the effect of SOC on the electronic
structure of TaAs, and to show how critically it depends on the
use of the SCDFT of Eq. (12b) versus the DFT of Eq. (13b), in
Fig. 2(a) we analyze the electronic band structure in the vicin-
ity of the Fermi level EF of the system (green line) along the
�–N–�1–M path, as obtained with α = 25%. In the absence
of SOC (black lines), the solution is metallic with both the top
of valence and bottom of conduction bands crossing EF and
each other and being doubly degenerate. When SOC is taken
into account (blue lines), the degeneracy is broken so that both
the top of the valence and the bottom of the conduction bands

are split. Moreover, the valence and conduction bands are sep-
arated and the electronic structure becomes fully gapped along
the high-symmetry path. The splitting of the bands induced by
SOC is drastically enhanced by the use of the SCDFT (solid
lines) with respect to the DFT (dotted lines), particularly so
for the top of the valence band where the SCDFT splitting is
twice as large the DFT one.

Crucially, the spin-orbit interaction induces the formation
of two families of Weyl nodes, W1 and W2, off high-
symmetry planes in the Brillouin zone. We performed a 3D
scan of the Brillouin zone and located the Weyl nodes. Fig-
ure 2(e) shows a 3D representation of the electronic band
structure close to the Fermi level in the region of the W2
nodes (i.e., in the ky-kz plane at kx = 0.0127, in units of 2π/a),
without and with SOC. Contrarily to what was suggested
by previous DFT calculations [23], the electronic structure
of TaAs appears fully gapped in the region of W2 before
inclusion of SOC, which then induces the formation of the
W2 nodes, as expected. We believe that the most relevant bulk
electronic feature of the TaAs WSM is represented by the W1
family of Weyl nodes. Indeed, present SCDFT calculations
show for the first time that a 3D Dirac-like doubly degenerate
node exists in the absence of SOC, which lies on a mirror
plane at kx = 0. The spin-orbit interaction again breaks the de-
generacy and induces the splitting of the Dirac-like node into
two singly degenerate Weyl nodes of opposite chirality off the
mirror plane along the kx direction. This is shown in Fig. 2(c)
where a 3D representation of the electronic band structure
is reported close to the Fermi level in the region of the W1
nodes (i.e., in the kx-ky plane at kz = 1, in units of 2π/c),
without and with SOC. The splitting of the Dirac node into
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the two Weyl nodes off the kx = 0 mirror plane was measured
experimentally [26] and offers a way to quantitatively assess
different theories. Figure 2(d) shows one-dimensional (1D)
profiles of the band structure along the kx axis in the region of
the W1 Weyl nodes. The Dirac-like doubly degenerate node
is seen at kx = 0 (black line). The splitting into two Weyl
nodes described by the SCDFT is about twice as large as that
obtained by the DFT (solid versus dotted blue lines) and is
remarkably close to the experimentally observed splitting by
ARPES measurements (the position of the Weyl nodes being
marked by vertical lines at the bottom of the panel) [26].

In summary, we illustrated the spin-current density func-
tional theory of Weyl nodes in Weyl semi-metals and we

applied it to the description of the electronic features of TaAs.
The specific aspects of the theory which make it suitable
to the quantitative description of WSMs are discussed and
the overall effectiveness of the approach shown on the well-
characterized TaAs crystal.
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