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Discrete lattice models are a cornerstone of quantum many-body physics. They arise as effective descriptions
of condensed-matter systems and lattice-regularized quantum field theories. Lieb-Robinson bounds imply that if
the degrees of freedom at each lattice site only interact locally with each other, correlations can only propagate
with a finite group velocity through the lattice, similarly to a light cone in relativistic systems. Here we show that
Lieb-Robinson bounds are equivalent to the locality of the interactions: a system with k-body interactions fulfills
Lieb-Robinson bounds in exponential form if and only if the underlying interactions decay exponentially in
space. In particular, our result already follows from the behavior of two-point correlation functions for single-site
observables and generalizes to different decay behaviors as well as fermionic lattice models. As a side result,
we thus find that Lieb-Robinson bounds for single-site observables imply Lieb-Robinson bounds for bounded

observables with arbitrary support.
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I. INTRODUCTION

A crucial feature of the dynamics of a quantum many-body
system with local Hamiltonian is the finite group velocity v for
the spread of correlations first shown by Lieb and Robinson
[1]. If A and B are local observables at locations x and y
of a lattice, this finite group velocity implies that two-point
correlation functions of the form

Cey(t1,10) = iV [A(11), B(t0)]| V') ey

are exponentially small if (x,#;) lies outside the effective
“light cone” emanating from (y, #p) with the Lieb-Robinson
velocity v, see Fig. 2. Such behavior is reminiscent of the
strict light cone in relativistic field theories and holds for
any lattice Hamiltonian with bounded k-body interactions that
decay exponentially in space. It is the basis for a host of im-
portant results in condensed-matter and quantum many-body
physics. To name just a few, these range from the exponential
clustering theorem for ground states of gapped Hamiltonians
[2-5], to the quantization of Hall conductance [6,7], Lieb-
Schultz-Mattis theorems [2,8], Goldstone’s theorem [9,10],
and the area law in one spatial dimension [11]. Besides these
theoretical results, the finite group velocity is also crucial to
be able to simulate the dynamics of complex quantum systems
both on a classical as well as on quantum computers, because
it ensures that the dynamics can be well approximated by a
local quantum circuit. Many-body systems can now be sim-
ulated in experiments, for example, using ultracold atoms in
optical lattices, and the Lieb-Robinson cone can be detected
experimentally [12-14].

In relativistic field theories, which show a strict light
cone, the interactions are usually required to be strictly lo-
cal. A natural question one may therefore ask is whether a
sufficiently quick decay of the two-point functions (1) con-

2469-9950/2022/105(12)/125101(11)

125101-1

versely also implies that the dynamics can be generated by a
Hamiltonian with local interactions. If true, such a result
would, on the one hand, make the connection with relativistic
field theories stronger and hence provide valuable insight into
the basic properties of quantum many-body systems. On the
other hand, it would also have practical consequences for
system identification and process tomography, which aims at
reconstructing the Hamiltonian of a system from measure-
ments of few observables. This constitutes an important task
both from an experimental point of view but also in order
to certify the functioning of quantum information processing
devices. In fact, it was shown recently that the Hamiltonian
may be reconstructed efficiently using local measurements,
provided one has the promise that the interactions are indeed
local [15-18].

In the following we show such a connection between cor-
relations function and the locality of the Hamiltonian: If the
two-point functions C, ,(#(, ) decay at least as quickly as
promised by state-of-the-art Lieb-Robinson bounds, then the
interactions decay exponentially in space. More generally, our
result shows a tight connection between the decay behavior of
C.,(11, ) for short times and the locality of the interactions
(see Fig. 1).

Importantly, to reach our conclusion we only require
knowledge about the decay of two-point functions of observ-
ables supported on single lattice sites. In practice, these are
the relevant quantities in condensed-matter systems as scat-
tering experiments effectively measure two-point correlation
functions. However, exponentially decaying interactions in
turn imply Lieb-Robinson bounds for all observables. Hence,
as a by-product, we thus prove that Lieb-Robinson bounds
for on-site observables already imply Lieb-Robinson bounds
for bounded observables with arbitrary support without the
need for a support- size -dependent correction (as a direct

©2022 American Physical Society
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FIG. 1. Two notions of locality. Left: Only constituents of the
many-body system which are close by interact directly with each
other (locality of interactions). Right: A local perturbation is not
instantaneously detectible everywhere in the system (causal dynam-
ics). Lieb-Robinson bounds show that locality of interactions implies
causal dynamics. We prove that Lieb-Robinson bounds conversely
imply (quasi-)local interactions.

expansion in terms of a product-operator-basis would require;
see Appendix C).

II. SETUP AND LIEB-ROBINSON BOUNDS

Before we state our result, we set up some notation and
review the statement of Lieb-Robinson bounds. We consider a
lattice Z and associate to each point x € Z” a d-dimensional
Hilbert space .. We choose the hypercubic lattice ZP purely
for simplicity and definiteness—what follows is true for any
regular lattice and with slight modifications also on more
general graphs. Denote by Ay the set (algebra) of local ob-
servables Ay ~ B(Hy) supported in a region X. Here, Hy =
Qyex H, denotes the Hilbert space associated to X. If Y C X,
then Ay is naturally embedded in Ay by tensoring with iden-
tities on the complement of Y in X. We will mostly omit such
identities throughout the paper. Conversely, we can consider
the reduction map from A, to Ax with X € A, which for any
A € Ax and B € Ax. with X = A \ X is given by

I'2[AB] = Tr[Blx:]A, )

where, as usual, we identify B € Ax. with B® 1x € A,, and
Ixe := 1xe/dxc corresponds to the maximally mixed state on
X¢.In the case X = f, we simply obtain I'}'[B] = 1Tr[Blx-].

It is customary to specify the dynamics of many-body
systems through the notion of an (interaction) potential ®.
This is a function associating to each finite subset X C Z” of
lattice sites a bounded operator ®(X) = ®(X)" € Ay. For a
large but finite subset A C ZP, we then write

Hy = Z D(X) 3

XCA

for the Hamiltonian on A induced by the potential. By
tA(+) := elflr’ . e7Hal we denote the unitary propagator gen-
erated by H,, which gives rise to the Heisenberg dynamics of
observables in A, .

The potentials appearing in actual models usually have the
property that they only couple at most k spins directly, where
k is some finite number independent of the system size. The
prototypical examples are spin-spin interactions of the Ising-

or Heisenberg-type or Coulomb interactions for charged par-
ticles instead of spins. In both cases we have k = 2, but larger
values of k appear, for example, as plaquette operators in
lattice gauge theories, in the context of topological order,
e.g., the toric code, or as effective interactions in perturbation
theory [19-22]. We hence call a potential k body if

dX)=0, if |X|>k, )

where |X| denotes the number of lattice sites in X. We em-
phasize that this condition does not put any restrictions on the
range or locality of the interaction. Even with k = 2, we, a
priori, still allow for arbitrarily long-range interactions. Fi-
nally, we call a potential exponentially decaying if there exist
positive constants K and a such that

[PX)I < K exp(—adiam(X)), &)

for any region X C ZP. Here, diam(X) = Sup, yex X — y| de-
notes the diameter of X with |x —y| the (graph-theoretical)
distance on the lattice.

Even though a given potential & gives rise to a fixed time
evolution r,A for every A, the converse does not hold true:
Firstly, the Hamiltonian which generates the time evolution
72 is only fixed up to a shift of all the energies. Secondly,
a given Hamiltonian can in general be decomposed in many
different ways into a potential. The only physically relevant
object in the end is the time-evolution operator 7.

Accordingly, the question we are addressing in this pa-
per, namely, whether the interaction is exponentially decaying
or not, corresponds to asking whether there exists some ex-
ponentially decaying potential giving rise to the same time
evolution. Our result shows that given some k-body potential
for which the two-point functions C, ,(t, %) of the corre-
sponding time evolution show a certain decay behavior in
space, then there also exists a k-body potential on A generat-
ing exactly the same time evolution, which has the same decay
behavior in space. Importantly, the following theorem from
Ref. [23], which is an improved version of the original bound
from Ref. [1], states that any exponentially decaying k-body
potential conversely gives rise to suitably bounded two-point
functions. We state the theorem here in a form adjusted to
our setup. To state the theorem, we introduce d(X,Y) =
minyey yey |X — y| as the distance between two subsets of the
lattice.

Theorem I (Lieb-Robinson bounds). Given an exponen-
tially decaying k-body potential, there exist constants
W, v, K > 0 such that forany A, X, Y C 7P, we have

A
C)?Y(t) 1= max —H [Tt @), B] H

ax e S 2min(Lg0f (YL (©)

where the maximization is over operators A € Ay and B €
Ay supported in X and Y, respectively, and f(X,Y) =
min{|X|, |Y|}K exp(—ud(X, Y)). The function g(¢) is given
by

if d(X,Y)>0

_ fexp(uvieh — 1
g(’)—{ it ax,v)y=0. 7

exp(uv [t])

Using the fact that the operator norm is invariant under uni-
tary transformations and [A(t)), B(to)] = ([t (A), B),
Lieb-Robinson bounds imply that the two-point correlation
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FIG. 2. Density plot of Lieb-Robinson cone in the form given
by Theorem 1. White: Contour of Lieb-Robinson cone as given by
the standard exponential form of the Lieb-Robinson bounds. For
large times the two agree, but for short times we see a significantly
different behavior.

functions in (1) satisfy
(W [A(t), B(to)]|W )] < min{2, K (e""I" 7! — 1)e=# 1)

for any state |W) and observables with ||A|| = ||B]| = 1. The
bound is plotted in Fig. 2 and compared with the conven-
tional bound exp[u(v|t; — to] — |x — y|)]. For most purposes
this latter bound is good enough, since it agrees for large
times with the one we use here. However, for short times the
two bounds differ markedly. In particular, the above version
ensures that C)?Y(O) =0 for d(X,Y) > 0, and this will be
crucial for deriving our result. The functions g(¢) and f(X,Y)
specify how sharp the Lieb-Robinson cone is localized. If
the potential decays slower than exponentially, for example,
as a power law, then they have to be replaced by functions
that decay slower than exponentially. Indeed, recently a fair
amount of literature is devoted to studying Lieb-Robinson
bounds for long-range interactions, see, e.g., Refs. [4,24-32].
Furthermore, let us mention that the commutator form of the
Lieb-Robinson bound given in (6) can be reformulated in
two ways. Firstly, it gives a bound on the detectability of
local excitations at distant lattice sites. Secondly, it provides a
certificate on how well the evolution of a local observable can
be approximated by an evolution under a truncated Hamilto-
nian. In particular, the first formulation can be interpreted as
a bound on the information that can be communicated from
one part of the lattice to another part using the given time
evolution: it implies that if one tries to send information with
nonvanishing capacity using a local encoding of the informa-
tion at one point of the lattice, then there is a minimal time
one has to wait before the information can be decoded at a
different part of a lattice.

III. MAIN RESULT

Our main result is a direct converse to the Lieb-Robinson
bounds stated in Theorem 1. Importantly, however, it only de-
pends on the behavior of two-point functions for observables
located at single lattice sites.

Theorem 2 (Converse to Lieb-Robinson bounds).

Consider a k-body potential and a finite subset A C ZP.
Assume that there exists a function A(¢, x), with 2(0,x) =0
for |x| > 0 and differentiable in ¢, such that for any two points

x #y € A we have

A
). 8]
Cpy(1) 1= max =@ 5] ht, x =y, ®)
* A JAINBI T
where the maximization is over single-site operators situated
atxand y: A € Ay, B € Ay,y. Then there exists a constant n
only depending on k, and a k-body potential ®, on A, giving
rise to the same time evolution rtA on A, with

1DACOI < my 32(0, diam (X)) ()]

forall X C A with |X]| > 2.

Inserting h(t, x) = g(t)f(x) with f(x) = K exp(—ux) and
g(t) from the Lieb-Robinson bounds into the theorem, the
result shows directly that Lieb-Robinson bounds for two-point
functions imply the exponential decay of the interaction po-
tential &, :

[&A )N < mypvK exp(—pdiam(X)). (10)

Moreover, since exponential decay of the interaction implies
the Lieb-Robinson bounds in Theorem 1, we find that the de-
cay of two-point functions of single-site observables implies
a corresponding decay for arbitrary observables.

More generally, a uniform bound on the decay behavior of
two-point functions directly translates into a decay behavior
for the potential. For example, if A(z, x) = g(¢) f (x) with f(x)
being a power law and ¢'(0) > 0, which implies a power-law
decay for the two-point functions, then our result also estab-
lishes a power-law behavior for the potential.

We may also infer strict locality of the Hamilto-
nian from the function s. Suppose, for example, that for
|x =yl >R, h(t,|x —y|) =t“f(Ix —y|) with o > 1. Then
9,h[0, diam(X)] = 0 if diam(X) > R and therefore & (X)
vanishes. The same conclusion holds if % is of the form
h(t,x) = t*/R f(x), which can be obtained, for example, from
the Lieb-Robinson bound construction based on the commuta-
tivity graph of a given Hamiltonian [33]. In general, this shows
that strict locality does not manifest itself in the decay of the
correlation functions for a fixed time but how their time and
space dependence interrelate.

Note that we only obtain bounds for potential terms with
|X| > 2. That is, we do not get bounds on the norm of on-
site potentials, such as magnetic fields. This is in accordance
with the fact that Lieb-Robinson bounds can also be proven
for Hamiltonians with unbounded on-site potentials [34,35].
On the other hand, there are Hamiltonians on bosonic lattices
with local but unbounded interactions that allow for signaling
at arbitrary speeds [36]. This shows that interactions have to
be appropriately bounded to obtain Lieb-Robinson bounds for
arbitrary observables, in agreement with our result.

Finally, let us consider the possibility of strictly causal
behavior in lattice systems: Let us assume that Cﬁy(t) van-
ishes identically whenever vt < |x — y| for some v, implying
a strict light cone. Then our result directly implies that the
interaction terms involving distinct lattice sites vanish identi-
cally as well. In other words, the only dynamics on a lattice
system, which is strictly causal for all times, is one where the
spins do not interact at all.
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IV. THE PROOF

A central ingredient in our proof is the reduction map '},
which we use to define &, as a certain canonical form of
a given potential ® (see also Refs. [37,38]). We say that a
potential ®, on A is in canonical form if

Ie[®A(V)]=0 (11)

unless ¥ C X. Given a Hamiltonian H5 on A, we can always
decompose H, into a potential in canonical form. Moreover,
if Hy, can be written in terms of a k-body potential, then
the resulting canonical form will also be k£ body. These facts
are collected in the following Lemma and proven in the Ap-
pendixes.

Lemma 3. Consider a k-body potential & with associated
Hamiltonians H,. Then for every finite subset A C ZP, the
potential defined by

p(2) =) (=DPITRH,] (12)

X<z

is a k-body potential in canonical form on A giving rise to the
Hamiltonian H, .

Given this lemma, we are now ready to give the essential
steps of the proof of Theorem 2. To lighten the notation,
we now fix A and omit it as a sub- or superscript from the
potential, the reduction map, the propagator, and the quantity
C,,(t). Let us consider two points x # y € A and operators
A € A,y and B € Ay, with ||A|| = ||B|| = 1. Since [A, B] =
0, we then have

tim OBy anm as)
8t—0 8t
On the other hand, we can make use of the assumption on
C; (1) to find

A), B v (0t
lim I[zs: (A), Bl < lim C,y(81)
81—>0 St st—~0 Ot
h(dt, |x —
< lim (3t, |x —yl)
5t—0 St
= 9,h(0, |x — y]), (14)

where we used (0, x) = 0 in the last step. We thus finally get
I[[HA, AL Blll < 3:2(0, |x — yD. 15)

In the following let us write &, := 9;4(0, [x — y|) and x¢ :=
A\ {x}. Since (15) holds for all B € A,y with |B|| =1, a
Lemma from Ref. [39], whose proof we provide in the Sup-
plemental Material (Lemma 4), implies

IL(A = Ty)lHAL A]ll < x,y- (16)

Here we used D'y c[Hp\A]=T)[HpJA and T [AH,]=
AT'c[H,], which holds because A is supported within y°.
Since (16) again holds for all normalized A € Ay, we can
use the same argument again to obtain

(1 =)l = Ty )lHAINN < &x,y- a7

Now let & be the potential in canonical form representing the
Hamiltonian H,. We then have I'y[Hx] = Hy and ® () o< 1
(and the identity operator only appears in this term). Thus,

using I'ye o I'ye = yenye,

(1 - Fx‘)[(l - F)‘)[HA]] = HA - Iiyr - Hx“ + Hy"ﬂx"
=Y o). (18)

Z>3x,y

Therefore Eq. (17) says that for any pair of lattice sites x # y
we have

Z &)

Z'>x,y

< Exy- (19)

We now fix a set Z and take two points x,y € Z such that
|x — y| = diam(Z) and make use of the fact that operators can
only become smaller in norm under reductions to subsystems,
i.e., forany C = C'e Ay and X C A we have

ITx[CII < ITx [LTNICT = (ICII, (20)

where we used that I'y is a completely positive, unital map.
This property allows us to restrict the bound in (19) to poten-
tial terms supported only within Z:

> (@) < ey (21)

Z'3x,y

7cz
Unfortunately, this bound does not yield a bound for each of
the terms in the sum by ¢, , individually. This is because we
cannot assume that the potential terms are positive operators
due to our demand that the potential is in canonical form. We
therefore now make use of the fact that |Z| < k and use the
inverse triangle inequality to obtain

1P < ey + || Y, B2 (22)
Z'>x,y
zZ'cz
Since the sum on the right-hand side is over strict subsets
of Z, each of the potential terms on the right-hand side cou-
ples at most |Z| — 1 spins. Clearly, the above equation gives
192)| < &x,y for |Z| =2, since the only possible set is
Z = {x,y}. Hence consider |Z| = 3. Then the norm on the
right-hand side only contains one set Z’, which has cardinality
|Z'| = 2. Thus |, (2)| < 2¢g, . This reasoning allows us to
recursively bound the potential terms ®(Z) with |Z| = m in
terms of the those with |Z| = m — 1. Since we are assuming
the interaction potential to be k body, the recursion stops after
a constant number of steps. Hence there is a finite number 1,
only depending on k such that

IPA@) < mysyy = my 9,1(0, diam(2), (23)

where we inserted the definition of &, and used that
diam(Z) = |x — y|. This finishes the proof of Theorem 2.

V. FERMIONIC LATTICE SYSTEMS

So far we only considered spin systems. In the Supple-
mental Material we generalize our result to fermionic lattice
systems. The only difference to the case of spins is that we
need to allow the observables A, B in the formulation of the
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(assumed) bound in Theorem 2 to act not only on the respec-
tive lattice points but also on potentially present fermionic
auxiliary systems. Such an auxiliary system would make no
difference in the case of spins. However, due to the anticom-
mutation relations of fermions and the parity superselection
rule, they are important to consider in the case of a fermionic
lattice system.

VI. DISCUSSION

In this work we have shown that whenever the two-point
functions C, (1, o) show a certain decay behavior in space,
then there also exists a potential generating exactly the same
time evolution, which has the same decay behavior in space.
In particular, this shows that Lieb-Robinson bounds in ex-
ponential form are equivalent to the exponential decay of
interactions. Our result implies that whenever a system has
some long-range interactions, then this can be diagnosed by
measuring a two-point function in a suitable initial state.
Furthermore, considering the reformulation of Lieb-Robinson
bounds in terms of the detectability of local excitations, we
see that there is a direct correspondence between the possi-
bility of sending information through the lattice with finite
capacity and the locality of the interactions. Let us conclude
by discussing some open problems and avenues for further
research.

First, we derived our results in the setting of continuous-
time, unitary dynamics. One can ask whether similar results
also hold for nonunitary dynamics or when one has discrete-
time unitary dynamics. Suppose, for example, that one only
has promises for the time evolution in discrete time steps 4¢,
i.e., for the quantities Cﬁ 5(jd0t) with j an integer. Then the
dynamics is given by 75, (A) = UAU* (omitting A for clarity),
and U is a quasilocal unitary implementing the time evolu-
tion for a time step 8. Compared to large distances on the
lattice, this time step is arbitrarily small. Going to very large
distances, we could therefore imagine that on large scales the
dynamics is then generated by a quasilocal Hamiltonian. Inter-
estingly, according to Refs. [40—42], this is not the case; there
exist strictly local unitary dynamics in discrete time which
cannot be generated by quasilocal Hamiltonians, despite the
fact that they can always be generated by local, finite depth
quantum circuits [43]. In the Appendixes we present a very
simple example of this behavior [44]. We thus conclude that
it is indeed necessary to have promises for arbitrary short
times. Whether our results generalize to continuous-time, dis-
sipative, Markovian time evolution is an open problem. Let
us remind the reader that Lieb-Robinson bounds also hold
for dissipative systems, whose time evolution is generated by
quasilocal Lindbladians [3,45-48]. Here, however, we would
have to show that any long-ranged term in a Lindbladian leads
to a violation of the corresponding Lieb-Robinson bound. It is
not clear whether this is true for purely dissipative evolution.
Certainly the techniques used in this work would have to be
extended to prove such a result. If a counterexample indeed
exists, it would show that there exists a close connection
between unitarity of time evolution and locality of the dynam-
ics in the sense of information propagation, which would be
remarkable. We leave the investigation of this interesting point
for future work.

Secondly, our results only need a promise over correla-
tion functions of single-site observables for very short times
and in this sense are rather friendly to experimental settings.
However, to derive our results, we require a promise on the
behavior of such correlation functions for arbitrary states |W).
In practice, such information is usually not available, since
we do not prepare arbitrary states in real experiments. On the
other hand, we are usually also not interested in the dynamics
for arbitrary states but only in some subset of states, for
example, from the low-energy sector. It is an interesting open
problem to find out whether having a bound of the form

(W [z (A), B]1W) < AIlIBIlg(t) exp(—pulx — yI)  (24)

for all states |W) in some experimentally relevant subset of
states implies that the dynamics for this subset of states can
be represented by an exponentially decaying interaction.

Thirdly, we have shown our results for spin models
and fermionic lattice models. It would be interesting to in-
vestigate whether similar results as ours can be sensibly
formulated and proven for the case of bosonic systems (re-
stricting to bounded operators as observables). In this setting
it is still an open problem to formulate and prove gen-
eral Lieb-Robinson bounds for interacting bosonic systems
(see, however, Refs. [34,35,49]). Indeed, without additional
assumptions they cannot be proven due to the results in
Ref. [36]. The assumption of reasonably bounded correlation
functions naturally rules out interactions that lead to violations
of Lieb-Robinson bounds. Methods similar to those we used
in this work may thus help in identifying the general form of
bosonic interactions for which Lieb-Robinson bounds can be
proven.
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APPENDIX A: PROOF OF LEMMA 3

In this section we provide the proof of Lemma 3, i.e., the
statement that the potential defined by

®r(2) =) (=DFXIR[H,]
XCcZ

(AD

is a k-body potential in canonical form on A giving rise to the
Hamiltonian H,. This form of the potential is motivated by
the inclusion-exclusion principle (see, e.g., Ref. [50]).

We need to show the following facts: (i) the potential
gives rise to the same Hamiltonian H,, (ii) the potential is
in canonical form, and (iii) the potential is k body. Before we
come to the details of this, we collect some simple facts about
sums over subsets. The crucial fact that we will need is an
elementary form of the inclusion-exclusion principle. It states
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that for any finite set Z, we have

SN =542 = {(1)

X<z

ifZ #0

ifZ =0. (A2)

This equality is very simple to prove: Clearly it is true for
Z = (. Therefore consider any Z with Z # ¢ and let z € Z be
an arbitrary point. Then

D DM = ST =My Y DX

Xcz XCZ,zeX XCZ,z¢X

= Z (=Xl 4 Z (=X

XCZ\{z} XCZ\{z}

= Y (-1+ =D =o0.

XCZ\{z}

(A3)

We will also use that for any function of sets f, we can write

Y. f@= ) fzux).

Z:XCZCA ZCA\X

(A4)

In particular, we have

Z (=% = Z (—DPHXT = (—)XTs,5(A \ X).

Z:XCZCA ZSA\X

(AS)
Finally, we require the identity,

YY XX, D) =) Y f(X)X,Z)

ZCAXCZ XCAZ:XCZCA
=) fX) ) eX.Z), (A6)
XCA Z:XCZCA

which holds for arbitrary functions of sets f and g. With
these ingredients in place, we now start with the proof of the
Lemma.

We first show that the potential sums up to give the Hamil-

tonian,
D da@ =) Y (~DPHITRH,]

ZCA ZCAXCZ
=) TRMHA ) (DA
XCA Z:XCZCA
8p(A\X)
=T A[HA] = Ha, (A7)

where we made use of (A2) and Ff\‘ = 1. To show that the
potential is in canonical form, we consider Y C AandZ C A
such that ZNY° # @ (i.e., Z\ (ZNY) # #). We then find,
using TP o T§ =T8rys

T2 =Y (=DM, [Hy ).
X<Z

Let us decompose ZintoZNY and Z \ (ZNY) # @. For any
function of sets f, a sum over subsets of Z can be decomposed

as
Yrxo= Y Y fxux”.

X<z X'CZ\(ZNY) X"<CZnNY

(A8)

(A9)

We thereby find

TP PA2)] =

Z (_l)lzl—lx/l

X'CZ\(ZNY)

ss(2\@nn)) (- )71=0

x Y (=) [HA] =0.

X"CZnY

(A10)

Finally, let us show that ) A 18 k body. To see this, consider Z
with |Z| > k. We have to show that ® 5 (Z) = 0. First we use
the original k-body potential ® to write

> @(Y)}

YCA|Y|<k

= Y Y =DHAIrdem)).

YCA|Y|<kXSZ

dr2) = Z(—l)'z—x'r)?[

X<z

(A11)

We now show that for each Y the corresponding term is zero.
To do this we again split the sum over X intoasumoverZNY

andZ\ (ZNY)to get
Y =0t = Y (—)A

Xcz X'CZ\(ZNY)

x 2:(—wﬂwgw4@yn
X"CZnY

(A12)

However, ®(Y) € Ay, and the regions X’ do not overlap Y by
definition. Accordingly, we have FQ,UX,,[CD(Y )] = F}/(‘,,[CD(Y )]

We thus find
YDA e = YT (~DE
X<z X'CZ\(ZNY)

8p(Z\(ZNY ) (1)

x Y, DX T em))

X"czZny

=8)(Z\ (ZNY)(-D?
x Xj@nwwgm@n

X"czny
(A13)

Now, since ®(Y) is zero for |Y| > k the expression vanishes
in this case. On the other hand, if |Y| < k, we can make use of
our assumption that |Z| > k. This implies that Z \ (Z NY) #
) and hence the § function vanishes. This finishes the proof.

APPENDIX B: REDUCTION MAP AND COMMUTATOR

For completeness, we provide in this section a proof of a
well-known result about the quality of local restrictions of an
observable, given that it almost commutes with all observables
on the complement of this restriction [39].

Lemma 4. Let A € A, and assume that ||[A, B]|| < ¢||B]|
for all B € Ay for some subset Y C A. Then

(1 =Tyo)lAlll <e. (B1)
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Proof. The reduction map I'{. onto the complement of ¥
can be implemented as a twirl over the unitary group on Y,
ie.,

ML A] = f dUy (Iy ® V)ALy ® U*),  (B2)
where the integral runs over the normalized Haar measure on

Y. Accordingly, the norm difference of A and its reduction to
Y ¢ can be upper bounded by

(1 =Tyo)lAll = HA - /de (Iye @ U)A(Ly- @ U™)

< /dUY A, (Iye ® U)I(Lye @ Ul < &,
(B3)

where in the last step we used the unitary invariance of the
operator norm, our assumption on A, and the normalization of
the Haar measure.

APPENDIX C: FROM LIEB-ROBINSON BOUNDS
OF SINGLE-SITE OBSERVABLES TO GENERAL
LIEB-ROBINSON BOUNDS

We have emphasized in the main text that our result implies
that Lieb-Robinson bounds for single-site observables imply
Lieb-Robinson bounds for observables with arbitrary support.
Indeed, this follows immediately by combining our main re-
sult with Theorem 1. One may be tempted to think that this
follows directly from 1, since any operator A supported on
region X may be expressed as

A= Z Cil“'i\x|Si1 ®---Q Si‘x‘v

e lix|

(ChH

where the S; withi =1, ..., d? provide an operator basis for
the space of operators acting on a single site of the lattice.
Now using the Leibniz rule for the commutator and the tri-
angle inequality, a bound for single-site observables implies a
bound for more general observables. However, it is important
to realize that this procedure yields an additional prefactor
d*X1 on the right-hand side of the Lieb-Robinson bounds. For
large regions X, for example, half the system, this prefactor
diverges exponentially quickly for large systems, making the
resulting bound useless. Our result, on the other hand, shows
that a Lieb-Robinson bound for single-site observables im-
plies a corresponding bound for arbitrary observables without
such a prefactor.

APPENDIX D: FERMIONIC SYSTEMS

In the main text we discussed the setting of a lattice of
spins. Here we explain how our results transfer to fermionic
lattice systems. While the basic idea and proof strategy are
exactly identical, we need to be a bit more careful due to
the parity superselection rule for fermions. To do this, let
us first briefly recapitulate the formalism of fermionic lat-
tice systems (see, e.g., Ref. [38] for an introduction to the
mathematical formalism of fermionic systems). For recent
Lieb-Robinson bounds in the context of fermionic lattice sys-
tems, see Ref. [51], which also includes a detailed discussion

of the formalism of fermionic lattice systems from which we
took inspiration. However, our discussion of the reduction
map is quite different and might be of independent interest.

1. The basic setup of fermionic lattice systems

To every point of our lattice Z”, we associate an index set
I, = {1, ...,d}. For every index j € I, we define annihilation
and creation operators f, ;, f;’ ; fulfilling the canonical anti-
commutation relations:

o L =80y8i6 L (g fuad = {fL ) £} =0. (DD)

The algebra Ay of local operators associated to a finite region
X is then generated by arbitrary monomials of the f, ;. f| Tk
with x, y € X. Every Ay is isomorphic to the matrix algebra
Max, of 2¢X1 % 241XI matrices. A special role is played by the

operator,
Pe =[]0,

xeX jel,

(D2)

where n, ; 1= f; i is the number operator associated to the
mode (x, j). Due to the canonical anticommutation relations,
the ordering of the operators in the definition of Py does not
matter. Py is called the parity operator associated to the region
X and fulfills P)% =1 and P; = Px. Every A € Ax can be
decomposed into an even and odd part as

A = A+ PXAPX’ A A— PXAPX. O3
2 2
Then [AT, Px] = 0 and {A~, Py} = 0. We write
Ax = A} + Ay,
Af :={AT|A e Ay}, Ay :={A"|Aec Ax}. (D4

Due to the parity superselection rule of fermionic systems,
all physical observables are even self-adjoint operators, and
hence part of some A};. We note that A} is an algebra con-
taining the identity, but Ay is not an algebra, since a, b € Ay
implies ab € A. Alternatively, we can characterize A} as
being generated by monomials of an even number of the
fx’ j fk with x, y € X, while A} is generated by monomials
of an odd number of the creation and annihilation operators.
Due to the parity superselection rule, the algebra of physical
operators A is not isomorphic to a full matrix algebra but
isomorphic to a direct sum,

A;(_ >~ Mhaxi-1 @ Moaixi-1

>~ Mhaxi-1 @ [0XO0| + Maaxi-1 @ |1X1], (D5)

where the two direct summands correspond to the 41 and
—1 eigenspaces of Py, whose projectors we denote by PXi
and which, in the above decomposition, are given by Py =
1 ®(0%0], Py = 1 ® |[1X1]. Alternatively, we can write them
as P;E = (1 + Px)/2. Any operator A € Ax can be decom-
posed as

A= (P{ +POAP +P) =A +A_+A +A_,
At A~
(D6)

with A4 = PFAPY, Ai_ = P{AP; and so forth. For any
algebra Ay there is a unique even tracial state o™, ie., a
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positive and normalized linear function, which vanishes on
Ay and fulfills

»""[AB] = 0" [Alo"[B], (D7)
for A € Ax,,B € Ax, with X; N X, =, and for any two
A, B € Ax we have w'[AB] = 0™ [BA].

2. The reduction map

We also need to define a reduction map as in the case of
spin systems. Here an additional difficulty arises in the setting
of fermionic systems. To understand this issue, we should
remember that in any given physical situation we should be
allowed to add auxiliary systems to our description which do
not take part in the time evolution of the system of interest.
For spin systems, such “innocent bystanders” do not make
any difference. However, for fermionic systems the situa-
tion is different due to the parity superselection rule and the
canonical anticommutation relations. Anticipating this issue,
let us therefore consider, next to the lattice of fermions, also
another system S of |S| fermions, described by associated
annihilation and creation operators f;, f, for s=1,...,8
with {fj’j,fY } =0 and {f;, fr;} =0 for any x € ZP. For

X € A C ZP, we then introduce a reduction map

F)[(\S . -AAS — -AAS (DS)
that maps physical operators on A to physical operators on
X, T95 1 AL — A}, and fulfills for any A € A (with X© =
AN\ X),
[TR°[Al,B] =0 VB e Af.. (D9)

Importantly, we will see later that the map I'$S : AL — A
does not depend on S as long as |S| > 1.

Let us now show how the reduction map is constructed. As
shown in the proof of Lemma 4, in the spin case the reduction
map can be written as

TA[A] = deX( (1x ® U)A(ly ® U), (Spins) (D10)

where dUy. denotes the normalized Haar measure on X¢. For
the fermionic case, the construction we need is more involved.
First note that we can decompose

Afg >~ (Af. @ AD) @ (A;. ® AS)

>~ Moaxeps—1 @ |0X0| + Maaxers—1 @ |1X1], (D11)

where the last decomposition is with respect to the parity
operator Pycs. The group Uy, ¢ of even unitaries on XS thus
corresponds to U (24X 1+5-1y @ 7 (24X 1+5=1) ' We now define
the reduction maps as

raS[A] = / dU UAUT, (D12)

where dU is the normalized Haar measure over Uy.s.
Since this group corresponds to two copies of the group
U 24X 1+S=1) " one for each parity sector on XS, we can

rewrite this map as
I5[A] = / du, / dU_ (U4 Pg.g + U_Pyg)

x A(UyPgg +U_Pgg)

= / dU, U, Py (AP U
+ / dU_U_P;. (AP U

+ [ / dU, Uy Py eAPy / dU_U’ + H.c.}
= / dU, U, P} AP UL

+ / dU_U_Pg. AP U, (D13)
where dU, are normalized Haar measures over U (24X‘1+5—1)
and we used that [ dU Uy = 0. For the Haar measure we
have

Trps [AP{]

+ ap+ i P +
/ AU+ UsPycsAPysUs = et Fres

= 2a)er[AP;—(S]P;Sv (D14)

where wit¢ denotes the partial tracial state or maximally
mixed state on X°S. On operators of the form Ax Bx-g, it acts
as

wys[AxBxes] = Axo" [Byes]. (D15)

Note that when an operator is supported in the support of the
tracial state, we can omit the subscript. We summarize this
result in the following lemma.

Lemma 5. The reduction map is a unital, completely posi-
tive map which can be written as

F)I(\S[ 1= 2(“))0 [AP;S]P;S—i_wX‘S[APX 5] XLS)'

It fulfills the following:

(i) If A,C € A} and B € A}, we have I'5[ABC] =
ATSS[B]C.

(i) If B € Ay, then T#5[B] = 0.

(i) If |S| > 1, the restriction to A, maps to A}, T'8S :
Ap — A, and the result does not depend on S.

(iv) For X € A,Y € A and when restricted to AT, we
have

(D16)

TS o TP =TS o TS =Ty (D17)
Proof. 1. Is obvious. 2. Follows from the fact that wit is
an even state and hence vanishes on odd operators. For 3.
we make the following observations. First, if A € Ay, is in
Ax ® As., then the reduction vanishes by 1. and 2. Therefore
consider operators of the form AyAx. with Ax. € A;{ By 1.
we can forget about the Ay part and in the following consider
A € Af.. We use that for |S| > 1, we have

1+ers
Pis=——— = 5lPu +

+ (P§. — Py)] = P{L.P§ + Py.Py,
(D18)

Pr ) (P +Pg)

— Px_c)(Ps+
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_ 1—Pyes 1 _ _
Prg=—F—= 5[(P;2 + P ) (P + Py)
— (P, — Pr)(P§ — Py)) = PPy + Pr.Py.

(D19)
Since Py. Py = Py.P§ and Py.Py.¢ = Py.P§, we have
APf g = A(P. + Py )Pfg = A(PE.PY + P P§).  (D20)
Using that wy' is a product state and w}'[P§] = 1/2, we find
wyis[APY. g1 = oy [AP)wg [PS] + wy: [AP. Jwg [Py ]
= Log [A(P + Pe)l = Swxi[Al - (D21)
and
it (AP ] = oX [APF Jos [Py ] + o [APg Jos [Py ]
= Jog [APY + Pr)l = ot (Al (D22)
Consequently,
T25[A] = o [Al(Pfg + Preg) = wlt[A]L € A}, (D23)

Finally, we need to show 4. We consider any operators A €
A(XUY)", B e AX\Y: Ce -AY\X, D € Axn~y such that ABCD €
A} . Then

23, [ABCD] = '3, [ABCID = 0™ [ABCID.  (D24)
Similarly, we have
Iy’ o TPS[ABCD] = Ty *[T}*[ABICD]
= I$5[C1Dw™ [AB]
= Do [Clo™[AB] = ™" [ABC]D,
(D25)

where we used that »™ is a product state. For the reversed
order,

I'$S o T [ABCD] = +TpS[BI'¢*[ACID]

= +I'M[BIDw"[AC] = £Dw " [ACB),
(D26)

where the negative sign only appears if both A and B are odd,
in which case the expression vanishes. We thus conclude that
all three expressions vanish if any of the A, B, C are odd and
otherwise give the same result. Hence they always give the
same result.

We emphasize that T'#5 does not map all observables to
observables supported in X. For example, the parity operator
Pxcs is mapped to itself. This is easy to see from the definition
via the average over even unitaries but can also be seen from

the above form of the map using Pycs = Py — Pyeg:
T [Pes — Pres] = 2(@yis[PiesIPies — oy Pres]Pyes)
=2(3Pfs — 1Prg) = Pscx. (D27)

We close the discussion of the reduction map for fermionic
lattice systems by proving the analog of Lemma 4.
Lemma 6. Suppose |S| > 1 andletA e AX be such that

I[A, Bl < ellBll VB e Af.. (D28)

Then I'§5[A] € A} and

|4 — TS[A]] <e. (D29)

Proof. That FQS [A] € A;{ for |S| > 1 was shown in the
previous lemma. The second claim follows as in the proof of
Lemma 4:

A — TesAl gf dU |AUU" — UAUT||
U

=/ dU |I[A, U]l < &,
.

X¢

(D30)

where we used the triangle inequality and normalization of
the Haar measure in the first step and unitary invariance of the
norm in the second step.

As shown in Lemma 5, the map I'§% : Ay — A} does not
in fact depend on S. We can hence define

F)[(\ . .AA — .A+,

A TR5[A],  for some [S| > 1,

(D31)

and this map fulfills all the relevant properties that we needed
in the case of spins.

3. Dynamics and the fermionic result

Similarly as for spin systems, we describe dynamics by
a potential which now associates even operators ®(X) =
X)) e Aj to finite regions X of the lattice. Therefore the
Hamiltonian H, is even and the induced time evolution 7
maps Ai to Af as required. Analogously to the spin setting,
we call such a potential k body if ®(X) = 0 for |[X| > k. As
for spin systems, exponentially decaying k-body potentials
lead to Lieb-Robinson bounds also in the case of fermions
(see, e.g., Ref. [51] for a recent account). Similarly as for the
reduction map, we explicitly take into account the possibility
of fermionic auxiliary systems S;, S, that are left invariant
under the time evolution. This allows us to recover our result
also in the case of fermionic lattice systems:

Theorem 7 (Fermionic converse to Lieb-Robinson bounds).
Consider a fermionic lattice system with k-body potential and
assume that there exists a function A(¢, x) with h(0, x) = 0,
with 2(0, x) = O for |x| > 0 and differentiable in #, such that
for any finite subset A C ZP, any two points x # y € Z” and
any two fermionic systems S, S, we have

A
Cﬁy(t) := max —” [Tl @), B] ”

< h(t, Jx =y,
Az JAIBL

(D32)
where the maximization is over physical operators on {x} U
Siand {y} U S2: A € Al 5, B € Afjj s, Then there existf a
constant my, only depending on k, and a k-body potential & 5
on A, giving rise to the same time evolution 7, with

IDACON < my 3:2(0, diam (X)) (D33)

forall X € A with |X| > 2.
Proof. The proof is essentially identical to the spin case
using the fermionic reduction map defined in (D31).
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APPENDIX E: STRICTLY LOCAL, DISCRETE-TIME,
UNITARY DYNAMICS THAT CANNOT BE GENERATED
LOCALLY IN CONTINUOUS TIME

In this section we briefly describe an example of discrete-
time, unitary dynamics that is strictly local but cannot be gen-
erated in continuous time with a (quasi-)local Hamiltonian,
namely, the shift. We discuss the example in first-quantized
language but remark that it can be second-quantized to yield a
fermionic lattice model. Indeed, any local second-quantized
Hamiltonian would necessarily have to reproduce the first-
quantized Hamiltonian in the single-particle sector, which as
we argue here has to violate Lieb-Robinson bounds in con-
tinuous time. The model describes a particle hopping on a
one-dimensional line, which we can view as Z, with Hilbert
space given by [2(Z). An orthonormal basis is given by asso-
ciating one basis vector |x) with each lattice site x € Z, which
is interpreted as the particle being located at the site x. The
unitary dynamics that we consider simply amounts to shifting
the particle by one site:

Ulx)= |x+1). (E1)

In other words, U = exp(iP), where P is the lattice mo-
mentum, which generates translations. It is clear that this
discrete-time dynamics is strictly local. However, the matrix
elements of the lattice momentum in position space fulfill (for

X#Yy)

yIPlx)| =

. (E2)
[y — x|
Therefore, if we choose A = [x)x|, B = |y)y| for x #y, we
find that for small times ¢,

le” Ae=?, Bl = —— + OG?). (E3)
lx =yl
Thus while the dynamics is strictly local for discrete times, it
becomes long-ranged for intermediate times.

We remark that this is not a complete argument since the
choice of P as the logarithm of exp(iP) is not unique and there
could in principle exist a local choice. However, it follows
from the index theory for strictly local unitary evolutions that
no such choice exists, see [52]. Also see [53] for examples
of quantum cellular automata that cannot be generated from a
local time-independent evolution.
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