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The computation of determinants plays a central role in diagrammatic Monte Carlo algorithms for strongly
correlated systems. The evaluation of large numbers of determinants can often be the limiting computational
factor determining the number of attainable diagrammatic expansion orders. In this work we build on the
algorithm presented in [K. Griffin and M. J. Tsatsomeros, Principal minors, part i: A method for computing
all the principal minors of a matrix, Linear Algebra Appl. 419, 107 (2006)] which computes all principal minors
of a matrix in O(2n) operations. We present multiple generalizations of the algorithm to the efficient evaluation
of certain subsets of all principal minors with immediate applications to connected determinant diagrammatic
Monte Carlo within the normal and symmetry-broken phases as well as continuous-time quantum Monte Carlo.
Additionally, we improve the asymptotic scaling of diagrammatic Monte Carlo formulated in real time to O(2n)
and report speedups of up to a factor 25 at computationally realistic expansion orders. We further show that all
permanent principal minors, corresponding to sums of bosonic Feynman diagrams, can be computed in O(3n),
thus encouraging the investigation of bosonic and mixed systems by means of diagrammatic Monte Carlo.

DOI: 10.1103/PhysRevB.105.125104

I. INTRODUCTION

Determinants are ubiquitous in the realm of mathematics
and physics [1,2]. In particular, they play a crucial role in a
variety of state-of-the-art numerical algorithms which com-
pute the physical properties of fermionic many-body systems
[3–9]. While a single determinant can be computed in poly-
nomial time [1], many algorithms require the computation of
a large number of principal minors [10] of a given matrix. In
most cases, this results in exponential asymptotic scaling and
often represents the computational bottleneck of the respec-
tive algorithms.

Diagrammatic Monte Carlo algorithms are based on the
idea of expressing physical properties of interest as a pertur-
bation series that is evaluated stochastically. A great asset of
such algorithms is that they can directly treat systems in the
thermodynamic limit (infinite system size) by computing ex-
clusively connected Feynman diagrams. In early algorithmic
implementations [11,12], such connected Feynman diagrams
were sampled individually in order to compute the coeffi-
cients of the relevant perturbation series. These methods have
found many successful applications, such as the polaron [11],
Fermi gas [13], electron gas [14], spin systems [15], and
the Fermi-Hubbard model [16–19]. Despite these triumphs,
such algorithms eventually suffer from the infamous fermion
sign problem, which leads to increased statistical variance as
a result of a factorially growing number of sign-alternating
diagrams with increasing expansion order. This difficulty has
been overcome by a number of algorithms that efficiently
compute sums of factorial numbers of diagrams by grouping
them into determinants.
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Determinants have first made their way into path-integral-
based quantum Monte Carlo methods in the continuous-time
quantum Monte Carlo algorithms (CTQMC) [4,20] and the
related determinant diagrammatic Monte Carlo (DDMC) [5].
In these algorithms of polynomial complexity, the use of
determinants strongly reduces the fermion sign problem by
explicitly computing the sum of all connected and discon-
nected Feynman diagrams up to very high expansion orders
(∼1000). CTQMC algorithms have proven especially useful
in solving the quantum impurity models within dynamical
mean-field theory and its extensions [20,21], while DDMC
has been successfully applied to study superfluid and mag-
netic transitions in the three-dimensional attractive [5] and
repulsive Fermi-Hubbard models [22] at half filling. The
presence of disconnected diagrams in the sums generated
by determinants, however, has as a consequence in that the
Monte Carlo variance grows exponentially with the number of
orbitals or lattice sites. This leads to the necessity of extrap-
olating with system size in order to reach the thermodynamic
limit and is another manifestation of the sign problem.

More recently, the connected determinant diagrammatic
Monte Carlo (CDet) [6] has been introduced. Just like the
early diagrammatic Monte Carlo algorithms, it is formu-
lated directly in the thermodynamic limit. However, instead
of sampling individual diagrams, it evaluates the sum of
the full factorial number of connected diagrams at a given
expansion order at only exponential cost [O(3n)] by recur-
sively subtracting all disconnected diagrams from the sums
generated with determinants. In order to be able to ap-
ply the recursion relations it is necessary to compute all
principal minors of the originally evaluated matrix at each
Monte Carlo step. A naive implementation of the princi-
pal minor computation scales as O(n32n) and, despite being
asymptotically favorable in comparison with the recursion
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step [O(3n)], it constitutes the bottleneck at all realisti-
cally attainable expansion orders n � 15 (corresponding to
matrix size). In Ref. [23] an algorithm for the simultaneous
computation of all principal minors of a given matrix was
presented, scaling more favorably as O(2n). This fast prin-
cipal minor algorithm (FPM) has been used in most recent
publications based on CDet computations studying the square
Fermi-Hubbard model at half filling [24–27] and finite doping
[28,29] as well as the half-filled triangular Fermi-Hubbard
model [30].

Recently, the CDet algorithm was generalized to pertur-
bative expansions around symmetry-broken starting points
inside of superfluid phases in the attractive three-dimensional
Fermi-Hubbard model [31] using the Nambu formalism. For
such computations, the need arises to compute a certain subset
of 2n principal minors of a 2n×2n matrix.

A determinant-based diagrammatic Monte Carlo algo-
rithm has also been introduced for the real-time evolution of
quantum systems [9,32–35]. In these algorithms, the com-
putation of a contribution at perturbation order n requires
to compute the sum of 2n determinants of n×n matrices,
corresponding to a sum over Keldysh indices. Current state-
of-the-art implementations compute this sum in O(n22n),
which defines their asymptotic scaling.

For Feynman diagrammatic computations in bosonic sys-
tems, the CDet recursion equally allows one to extract all
connected diagrams from sums generated by the evaluation
of matrix permanents. Such an approach would be viable
provided the permanents of all principal submatrices can been
obtained with reasonable computational effort. However, the
computation of a permanent scales exponentially as O(n2n)
[36,37], compared with the polynomial O(n3) scaling for de-
terminants. This begs the question of whether the application
of CDet to bosonic systems is computationally feasible and
how such algorithms scale asymptotically.

In this paper, we introduce multiple generalizations of
the FPM algorithm with useful applications to diagrammatic
Monte Carlo implementations, as described above. In partic-
ular, we show that the computational scaling of the real-time
diagrammatic Monte Carlo within the Keldysh formalism can
be improved to O(2n). We further show that the same scaling
also applies to the computation of principal minors in CDet
within symmetry-broken phases. We also present an O(3n)
CDet generalization to diagrammatic expansions that involve
two vertex types. Finally, we show that summing all connected
diagrams for bosonic and mixed (Fermi-Bose) systems can
have the same computational scaling as for purely fermionic
ones, O(3n).

The paper is structured as follows: In Sec. II we introduce
the original FPM algorithm as well as its generalizations in
Sec. III and introduce a principal minor algorithm for per-
manents in Sec. IV. In Sec. V we provide details of specific
diagrammatic Monte Carlo application before discussing con-
clusions in Sec. VI.

II. FPM ALGORITHM

Our aim is to compute all principal minors of a given n×n
square matrix A[S], where S = {1, 2, . . . , n} is a set of rows
and columns. A principal minor A[Si], corresponding to a

subset Si ⊆ S , is the determinant of the submatrix generated
by keeping only the rows and columns specified by Si. We
denote by S̄i the complement of Si with respect to the full set
S̄i ≡ S/Si. We further denote nonsquare matrices as A[Si,S j]
and we have A[S,S] ≡ A[S]. Following standard practice, the
determinant of an empty matrix is defined as det(A[∅]) = 1. In
the following, we will always associate Si ⊆ S with the subset
described by the binary bit-mask provided by the integer i
(e.g., S13 = {1, 3, 4}).

A trivial way to compute all principal minors is to generate
each k × k-sized submatrix individually and simply compute
the determinant by means of an algorithm with polynomial
O(k3) complexity, e.g., Gaussian elimination or LU decompo-
sition [38]. The total number of operations needed to compute
all principal minors this way scales exponentially as O(n32n)
and requires polynomial space [O(n2)].

This computational scaling can often be reduced to
O(n22n) by making use of Sherman–Morrison–Woodbury
type formulas [39] and changing determinants by one row and
column at a time using a Gray code.

A computationally superior algorithm scaling as O(2n) was
presented in Ref. [23]. Below we provide the main ideas of
the algorithm without the mathematically rigorous derivations
that can be found in the original publication and references
therein [40–43].

We start from the well-known relation [41]:

det(A[S]) = det(A[Si]) det(A[S]/A[Si]), (1)

where we have introduced the Schur complement, which we
define as:

A[S]/A[Si] ≡ A[S̄i] − A[S̄i,Si]A[Si]
−1A[Si, S̄i]. (2)

In order to proceed we need two identities. It should be
noted that both relations only hold for nonsingular matrices
and nonsingular principal minors thereof. The first identity
shows that eliminating selected rows and columns can be done
either before or after taking the Schur complement without
affecting the computation of the determinant:

det(A[S j ∪ Sk]) = det(A[S j]) det((A[S]/A[S j])[Sk]), (3)

where Sk ⊆ S̄ j . The second identity, called the quotient prop-
erty, is necessary to treat nested Schur complementation:

A[S]/A[S j ∪ Sk] = (A[S]/A[S j])/((A[S]/A[S j])[Sk]). (4)

This means that instead of taking one Schur complement with
respect to a large submatrix one can successively take multiple
Schur complements with respect to single matrix elements.

The algorithm presented in Ref. [23] generates a binary
tree with 2n − 1 nodes that are used to compute the different
principal minors of the matrix A[S]. Each node is labeled with
an integer beginning with 1 at the first level and enumerating
the following nodes in a top to bottom and left to right order
as portrayed in Fig. 1. A matrix is associated with every node
of the tree, starting with the original full matrix A[S] ≡ A(1)

for the first node i = 1 at level l = 1. Whenever we take
the left branch from a node i at level l we generate a new
submatrix A(i+2l−1 ) at the node (i + 2l−1) by removing the first
row and column of A(i). Whenever we take the right branch we
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FIG. 1. The binary tree corresponding to the algorithm for the
computation of principal minors of a matrix of size 4×4. From each
node, the submatrix with the first row and column removed is copied
along the left branch. The Schur complement with respect to the (1,1)
element is taken along the right branch.

generate a matrix A(i+2l ) at the node (i + 2l ) from the Schur
complement of A(i) with respect to its (1,1) element:

A(i+2l−1 ) = A(i)[{l + 1, . . . , n}] left branch (5)

A(i+2l ) = A(i)/A(i)[{l}] right branch. (6)

As can be seen from the procedure above, the integer that
labels a node in the tree can be interpreted as a binary mask
keeping track of which columns and rows have been retained
or eliminated before reaching that node. One can then com-
pute the principal minor associated with the node i at level l
by using Eq. (3):

det(A[Si]) ≡ det(A[S j ∪ {l}])
= det(A[S j]) det(A[S]/A[S j])[{l}]
= det(A[S j]) A(i)

1,1, (7)

where we have introduced S j ≡ Si/{l}. Applying Eq. (7) to
all nodes of the tree eventually yields all principal minors of
the matrix A[S].

Sometimes, there is one additional difficulty that needs to
be taken into account. Whenever the Schur complement is
taken [as per Eq. (2)] it is necessary to calculate the inverse
of a matrix element called the pivot. If the pivot’s value is
zero or vanishingly small this procedure forcibly results in
numerical instabilities of the algorithm. Reference [23] pro-
vides a solution for such cases by adding a correction term
C to the pivot which must be, however, compensated for at
the end of the computation. Any time a pivot is changed this
affects all principal minors computed from the resulting Schur
complement. After all principal minors have been computed a

TABLE I. Fast principal minor algorithm

1: for l = 1 l � n l++ do
2: for i = 2l−1 i < 2l i++ do
3: det(A[Si]) ← det(A[Si/{l}]) A(i)

1,1

4: A(i+2l−1 ) ← A(i)[{l + 1, . . . , n}] � Left branch
5: A(i)

1,1 +=C � Pivot correction (optional)
6: A(i+2l ) ← A(i)/A(i)[{l}] � Right branch

pivot-correction has to be back-propagated through principal
minors for each instance where the correction term was added.

For example, let {l} be a very small (or vanishing) ele-
ment corresponding to the first row and column of the matrix
A[Si]. To avoid numerical instabilities, we change A[Si]1,1 →
A[Si]1,1 + C and use this modified matrix Ã[Si] to compute
the Schur complement. In order to recover the determinant of
the original matrix A[Si] one can use the formula:

det(A[Si]) = det(Ã[Si]) − C det(A[Si/{l}]), (8)

which is how the pivot-correction is back-propagated at
the end of the computation. The minimal number of pivot-
corrections that need to be performed for an n×n matrix
with all diagonal entries being zero, as is often the case in
diagrammatic Monte Carlo algorithms [4–6], is n − 1, which
results in additional computational cost of O(2n) for the back-
propagation loop. If a pivot-correction would be performed
at every instance of Schur complementation, the resulting
computational cost would become O(n2n) instead.

Table I shows a sketch of the FPM algorithm. The com-
putational scaling of the algorithm is easily found to be∑n−2

l=0 2l · 2(n − l − 1)2 ≈ O(2n) operations. Reference [23]
provides a breadth-first-traversal algorithm to calculate all
principal minors, as summarized in Table I. In this formulation
all matrices computed at a particular level of the tree need
to be stored, which leads to exponential memory costs of
O(2n). It is possible, however, to traverse the tree depth-first
or formulate a recursive version of the algorithm in order to
reduce the scaling to the polynomial O(n3) as only one matrix
needs to be stored at each level. This can lead to significant
accelerations for larger matrices, overcoming the slowdown
reported in Ref. [23].

III. GENERALIZATIONS TO PRINCIPAL MINOR SUBSETS

In this subsection we want to address cases when it is de-
sired to compute only a certain subset of all principal minors
of a matrix.

A. Leading principal minors

It can be straightforwardly seen that it is possible to use
successive Schur complementation to compute the principal
minor corresponding to the determinant of the full n×n matrix
in O(n3) operations. The disadvantage with respect to other
more established algorithms, such as Gaussian elimination, is
that there is no direct way to implement pivot corrections in
the way it is done for the FPM algorithm. This is due to the ne-
cessity of subtracting principal minors at the back-propagation
step, which have not been computed in the process. On the
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FIG. 2. Binary tree for used in the algorithm for the computa-
tion of principal minors of a matrix of size 4×4, corresponding to
submatrices respecting the XNOR case rules.

other hand, this algorithm has the advantage that it computes
all leading principal minors corresponding to subsets corre-
sponding to indices 2l − 1 with 1 � l � n in the process.

B. XNOR principal minors of a 2n×2n matrix

Now let us consider a 2n×2n matrix A[S]. Computing
all principal minors of A[S] with the FPM algorithm takes
O(4n) operations, proportional to the total number of principal
minors, 4n − 1. In some cases it is, however, sufficient to
compute only a certain subset of minors. Specifically, if we
treat A[S] as an n×n block matrix with 2×2 blocks then
some cases are of particular interest. The first one is: Compute
principal minors of all subsets Si such that for all 0 � l < n
we satisfy one of the following two options:

(1) {2l + 1} ∈ Si and {2l + 2} ∈ Si

(2) {2l + 1} /∈ Si and {2l + 2} /∈ Si.
We will call this set of options the XNOR case. In the

language of matrices this means that either both the (2l + 1)-
th and the (2l + 2)-th rows and columns are included in a
submatrix or none of the two. One must then evaluate a total
of 2n − 1 principal minors, which can be done naively in
O(n32n) by computing them separately. It is readily seen that
one can form a binary tree with 2n − 1 nodes, corresponding
to the principal minors of interest, by removing two rows and
columns from a matrix when taking the left branch and by
performing the corresponding Schur complement whenever
taking the right branch; see Fig. 2. This procedure computes
all the relevant ratios of principal minors of submatrices ad-
hering by the aforementioned rules. Since the pivot, of which
we must compute the inverse, has become a 2×2 matrix and
since we compute only a subset of the principal minors of
the original matrix, it is no longer possible to add correc-
tions to pivots. The algorithm scales as O(2n) and is roughly
four times slower than FPM for an n×n matrix due to the
fact that the Schur complement is taken with respect to 2×2
matrices instead of a single element.

It is possible to extend this idea to kn×kn-sized matrices
with steps of size k resulting in asymptotic scaling of O(k22n).

C. NAND principal minors of a 2n×2n matrix

In the second case we are interested in computing all prin-
cipal minors such that for all 0 � l < n we satisfy one of the
following three options:

(1) {2l + 1}∈ Si and {2l + 2} /∈ Si

(2) {2l + 1} /∈ Si and {2l + 2}∈ Si

(3) {2l + 1} /∈ Si and {2l + 2} /∈ Si.
We will call this the NAND case. In matrix terms this

means that either the (2l + 1)-th or the (2l + 2)-th row and
column are included in a submatrix of interest or none of the
two. The total number of corresponding principal minors is
3n − 1. Here, it is possible to transform the original 2n×2n-
sized block-matrix A[S] into an n×n-sized matrix Â[S] with
polynomial entries in α±

i such that

Âi, j = A2i+1,2 j+1 α+
i α+

j + A2i+2,2 j+1 α−
i α+

j

+ A2i+1,2 j+2 α+
i α−

j + A2i+2,2 j+2 α−
i α−

j (9)

with the aforementioned rules determining which principal
minors need to be evaluated being encoded by:

α+
i α−

i = 0. (10)

One can then proceed to evaluate the n×n polynomial-valued
matrix Â[S] with the FPM algorithm. This means that pivot
corrections can be added in the same way as they would be
in the FPM algorithm, as long as they are back-propagated
at the end of the calculation. An alternative way of looking
at the new representation is as the rearrangement of 3n − 1
relevant nodes from the original binary tree of depth 2n into
a ternary tree of depth n; see Fig. 3. Then, the left branch is
obtained by copying a submatrix eliminating the first two rows
and columns. Two additional, right branches are obtained
as the result of taking the Schur complement with respect
to the (1,1) and (2,2) elements of the matrix at the given node.
The total computational cost of the algorithm is governed by
the number of Schur complements taken at each level of the
ternary tree

∑n−2
l=0 3l · 4(n − l − 1)2 ≈ O(3n).

It is straightforward to extend this algorithm to kn × kn-
sized matrices resulting in asymptotic scaling of O([k +
1]n), related to the the number of relevant principal minors:
(k + 1)n − 1.

D. XOR principal minors of a 2n×2n matrix

In the third case we are interested in computing all princi-
pal minors such that for all 0 � l < n we satisfy one of the
following two options:

(1) {2l + 1}∈ Si and {2l + 2} /∈ Si

(2) {2l + 1} /∈ Si and {2l + 2}∈ Si.

We will call this the XOR case. This is equivalent to only
computing principal minors of n×n sized submatrices of Â[S]
and adhering by the rules of the NAND case. One can resort
to evaluating only the two right, Schur-complement branches
in the ternary tree of Fig. 3, which effectively reduces it
to a binary tree. This algorithm can be shown to lead to a
reduced scaling of O(2n). As in the case of computing a single
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FIG. 3. Binary tree corresponding to the algorithm for the com-
putation of principal minors of a matrix of size 4×4, corresponding
to submatrices respecting the NAND case rules. Note that off-
diagonal matrix A[S]i, j elements with |i − j| = 1 (white) do not ever
enter the calculations

determinant using Schur complements, this has the advantage
of computing lower-order principal minors as a side product.
The downside, similarly to the single determinant case, is
that this algorithm doesn’t allow for pivot corrections without
significant additional computational cost.

Similarly to the previous two cases, one can generalize this
algorithm to kn×kn-sized matrices resulting in asymptotic
scaling of O(kn).

IV. PERMANENT PRINCIPAL MINOR ALGORITHM

While the determinant of an n×n-sized matrix can be
computed in polynomial time O(n3), the two most efficient
algorithms to compute the permanent of the same matrix,
found by Ryser and Glynn, scale exponentially as O(n2n)
[36,37,44]. The inclusion-exclusion Ryser formula for the
computation of a permanent reads:

per(A) =
∑

Sk⊆{1,...,n}
(−1)|Sk |

n∏
i=1

∑
j∈Sk

Ai, j . (11)

A numerical implementation hereof consists of two steps.
First, one precomputes all possible sums over index j given
by

∑
j∈Sk

Ai, j in Gray code order with O(n2n) additions.
Subsequently, one evaluates the products over sums for all
2n − 1 subsets Sk ⊆ {1, . . . , n} using O(n2n) multiplications
which defines the asymptotic scaling of the algorithm. As
a consequence, a naive successive application of the Ryser
algorithm to compute all permanent principal minors of a
matrix results in a scaling of O(n3n).

We can, however, reduce this scaling by generalizing the
algorithm to the case when all permanent principal minors of

a matrix are desired. Let us rewrite the formula of Eq. (11) for
a given subset (minor) S ⊆ {1, . . . , n} as

per(A[S]) =
∑
Sk⊆S

(−1)|Sk |
∏
i∈S

∑
j∈Sk

Ai, j . (12)

Here, the first (additions) step remains identical as all possible
sums are already being computed in the computation of the
full matrix permanent. For the second step it is necessary to
evaluate all products corresponding to subsets S , given as:

�[S] =
∏
i∈S

∑
j∈Sk

Ai, j . (13)

These subsets can be evaluated in Gray code order, which,
however, entails the necessity of using divisions. A division-
free way of evaluating subsets can be achieved by using a
recursion relation

�[S] = �[S/{ j}]
∑
i∈Sk

Ai, j, (14)

where j ∈ S can be chosen arbitrarily. This corresponds to∑n
k=1

(n
j

)
2k = O(3n) operations, which sets the asymptotic

scaling of the algorithm. Remarkably, the step resembles a
subset convolution of two sets, which is essentially what is
being computed when applying the recursive relation within
the CDet algorithm [6]. This means that a fast subset con-
volution algorithm [45] is applicable, which would reduce
the asymptotic scaling further to O(n22n), albeit that only
becomes practically advantageous for matrix sizes of n � 15.

Interestingly, a related inclusion-exclusion principle-based
fast diagram summation algorithm has been found for strong-
coupling expansions of fermionic [46] as well as bosonic [47]
systems.

V. APPLICATIONS TO DIAGRAMMATIC MONTE CARLO
ALGORITHMS

Let us now focus on applications to various numerical
algorithms for quantum many-body systems based on dia-
grammatic Monte Carlo. In such algorithms one is generally
interested in computing a physical observable C expressed in
terms of a power series:

C(ξ ) =
∞∑

n=0

anξ
n, (15)

where the coefficients an are obtained from the stochastic eval-
uation of Feynman diagrams, integrated over internal space
and imaginary-time variables X = (�r, τ ).

A. CDet

The fast principle minor algorithm has first been used in
the context of the CDet [6] algorithm. In this method, the
contribution c[S] to a coefficient an in Eq. (15) for a given
set S = {X1, . . . , Xn} of internal vertices is the sum of all
connected diagrams constructed on S . This sum is obtained
by a recursion formula that involves the prior computation of
all principal minors of a given matrix corresponding to subsets
Si ⊆ S:

a[Si] = det(M↑
n [Si]) det(M↓

n [Si]), (16)
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FIG. 4. Left: Computational time as a function of order (n) for the FPM algorithm as compared with the naive determinantal implementa-
tion as well the SC used by CDet. Right: Computational speedup of the complete CDet algorithm using FPMs with respect to the algorithm
using a naive determinant implementation.

where (Mσ
n )i, j = G0σ (Xi − Xj ). Then, a recursive relation is

used to compute sums of connected diagrams c[S] from a[S]
by subtracting all disconnected ones:

c[S] = a[S] −
∑
Si�S
{ j}∈Si

c[Si]a[S/Si], (17)

where { j} ∈ S is chosen arbitrarily. The recursive algorithm
corresponds to a subset convolution and can be evaluated in
O(3n) computational steps, or alternatively in O(n22n) by us-
ing fast subset convolutions [45] which, however, in practice
performs slightly worse for attainable orders n � 15. The total
computational time of the algorithm is thus limited by both the
computation of principal minors and the subset convolution
depending on the expansion order; see Fig. 4. We see that the
FPM algorithm significantly outperforms a naive determinant
implementation and becomes subleading to the subset con-
volution around order n = 8. The total speedup of the CDet
algorithm due to the use of FPM also peaks at a factor 12
around orders 8 � n � 10, which corresponds to the highest
attainable orders for calculations in challenging regimes of the
Hubbard model. At yet higher orders the gain reduces due to
an ever increasing contribution of the subset convolution to
the total computational time.

We also note that at order 24 our C++ implementation of
FPM algorithm takes 0.23 s on a standard laptop compared
with 443 s reported in Ref. [23], roughly corresponding to an
improvement by a factor 2000.

B. CDet for expansions around BCS theory

In a recent work [31] the CDet algorithm was generalized
to expansions around the BCS mean-field theory inside super-
fluid phases and using the Nambu formalism [48]. The main
algorithmic difference to CDet in the paramagnetic regime is
that one needs to evaluate 2n×2n-sized block-matrices with
bare Nambu propagators as entries. These matrices are built

from 2×2 blocks M̃i, j given by:

M̃i, j =
(

G00(Xi j ) G01(Xi j )
G10(Xi j ) G11(Xi j )

)
, (18)

with i, j ∈ {1, . . . , n} and Xi j ≡ Xi − Xj . It is necessary to
compute 2n − 1 principal minors of this matrix, exactly cor-
responding to the XNOR case from the previous section.
The recursion step involving a subset convolution does not
differ from the original CDet one. From Fig. 5 we see that,
similarly to the original CDet algorithm, a FPM algorithm sig-
nificantly outperforms the naive determinant implementation.
The maximum computational gain of a factor 17 is achieved at
order n = 9 before slowly decreasing for higher orders due to
the computational cost of the subset convolution taking over.
Again, the gain is maximal at orders which correspond to the
limits of many realistic computations in difficult regimes.

C. CDet for expansions with two vertex types

Another possible generalization of the CDet algorithm is
to expansions with two (or more) distinct types of vertices
present in diagrams [49–51]. When multiple vertices are
present, one way is to pick the type of each vertex insertion
in diagrams stochastically. Another option is to sum over all
2n possible combinations of n vertices with the restriction that
each vertex can only correspond to one type within a given di-
agram. For two vertex types, this corresponds to computing all
principal minors of a 2n×2n-sized matrix, as described by the
NAND case of the previous section. In Fig. 6 we show the fast
and naive (determinant) implementations of such a principal
minor algorithm as compared with subset convolution, which
again stays unaltered from its original CDet version. We see
that even the FPM implementation, despite scaling as O(3n), is
an order of magnitude slower than the subset convolution. The
total gain due to using the FPM algorithm grows steadily as a
function of order and reaches a factor 40 at n = 15. We want
to note that another possible application of this algorithm is to
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FIG. 5. Left: Computational time as a function of order (n) for the FPM algorithm within CDet in the Nambu formalism as compared with
the naive determinantal implementation as well the subset convolution (SC) used by CDet. Right: Computational speedup of the complete
Nambu CDet algorithm using FPM with respect to the algorithm using a naive determinant implementation.

artificially generate a second vertex by choosing an arbitrary
transformation: (�r, τ ) → (�r ′, τ ′). This transformation either
can exploit some underlying symmetry which is present in
the model or can be chosen stochastically. This strategy can
potentially lead to a dramatic reduction of the Monte Carlo
variance at the small additional computational cost factor
described above. We leave the exploration of this subject to
further work.

D. Real-time diagrammatic Monte Carlo

There also exists a class of diagrammatic Monte Carlo
algorithms formulated directly in real time [9,32–35] (as
opposed to imaginary time for CDet) which are based on
the Keldysh formalism [52]. These have the advantage that
a summation over all Keldysh indices guarantees the con-

nectivity of Feynman diagrams and therefore no recursive
formula needs to be applied in order to compute connected
quantities. This means that at order n it is sufficient to
evaluate the sum of 2n determinants of n×n matrices with
elements Mσ

i, j = G
αiα j

0σ (Xi − Xj ), where {α1, . . . , αn} is the set
of Keldysh indices. A naive implementation of this sum would
require an effort O(n32n). In current state-of-the-art imple-
mentations, this can be brought down to O(n22n) by using
Sherman–Morrison–Woodbury-type updates during a Gray
code enumeration of all Keldysh indices. Let us note that
while the latter more efficient approach works in most of the
cases, it can also sometimes be unstable if (almost) singular
matrices are generated during the update process.

A different way to look at this algorithm is to think of the
sum over all Keldysh indices as a sum of a well-defined subset
of principal minors of an enlarged 2n×2n matrix built from
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FIG. 6. Left: Computational time as a function of order (n) for the permanent principal minors (PPM) algorithm within CDet symmetrized
over 2n vertices of two vertex types as compared with a naive determinantal implementation as well the subset convolution (SC) used by
CDet. Right: Computational speedup of the complete symmetrized CDet algorithm using FPM with respect to the algorithm using a naive
determinant implementation.
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FIG. 7. Left: Computational time as a function of order (n) for the FPM algorithm within real-time diagrammatic Monte Carlo as compared
with a naive determinantal implementation as well as an implementation using Sherman–Morrison–Woodbury-type updates and Gray code.
Right: Computational speedup of the real-time diagrammatic Monte Carlo algorithm using FPMs with respect to the other two implementations.

2×2 block matrices M̃i, j given by:

M̃i, j =
(

G++
0 (Xi j ) G+−

0 (Xi j )
G−+

0 (Xi j ) G−−
0 (Xi j )

)
, (19)

with i, j ∈ {1, . . . , n} and Xi j ≡ Xi − Xj . The sum over all
Keldysh indices is then nothing but the sum over all 2n − 1
principal minors corresponding to n×n-sized submatrices de-
scribed by the XOR case above and can be achieved in O(2n).
It should be noted that, similar to the case of computing
the determinant via Schur complementation, lower-order dia-
grams are being computed as a side product by this algorithm
and could potentially be used to improve the Monte Carlo
variance by using, e.g., the many-configurations Monte Carlo
algorithm of Ref. [53] as well as the use of conformal maps
applied to coefficients at each Monte Carlo step [54]. They
could also be used to compute one-particle irreducible quan-
tities, such as self-energy, where a recursion involving all
principal minors must be computed.

In Fig. 7, we compare the scaling of the FPM against the
naive (determinant) and Sherman-Morrison-Woodbury-type
algorithms. We observe a steadily increasing speedup as a
function of order, reaching about a factor 50 and 25, respec-
tively, at order n = 15.

E. CTINT, DDMC, and PDet

In the context of the CTINT [4] and DDMC [5] algorithms,
it has been shown that for fermionic systems, such as the
Fermi-Hubbard model [55], all possible (connected and dis-
connected) Feynman diagram graph topologies contributing
to the partition function can be generated as the product of
two determinants (one per spin-type: {↑,↓}) of matrices with
entries corresponding to bare Green’s functions.

an ∼
∫

X1...Xn

det(M↑
n (X1 . . . Xn)) det(M↓

n (X1 . . . Xn)), (20)

where (Mσ
n )i, j = G0σ (Xi − Xj ). The evaluation of these two

determinants constitutes the computational bottleneck of these

algorithms, which can, however, be accelerated to [O(n2)]
by Sherman–Morrison–Woodbury-type updates [39,56] when
only the position of a single vertex of the Feynman diagrams
is altered at each Monte Carlo step (corresponding to the
alteration of only one row and column in the matrices). An
interesting observation with respect to this work is that one
can use successive Schur complementation to compute the
determinants from Eq. [20] with the same polynomial (O(n3))
complexity as Gaussian elimination or similar. The advantage
is that one computes one (leading) principal minor for each
order k < n as a side product. This allows for the simultaneous
evaluation of all orders up to n and the use of the recently
introduced many-configurations Markov chain Monte Carlo
[53] as well as the use of conformal maps applied to coeffi-
cients at each Monte Carlo step [54]. It should be noted that
a disadvantage of using Schur complementation to compute
determinants is the lack of possibility to correct numerically
unstable pivot values without significant additional computa-
tional cost.

Another related determinantal diagrammatic Monte Carlo
algorithm (PDet) has been proposed for the Fermi polaron
problem in Ref. [57]. In this case all diagrams are generated
by the multiplication of a determinant in one spin with a
connected set of propagators called “backbone” in the other,
which ensures the overall connectedness of diagrams. For
such algorithms, one might also benefit from the simultaneous
evaluation of diagrams at all expansion orders up to n by
means of a Schur-determinant algorithm for leading principal
minors.

F. Connected diagram algorithm for bosons

It is also possible to use the recursion (17) for bosonic
[58–62] Hamiltonians and Fermi-Bose mixtures [63–65]. De-
spite this natural generalization, no such calculations have
been attempted to date. Here, we merely aim at discussing
the computational complexity that is required to eliminate
disconnected diagrams in a bosonic system. Notably, we can
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FIG. 8. Left: Computational time as a function of order (n) for the fast permanent principal minors (PPM) algorithm as compared with a
naive Ryser implementation as well the subset convolution (SC) used by CDet. Right: Computational speedup of the complete fermionic CDet
with respect to the complete bosonic CDet, both using the fastest available principal minor algorithms.

make use of the fast permanent principal minor algorithm
introduced in the previous section. This algorithm scales as
O(3n), similarly to the subset convolution in CDet, but with
a slightly worse prefactor. In Fig. 8 we compare the resulting
computational times for fermionic and bosonic algorithms and
find that the fermionic version is about 1.5 to 3.5 faster than
the bosonic one. We believe this is negligible when com-
pared with other factors that influence the variance of both
algorithms. We leave a thorough study of bosonic system with
such an algorithm to future work.

VI. CONCLUSIONS

In this paper we have introduced an efficient implementa-
tion of the FPM algorithm as well as multiple generalizations
with specific applications within diagrammatic Monte Carlo
algorithms in mind. We have reported significant speedups for
CDet in the normal as well as the superfluid phases and for
diagrammatic schemes with two vertex types. The latter can
potentially lead to reductions in the Monte Carlo variance of
CDet computations. We have also introduced a generalization

that reduces the asymptotic computational scaling of real-time
diagrammatic Monte Carlo algorithms to O(2n) and leads to
significant efficiency gains at reasonably attainable expansion
orders. Finally, we have shown that CDet for bosonic systems
has the same asymptotic scaling of O(3n) as for fermionic
ones, despite the fact that exponentially scaling permanent
principal minor computations are necessary. This opens the
door for multiple applications of CDet to bosonic systems and
Fermi-Bose mixtures. All of the presented algorithms can also
be expanded to matrices with any fields as entries, notably
truncated polynomials [30] and nilpotent polynomials [7,66].
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