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We present an analytical approach to the problem of the multiphoton absorption and Rabi oscillations in an
armchair graphene nanoribbon (AGNR) in the presence of a time-oscillating strong electric field induced by a
light wave directed parallel to the ribbon axis. The two-dimensional Dirac equation for the massless electron
subject to the ribbon confinement is employed. In the resonant approximation the electron-hole pair production
rate, associated with the electron transitions between the valence and conduction size-quantized subbands, the
corresponding multiphoton absorption coefficient, and the frequency of the Rabi oscillations are obtained in an
explicit form. We trace the dependencies of the above quantities on the ribbon width and electric field strength
for both the multiphoton assisted and tunneling regimes relevant to the time-oscillating and practically constant
electric field, respectively. A significant enhancement effect of the oscillating character of the electric field on the
intersubband transitions is encountered. Our analytical results are in qualitative agreement with those obtained
for the graphene layer by numerical methods. Estimates of the expected experimental values for the typically
employed AGNR and laser parameters show that both the Rabi oscillations and multiphoton absorption are
accessible in the laboratory. The data relevant to the intersubband tunneling makes the AGNR a one-dimensional
condensed matter analog in which the quantum electrodynamic vacuum decay can be detected by applying an
external laboratory electric field.
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I. INTRODUCTION

The pioneering work by Wallace [1] devoted to the electron
states in graphene, an ideal two-dimensional (2D) crystal of
carbon atoms arranged on a honeycomb lattice, has lead to a
series of experimental and theoretical investigations resulting
in a vast literature (see Refs. [2,3] and references therein).
This undiminished interest is caused by its unique mechanical,
electronic, optical, and transport properties [4], which in turn
is the consequence of the graphene electron nature. In the
vicinity of the �K± corners of the graphene Brillouin zone (cor-
responding to Dirac points) the electron dispersion law looks
like ε = h̄vF k, where ε and �k are the energy and 2D wave vec-
tor, respectively, counted from the Dirac points, where vF =
106 m/s is the graphene Fermi velocity. This linear law results
in the low energy electron states to be governed by a massless
2D Dirac equation [1,2]. The numerous branches of graphene
studies might be grouped into two classes. The first one is in-
vestigations contributing to corresponding applications (phase
modulators, nanopore sensors, ballistic transistors photode-
tectors, topological insulators [5]), and fundamental science
(Klein tunneling, Zitterbewegung, quantum Hall effect), both
related to condensed matter physics. In the second class of
works graphene plays the role of a physical environment,
in which some of the basic quantum electrodynamic (QED)
effects, predicted earlier, can be verified in a laboratory. The
existing experimental facilities prevent these effects to be ob-
served in vacuum. The linear dispersion law for the massless

fermions up to the energy ε � 1 eV allow us to consider
graphene as a condensed matter counterpart for relativistic
quantum field theory and a filled Fermi sea in graphene as
a filled Dirac sea in QED vacuum [6].

The vacuum decay in the presence of a strong classical
electromagnetic field, accompanied by the electron-positron
pair production (pp), remains one of the most important QED
effects. Originally, it has been predicted by Sauter [7] in
the context of the Klein paradox [8], firmly theoretically de-
scribed by Schwinger [9], commented by Nikishov [10] and
Cohen and McGady [11], and investigated by the S-matrix
[12,13] and quasiclassical [14,15] methods (see Ref. [16] for
details) to give for the pp rate

W v ∼ exp

(
−πF v

c

F

)
. (1)

In Eq. (1) F and F v
c = m2c3

eh̄ are the time-independent external
and critical electric fields, respectively. The latter provides
the balance between the energy an electron acquires for the
Compton wavelength and a gap 2mc2 in the vacuum energy
spectrum. The experimental observation of the Schwinger
vacuum decay is challenged by the extremely strong critical
field F v

c � 1013 kV/cm, which considerably exceeds the cur-
rently highest possible experimental values Fexpt � 10−2F v

c
[17], which leads to the exponential suppression of the pp
rate W v .
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In the case of a time-oscillating electric field of magnitude
F0 and frequency ω, the particle-field interaction in vacuum is
determined by the Keldysh parameter [18]

γ (v) = ωmc

eF0
, (2)

distinguishing the Schwinger interband tunneling (γ (v) � 1)
and multiphoton assisted (γ (v) � 1) mechanisms of the pp.
The exact equations for the numbers of fermion and boson
pairs, created from the vacuum by the time-periodic electric
field, have been derived by Mostepanenko and Frolov [19].
The enhancement of the pp output by the high frequency
electric field was discussed in Refs. [20–25]. It is noteworthy
that the multiphoton pp from the vacuum becomes insignif-
icant for frequencies less than those in the gamma region
[26,27]. The decay of the arbitrary dimensional QED, in-
duced by the quasiconstant electric field, has been studied by
Gavrilov and Gitman in Ref. [28], in which, in particular, the
mean numbers of created bosons and fermions particles were
determined. Recently Taya [29], based on the Dirac equa-
tion and Furry approach [30], comprehensively studied and
thoroughly reviewed the problem of the interplay between the
low frequency strong and fast oscillating perturbative electro-
magnetic fields. It was shown that such field interaction results
in the significant growth of the electron-positron production
from vacuum. In [31] the vacuum pp by a time-dependent
strong electric field on the basis a semiclassical Wentzel-
Kramers-Brillouin analysis has been explored.

In order to gain insight into the mechanisms of the vacuum
decay accompanied by the electron-positron pp, the meth-
ods, relevant to the 3+1-dimensional QED vacuum, have
been extended to the similar semiconductor structures and
to the vacuum 2+1 analog, namely graphene layer, related
to the electron-hole (e-h) pp. Linder et al. [32] employed
the parallel between the Dirac and two-band equations for
the electron-positron in vacuum and e-h pairs in the narrow-
gapped semiconductors [33], respectively. The enhancement
of the pair creation Landau-Zener probability [34,35], caused
by the weak time-oscillating electric field superimposed on
the strong constant [9] or slowly varying Sauter pulse [7]
electric fields, has been discussed. Thus, the narrow-gapped
semiconductors become the media for the laboratory testing
of the fundamental quantum field theory predictions.

For a constant electric field the pp rate has been calculated
both analytically and numerically for the gapless (massless)
and gapped (massive) graphene [6,26,36,37]. In particular, Al-
lor et al. [6] proposed an experimental test for the Schwinger
tunneling mechanism. Effects of the time-dependent electric
field on the pair creation in the gapped and gapless graphene
have been investigated for periodically oscillating [36,38],
different time pulses [5,39], and Sauter-like [7,26] electric
fields. Recently, Akal et al. [17] studied dynamically assisted
pp in gapped graphene monolayers subject to bichromatic
electric fields. Gagnon et al. [40] investigated the dynamical
pair creation in the presence of strong magnetic fields directed
perpendicular to a graphene monolayer.

As it follows from the theoretical results of the works listed
above, gapped graphene is suitable as a condensed matter
emulator for the experimental test of the pp in vacuum, in-
duced by the electric field. The point is that the electric fields,

needed for the particle-antiparticle pair creation in graphene,
can be realized in modern experimental laboratories in con-
trast to vacuum, for which the corresponding fields remain
unattainable. The gapped graphene critical electric field F g

c

can be obtained from F v
c in Eq. (1) by replacing c by vF and

m by �g/v
2
F where �g is a band gap, induced, for example,

by epitaxial growth on a suitable substrate [41]. For the re-
alistic band gap �g � 0.3 eV [41] the critical electric field is
F g

c � 1.6 × 103 kV/cm, which is much less than the vacuum
field F v

c .
For the time-oscillating electric field, the Keldysh pa-

rameter γ (g) is obtained from γ (v) in Eq. (2) by the same
replacements as those associated with the field F g

c . For
the infrared electromagnetic wave (h̄ω � 0.1 eV), provid-
ing the multiphoton mechanism of the pair creation (γ (v) =
γ (g) � 1,�g � 0.3 eV), the field magnitudes for the vac-
uum and gapped graphene become F v

0 � 3 × 106 kV/cm
and F g

0 � 5 × 102 kV/cm, respectively. The graphene related
electric fields correspond to the laser intensity I � 6.5 ×
105 kW/cm2, which can be comfortably reached by present
laser technology. In gapless graphene (� = 0) the zero ef-
fective mass m = 0 ensures the pp for any electric fields
and frequencies [38] and prevents the existence of a critical
electric field and exponential suppression. Since the latter is
the basic signature of the Schwinger vacuum tunneling, the
intrinsic gapless 2D graphene layer does not seem to be an
ideal candidate for examining QED phenomena.

At this stage another gapped graphene structure is de-
manded to simulate the electric field induced pp production
from vacuum. Armchair graphene nanoribbon (AGNR), a
quasi-1D graphene strips with width d , surpasses in some
sense the graphene layer. In graphene the band gap �g is the
parameter of the theory, associated with the technical param-
eters (epitaxial growth, elastic strain, Rashba spin splitting on
magnetic substrates [36]), modifying the genuine graphene
properties, while the AGNR gap �r ∼ d−1 [42] is the intrinsic
parameter of the untouched graphene. In the case of necessity
the band gaps can be measured experimentally, in particu-
lar, by optical methods. Since both the AGNR and gapped
graphene are semiconductorlike structures, the interband op-
tical absorption spectrum in the vicinity of the threshold
h̄ω = � demonstrates an easily detected singularity (h̄ω −
�r )−1/2 and a weakly manifested steplike form �(h̄ω − �g)
for the quasi-1D AGNR and 2D graphene layer, respectively.
Clearly the first is favorable for the precise band gap measure-
ment. The one-photon absorption of the low intensity light
in AGNR has been theoretically studied in a broad range of
works [43–48], based on various computational techniques,
as well as those related to the graphene layer [5,17,36,38–
40]. Undoubtedly, numerical approaches are preferable for an
adequate description of concrete experiments. Nevertheless,
analytical approaches, being the focus of the present work,
are indispensable to elucidate the basic physics of AGNR by
deriving closed form analytical expressions for their proper-
ties. Our second goal is to promote the application of the
AGNR based materials in high-power opto-electronics, using
the transparent dependencies of their underlying effects on
the ribbon width and strong light wave intensity. However,
to the best of our knowledge, in contrast to the graphene
layer, explicit results relevant to the dynamically assisted e-h
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production and accompanying multiphoton optical absorption
in AGNR, irradiated by the intensive light, have virtually not
been addressed in the literature yet.

In order to fill this gap we analytically determine the
production rate of the e-h pairs, derive the multiphoton inter-
band absorption coefficient and Rabi oscillations frequency in
AGNR subject to a time-oscillating electric field of a strong
light wave. In addition, we present the pp rate, correspond-
ing to the interband tunneling, caused by the time-constant
electric field. We exploit the nearest-neighbors tight-binding
model, generating the Dirac equation, to govern the low-
energies graphene fermions [1,2] and resonant approximation
for particle-wave interaction. The presented results can be
employed in two ways. First, properties of the interband mul-
tiphoton absorption and e-h tunneling render AGNR a unique
material, contributing significantly to applied and fundamen-
tal fields of solid state physics. Second, these properties of the
graphene ribbon, interpreted as a quantum field theory object,
qualitatively highlight the electrically induced instability of a
QED vacuum.

The paper is organized as follows. In Sec. II the general
approach and basic analytical equations are presented. The
Rabi oscillation frequency, rates of the intersubband transi-
tions, associated with the tunneling and multiphoton assisted
mechanisms, are derived, discussed, and estimated with re-
spect to future experiments in Sec. III. Section IV contains
our conclusions.

II. GENERAL APPROACH

We consider an electrically biased AGNR, with width d
and length L, placed on the x-y plane and bounded by straight
lines x = ±d/2. The time-oscillating electric field F (t ) =
F0 cos ωt , with magnitude F0 and frequency ω, as well as the
polarization of the light wave, are chosen to be parallel to
the ribbon y axis. The energy spectrum of the free electron
in AGNR, derived by Brey and Fertig [42], is a sequence of
the 1D subbands with the energies

±EN (k) = (
ε2

N + h̄2v2
F k2

)1/2
, εN = |N − σ̃ |π h̄vF

d
,

N = 0,±1,±2, . . . , σ̃ = Kd

π
−

[
Kd

π

]
, (3)

where εN and h̄vF k (k is the wave number) are the size-
quantized and continuous energies, corresponding to the
transverse (x) and longitudinal (y) motions, respectively.
vF = 106 m/s and K = 4π/3a0 (a0 = 2.46 Å is the graphene
lattice constant) are the Fermi velocity in graphene and the
wave number, determining the nonequivalent Dirac points
�K (+,−) = (±K, 0) in the graphene Brillouin zone. Below, to
be specific, we will consider AGNR of the family σ̃ = 1/3,
providing a semiconductorlike gapped structure.

The general approach to the problem of the optical ab-
sorption in AGNR, associated with the interband electron
transitions, has been developed in Ref. [49]. For a y-polarized
light wave, transitions are allowed between the valence and
conduction bands, possessing the energies ∓ | EN (k) |, re-
spectively. In [49] the dynamical conductivity has been chosen
to describe the graphene optical properties. Here, however,

we take the traditional for the semiconductorlike structures
equivalent characteristic, namely the l-photon absorption co-
efficient α(l ), linked to the transition probability W (l ) by the
following relation:

α(l ) = h̄ω

nbε0cSF 2
0

W (l ), W (l ) =
∑

N

W (l )
N . (4)

In this equation nb is the refractive index of the ribbon sub-
strate, c is the speed of light, S = Ld is the area of the ribbon,
and W (l )

N is the probability of the transition between the va-
lence and conduction N subbands per unit length per unit time,
i.e., the length density of the e-h pair production rate.

The equation, describing the electron at a position �r(x, y)
subject to the external time-dependent electric field, possesses
the form of a Dirac equation

Ĥ �
(�r, t ) = ih̄
∂ �
(�r, t )

∂t
, (5)

where the Hamiltonian

Ĥ (�k; y, t ) = Ĥx(k̂x ) + Ĥy(k̂y) + Î[−eyF (t )], �̂k = −i �∇
(6)

is formed by the Hamiltonians

Ĥj (k̂ j ) = h̄vF

(−σ j k̂ j 0
0 σ ∗

j k̂ j

)
,

relevant to the nonequivalent Dirac points �K (+,−) [42] and the
electric field potential −eyF (t ). The matrices Î and �σ are the
unit and Pauli matrices, respectively.

Furthermore, we choose the wave function �
, associated
with the N subband, in the form

�
N (�r, t ) = 1√
2

[uNA(y, t ) ��NA(x) + uNB(y, t ) ��NB(x)], (7)

where ��NA(B) and uNA(B) are the wave functions describing the
electron transverse x and longitudinal y states, governed by
the ribbon confinement and electric field F (t ), respectively.
The indices A(B) mark the graphene sublattices. The explicit
form and properties of the four component functions ��NA(B)

are presented in Ref. [50]. The total x-wave function

��N (x) = 1√
2

[ ��NA(x) + ��NB(x)]

and the sublattice wave functions ��NA(B) satisfy the equations

Ĥx(k̂x ) ��NA(B) = εN ��NB(A),

Ĥx(k̂x ) ��N (x) = εN ��N (x),
(8)

〈 ��N ′B(A)| ��NA(B)〉 = 0 ,

〈 ��N ′A(B)| ��NA(B)〉 = 〈 ��N ′ | ��N 〉 = δN ′N ,

where the size-quantized energy levels εN are given in Eq. (3).
Substituting the wave function �
N [see Eq. (7)] into Eq. (5)

and in view of Eq. (8) we arrive after routine manipulations to
a set of equations for the functions uNA(B) with the dropped
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indices N ,[(
−ih̄

∂

∂t
− eyF (t )

)
Î + εN σ̂x − ih̄vF

∂

∂y
σ̂y

]
�u = 0,

�u(y, t ) = (uA(y, t ), uB(y, t )). (9)

Solving Eq. (9), the wave function �
N in Eq. (7) can be
calculated in principle. However, this function does not bring
us closer to the solution of the problem of the multiphoton
interband transitions. The point is that this problem implies
two effects of the electric field F (t ), namely the formation of
the valence and conduction intraband time-dependent electron
states and the generation of the interband transitions between
them.

In order to highlight the operators responsible for these
effects, we transform Eq. (9) by the substitution

�u(y, t ) = 1√
2

(σ̂z + σ̂x )Û + exp[iq(t )y]�η(t ),

q(t ) = e

h̄

∫ t

0
F (τ )dτ + k, �η(t ) = (η1(t ), η2(t )), (10)

containing the longitudinal momentum k. The unitary
operator

Û + = (�N + ωN )Î − ivF q(t )σ̂x

[2�N (�N + ωN )]1/2
,

�2
N (t ) = ω2

N + v2
F q(t )2, ωN = εN

h̄
(11)

provides the equation of motion

iÎ �̇η = [�N (t )σ̂z − RN (t )σ̂x]�η, RN (t ) = ωNvF q̇(t )

2�2
N (t )

(12)

for the wave function �η(t ). The applied transformation splits
the electric field term in Eq. (9) into two components ∼�N (t )
and ∼RN (t ), attributed to the separated valence and conduc-
tion intraband states and interband transitions between them,
respectively. This transformation is analogous to the Foldy-
Wouthuysen one [51], separating completely for F (t ) = 0
the intraband valence and conduction states, corresponding
to the energies ±EN (k) [Eq. (3)], respectively. In particu-
lar, this method has been employed in works dedicated to
the interband magnetoelectroabsorption [52] and multiphoton
magnetoabsorption [53] in the narrow-gapped bulk semicon-
ductors.

Substituting the function η1,2 in the form

η1,2(t ) = f1,2(t ) exp

[
∓i

∫ t

0
�N (τ )dτ

]

into Eq. (12), we arrive to a set of equations

i ḟ1,2(t ) = −RN (t ) exp

[
±2i

∫ t

0
�N (τ )dτ

]
f2,1(t ). (13)

For the case of a periodically oscillating electric field F (t ) =
F0 cos ωt we select the periodic part in the exponential factor
in Eq. (13),

exp

[
2i

∫ t

0
�N (τ )dτ

]
= exp

( i

h̄
ENt

)
SN (t ), (14)

where SN (t ) = SN (t + 2π
ω

) and

EN = h̄ω

π

∫ + π
ω

− π
ω

�N (t )dt . (15)

Since the term h̄2�2
N (t ) is the eigenvalue of the intraband

Hamiltonian [−h̄vF q(t )σ̂y + εN σ̂z]2, the quasienergy EN (15)
can be treated as the change of the electron quasienergy,
caused by the transition between the valence and conduction
N subbands or, equivalently, the quasienergy of the created
e-h pair. In addition, it is reasonable to exploit in Eqs. (13)
the expansion of the time-periodic product RN (t )SN (t ) in the
Fourier series

RN (t )SN (t ) =
+∞∑

l=−∞
Ale

−ilωt , (16)

where

Al (ω) = ω

2π

∫ + π
ω

− π
ω

RN (t )SN (t )eilωt dt . (17)

Since the exact equations (13) do not admit an analytical
solution, we consider this set in the resonant approximation
ωl � ω(ωl = EN/h̄ − lω), implying the significant proximity
of the e-h pair quasienergy EN to the total energy l h̄ω of l
involved photons. Averaging the coefficients in Eqs. (13) in
view of Eqs. (14), (15), and (16), we obtain the following
relations:

i ˙̄f1 = − f̄2Ale
iωl t , i ˙̄f2 = − f̄1A∗

l e−iωl t , (18)

where f̄1,2(t ) are the functions f1,2(t ) averaged over the
electric field period T = 2π/ω in the vicinity of the time
instant t ,

f̄1,2(t ) = 1

T

∫ t+ T
2

t− T
2

f1,2(τ )dτ.

Equations (18) describe the well known two-level problem
[54]. Under the initial conditions f̄1(0) = 0, f̄2(0) = 1 the
solution to Eqs. (18) becomes

f̄1(t ) = iAl
sin λl t

λl
e

i
2 ωl t ,

f̄2(t ) =
(

cos λl t + iωl

2λl
sin λl t

)
e− i

2 ωl t , (19)

λl =
(

|Al |2 + 1

4
ω2

l

)1/2

, l = 1, 2, . . . ,

where the quasienergy EN and coefficients Al are given by
Eqs. (15) and (17), respectively. The derived equations are
valid under the condition λl � ω, i.e., the resonant approx-
imation.

From the above procedure of determining the functions
f̄1,2(t ) [Eq. (19)] and their meanings, the differential proba-
bility w

(l )
N (k) of the interband electron transition between the

valence and conduction N th subbands can be written in the
form w

(l )
N (k) = | f̄1(t )|2, to give in view of Eq. (19)

w
(l )
N (k) = |Al (k)|2 sin2 λl t

λ2
l

. (20)
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In an effort to continue the analytical investigations, the ex-
plicit form of the coefficient Al is needed. In view of Eqs. (12)
and (14) for the functions RN (t ) and SN (t ), respectively, and
under the condition EN = l h̄ω the coefficient Al (k) in Eq. (17)
acquires the closed integral form

2γN

ω
Al (k) = 1

2π

∫ +π

−π

exp
[
il

∫ ϕ

0 �1/2(ψ, u)dψ
]

�(ϕ, u)
cos ϕdϕ,

�(ϕ, u) = 1 + γ −2
N (sin ϕ + u)2, (21)

u = h̄ωk

eF0
, γN = ω�N

2evF F0
,

while the quasienergy EN is obtained explicitly:

EN (k) = 2

π
�N

1

sN
E

(√
1 − s2

N

)(
1 + s2

N

2h̄2v2
F k2

�2
N

)
,

s2
N = (

1 + γ −2
N

)−1
. (22)

In Eqs. (21) and (22) �N = 2εN is the intersubband energy
gap, E (x) is the complete elliptic integral of the second kind
[55], and γN is the Keldysh adiabaticity parameter [18], deter-
mining the intersubband transition mechanism. For γN � 1
the e-h pp is generated by the Zener tunneling in an ap-
proximately constant electric field F0, while for γN � 1 the
multiphoton assisted mechanism dominates.

The employed further condition l � 1 allows us to perform
analytically the integration in Eq. (21) by the steepest-descent
method, treating the number of absorbed photons l as a large
parameter. Note that the below-determined total probability
includes the term ∼|Al (k)|2g(k) dk

dEN
, where for the quasi-1D

AGNR the density of k states g(k) = const. and dk
dEN

∼ k−1

[see Eq. (22)]. Thus, the term |Al (0)| is sufficient for the de-
scription of the optical transition in the vicinity of the spectral
singularity k = 0.

Since the differential probability ∼|Al (k)|2 [Eq. (20)] and
the corresponding Rabi oscillation frequencies ∼|Al (k)| reach
a maximum for k = 0 both in graphene [36], and in the
AGNR [see Eq. (21)], we further focus on the coefficient
|Al (0)|. Though analogous integrals have appeared earlier
in Refs. [18,56,57], a brief outlook onto the needed tech-
niques seems to be in place here. The integration segment
(−π, 0) → +(π, 0) in Eq. (21) is replaced by a con-
tour, consisting of additional segments (π, 0) → (π,−∞) →
(−π,−∞) → (−π, 0). Note that the saddle points ϕn =
arcsin(iγN + nπ ); n = 0,±1, at which the function �(ϕ, 0)
vanishes, coincide with the poles of the integrand. In this
case the steepest-descent method implies the subsequent by-
passing of the saddle points ϕ1, ϕ0, ϕ−1, positioned inside
the corresponding three segments. The bypassing arcs with
the vanishing small radius are 2π/3 and 4π/3 for the saddle
points ϕ±1 and ϕ0, respectively. In view of the saddle points
total contribution, the calculation reduces to the contour in-
tegration around the pole ϕ0. The residue theorem gives then

Al (0) = ω

3
exp

{
− l

sN
[K (sN ) − E (sN )]

}
sin2 lπ

2
, (23)

where K (x) is the complete elliptic integral of the first kind
[55]. The factor sin2 lπ

2 stems from the interference of the

FIG. 1. The Rabi frequency �
(R)
03 (0) versus the ribbon width

d and electric field F0. The frequency �
(R)
0l (0) is determined by

Eqs. (23) and (24), describing the three-photon l = 3 oscillations
between the ground subbands N = 0.

saddle points and the condition l h̄ω = EN (see Ref. [58] for
more details).

III. RESULTS AND DISCUSSION

A. Rabi oscillations

Equation (20) describes periodic oscillations with the Rabi
frequency �

(R)
Nl = 2λl . Under the condition ωl/2 � |Al | the

transition probability w
(l )
N = sin2 |Al |t oscillates with the Rabi

frequency

�
(R)
Nl (k) = 2|Al (k)|. (24)

For the cases of the tunneling γN � 1,�
(R)
Nl ≡

�
(R)
N tunand the multiphoton γN � 1 regimes the Rabi

frequency, determined from Eqs. (23) and (24) for the
zero longitudinal momentum k, reads

�
(R)
N (0) = 2

3
ω

{
1
3 exp

( − πF (N )
c

2F0

)
, γN � 1,

exp (l )(4γN )−l sin2 lπ
2 , γN � 1,

F (N )
c = �2

N

4h̄vF e
, (25)

where F (N )
c is the breakdown electric field, delimiting

the active and suppressed tunneling for the fields F0 >

F (N )
c and F0 < F (N )

c , respectively. In the presence of the criti-
cal field, the electron in the AGNR with the effective mass
m = �N/2v2

F acquires for the Compton wavelength an energy
comparable to the energy gap �N . Equations (23), (24), and
(25) allow us to trace the dependencies of the Rabi frequency
on the electric field and ribbon width in the vicinity of the
resonance ωl � 0. The photon assisted transitions are allowed
only for the odd numbers l = 1, 3, 5, . . .. With increasing
electric field F0, driving frequency ω = EN

h̄l , and ribbon width
d , the Rabi frequency �

(R)
Nl (0) increases for any regime. The

Rabi frequency �
(R)
Nl (0) according to Eqs. (23) and (24) as a

function of the ribbon width and electric field, is depicted in
Fig. 1. Figure 2 shows the isofrequency lines �

(R)
N (0; F0, d ) =

const.
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FIG. 2. The isofrequency curves �
(R)
03 (0; d, F0) = aj , j = 1, 2, 3,

linking the ribbon width d and electric field F0. Equations (23)
and (24) for the ground N = 0 three-photon l = 3 transitions are
employed.

B. Intersubband transitions

1. Multiphoton assisted transitions

If the detuning ωl dominates in Eqs. (19) and (20), then,
in view of the general results of time-dependent perturbation
theory [54], the total probability of the l-photon intersubband
transition per unit length per unit time acquires the form

W (l )
N = 1

2π

∫
dk2π h̄|Al (k)|2δ[EN (k) − l h̄ω], (26)

where the δ function reflects the energy conservation in the
system of the e-h pair and absorbed l photons. Substituting
the coefficient Al and energy EN from Eqs. (23) and (22),
respectively, we obtain for the length density of the e-h pp
rate

W (l )
N = π1/2

36

ω2

vF
Il (sN )G−1/2

l (ω) sin4 lπ

2
, (27)

which in turn determines the l-photon absorption coefficient
α(l ) in Eq. (4). In Eq. (27) the functions

Il (sN ) = s−1/2
N E−1/2

(√
1 − s2

N

)
× exp

{
− 2l

sN
[K (sN ) − E (sN )]

}
(28)

and

Gl (ω) = l h̄ω

�N
− 2

πsN
E

(√
1 − s2

N

)
(29)

are responsible for the spectral intensity and position of the
absorption singularity ∼G−1/2

l , respectively.
For the limiting case γN � 1 the functions

Il (sN ) and Gl (ω) become

Il (γN ) =
(

2

π

)1/2

exp (2l )

(
1

16γ 2
N

)l

(30)

and

Gl (ω) = l h̄ω

�N
−

(
1 + 1

4γ 2
N

)
, (31)

FIG. 3. The dependence of the dimensionless peak intensity I3 on
the ribbon width d and electric field F0. It is obtained from Eq. (28)
for I3, adapted to the three-photon l = 3 absorption, induced by the
transitions between the ground N = 0 subbands.

respectively.
Equations (27), (30), and (31) explicitly demonstrate the

dependencies of the multiphoton intersubband absorption
spectrum (4) on the parity of the absorbed photon number l ,
subband number N , ribbon width d , and electric field F0. As a
result of the saddle points ϕ0,±1 interference in the integrand
of Eq. (21) the spectral singularities ∼G−1/2

l in W (l )
N (27) are

allowed only for the odd numbers l = 1, 3, . . . . The greater
the photon number l is, the less the corresponding intensity
Il in Eq. (30). With increasing subband number N the peak
positions, determined by the condition Gl (ω) = 0 in Eq. (31),
shift towards high frequencies and decrease in intensity. As
the ribbon becomes narrower, the peaks move to the high
frequency region l h̄ω ∼ d−1 and reduce in magnitude ∼d2l .
The larger the electric field F0 is, the larger are both the shift of
the peak position to higher frequencies ∼F 2

0 , and its maximum
Il ∼ F 2l

0 . For the general case for an arbitrary γN the depen-
dency of the peak intensity Il [Eq. (28)] on the electric field F0

and ribbon width d are shown in Fig. 3. Figure 4 demonstrates
the isointensity curves Il (F0, d ) = const.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0
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2.5
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FIG. 4. The isointensity curves I3(d, F0) = bj , j = 1, 2, 3, re-
lated to the ribbon width d and electric field F0. Equation (28) for I3 is
employed for the three-photon l = 3 transitions between the ground
N = 0 subbands.
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2. Tunneling

In the case of small frequencies ω and considerable electric
fields F0, i.e., γN � 1 (ω → 0) the transitions happen due to
the intersubband tunneling in a practically stationary electric
field F0. Based on the calculation of the probability WN =∑

l W (l )
N by means of

∑
l by

∫
1
ω

d (lω) and Eq. (27) by W (l )
N ,

correctly reproduces the exponential behavior

WN ∼ exp

(
−πF (N )

c

F0

)
,

coinciding with those obtained earlier in Refs. [18,56]. The
dimensionless prefactor h̄vF eF0/�

2
N appears to be incorrect.

As pointed out in Ref. [18], this stems from the fact that the
limiting transition ω → 0 applies to the results based on the
averaging over the finite period T = 2π/ω of the oscillating
electric field. The corresponding correct analysis of the inter-
subband tunneling should however treat the electric field to be
adiabatically slow from the beginning.

The proper determination of the differential probability
wN (�k) started in the 1950s on account of the vacuum decay
in the presence of a constant electric field [9]. This study
was continued in the 1970s further. The various approaches,
namely the imaginary time method [59], parabolic cylinder
functions [10,13,15,26,28,60], Ricccati [15,61] and quantum
kinetic equations (QKE) were proposed [16,62–64]. Notice
that the probability WN can be calculated within the present
approach. Indeed, it was shown that the set of initial Eqs. (9)
is trivially reduced to the oscillatorlike equations for the
parabolic cylinder functions [26,28], while the set (13) for
the functions f1,2(k, t ) is equivalent to the Riccati [15,61]
and/or (QKE) [62–64] equations for the functions | f1(k, t )|
and | f1(k, t )|2, respectively. The details of the transformation
of Eqs. (13) into the QKE are given, in particular, in Ref. [64].
In addition, Fedotov et al. [16], based on the exact solution
to QKE, have calculated the differential distribution function
for the interband transition probability, i.e., the mean number
of pairs wN (�k) created in a given quantum state, completely
coinciding with those derived by others of the above-listed
methods. The underlying analysis is transparently presented
in Refs. [16,64] and we provide here for reasons of brevity
only their results in an explicit form

wN (�k) = 2 exp

[
−π

(
ε2

N + h̄2v2
F
�k2
⊥
)

h̄vF eF0

]
,

(32)

W (n)
N = 1

(2π )nT

∫
wN (�k)dn�k,

where W (n)
N is the spatial density of the tunneling probabil-

ity rate [6] in the n-dimensional structure. In Eq. (33) the
prefactor two takes into account the spin projections, �k[�k⊥, k]
is the wave vector, and εN is the energy gap. Integration in
Eq. (32) over k implies

∫
dk = eF0T/h̄ [26], where T is the

total (infinitely large) lifetime of the DC electric field (see
Refs. [13,28] for details).

For the quasi-1D AGNR (n = 1) Eq. (32), in view of the
two valleys (K±) [26,36,39], generates the mean total number
of the e-h pairs per unit length per unit time, created due to the

FIG. 5. The length density of the pair production rate W0tun

[Eq. (33)], caused by the electron tunneling between the ground
N = 0 subbands in the ribbon with width d in the presence of an
electric field F0.

tunneling transition via the subband gap �N = 2εN [Eq. (3)],

W (1)
N ≡ WN tun = 2eF0

π h̄
exp

[
−πF (N )

c

F0

]
. (33)

The same result, accurate to the spin and valley factors, has
been derived by Gavrilov and Gitman [28] for the 1D spatial
states in the framework of an exact solution to the Dirac
equation. In addition, just the same approach has been em-
ployed to study the mathematically exactly solvable problem
of particle production from a QED vacuum by the Sauter-like
and peak time depending electric field [65]. The total length
density of the e-h pp rate WN = ∑

N WN tun is derived from
Eq. (33). In the limiting case d → ∞ the latter equation with
the replacement

∑
N by d

∫
d ( N

d ) results, as expected, in the
square density rate for the gapless (d−1 ∼ �N → 0) graphene
layer

Wg = 1

π2v
1/2
F

(
eF0

h̄

)3/2

,

presented, in particular, in Refs. [26,36].
A doubled rate 2Wv of the electron-positron pair production

from the “1D vacuum” can be obtained from Eq. (33) by
replacing vF by c and �N by 2mc2. Equation (32) has been
used by other authors; for the 3D and 2D spaces Eq. (32) re-
produces the vacuum (ε = mc2, vF = c) [6,9,13] and gapless
(ε = 0) [26] graphene rates, respectively. The rate (33) differs
from the one calculated in Ref. [64] by a factor of 4, because
of the spin and valley factors which both equal 2. Note that
Eq. (32), describing the time-independent effect, can be ob-
tained by the WKB method, while for the multiphoton assisted
processes [see Eq. (30)] the semiclassical approximation is
inappropriate [31].

Clearly the length density of the e-h pp tunneling rate WN tun

[Eq. (33)] increases with both increasing the electric field F0

and ribbon width d according to Fig. 5. The isorate diagrams
W0tun(F0, d ) = const. are depicted in Fig. 6. It is appropri-
ate here to point out the common property of the isovalue
diagrams. Figures 2 and 6 demonstrate the practically linear
relationship with respect to the considerable electric fields F0

and the square of the reciprocal width 1/d2 of the narrow
ribbons. As expected, deviations from the linear law occur for
weak electric fields and wide ribbons. The reason for this is
that the latter closely resemble more of the graphene layer
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FIG. 6. The isorate diagrams W0tun(d, F0 ) (nm ps)−1 = c j , j =
1, 2, 3. calculated from Eq. (33) for the tunneling between the ground
N = 0 subbands.

than a ribbon. Figure 4 shows the strict linear dependence
F0 ∼ 1/d2. Note here that the correct description of the wide
ribbon and the graphene layer implies the summation over the
subband index N of the rates w

(l )
N (k) [Eqs. (20) and (24)],

W (l )
N [Eq. (27)], and WN tun [Eq. (33)] for the Rabi oscillations,

multiphoton assisted, and tunneling transitions, respectively.
Using the relation between the differential probability

wN (�k) [Eq. (32)] and an AGNR to an AGNR N transition
probability PN [28,65], i.e., the probability for an AGNR to
electronically remain an AGNR on account of the tunneling
between the N subbands

PN = exp

{∫
d�k ln[1 − 2wN (�k)]

}
and integrating over the momentum k by the same method,
taken in Eq. (32) we obtain

ln PN

LT
= 2eF0

π h̄
ln

[
1 − exp

(
− πF (N )

c

F0

)]
. (34)

The greater the electric field and the wider the ribbon are, the
less is the ribbon stability PN . The dependence of the prob-
ability P0 w.r.t. the ground transition N = 0 on the electric
field F0 and width d is shown in Fig. 7.

FIG. 7. The logarithm of the length density rate of the probability
P0 as a function of the electric field F0 and ribbon width d , calcu-
lated from Eq. (34) for the ground transition N = 0. T and L are the
radiation exposition time and ribbon width d , respectively.
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FIG. 8. The ratio of the tunneling W0tun (33) and photon as-
sisted G1/2

l W (l )
0 [Eq. (27)] length density rates as a function of the

dimensionless electric field F0/F (0)
c for the l-photon (l = 3, 5, 7)

transitions between the ground N = 0 subbands for which F (0)
c =

2.0 × 103 kV/cm.

In order to highlight the contribution of the time depen-
dence of the electric field to the e-h pair production, we
investigate the dependence of the ratio of the tunneling W0tun

[Eq. (33)] and photon assisted G1/2
l W (l )

0 [Eq. (27)] rates on
the electric field F0. Figure 8 shows this ratio as a function
of the electric field F0. These graphs, based on Eqs. (27) and
(33), demonstrate that in the region of weak electric fields
F0/F (0)

c � 1 the photon assisted rate surpasses that of tunnel-
ing. With the electric field approaching the values F0/F (0)

c � 1
the advantage of the photon assisted mechanism reduces, and
both rates become comparable and further, for F0 � F (0)

c , the
tunneling process dominates that of photonic absorption.

The reason for the above described evolution is that
the electric field change generates a change of the tran-
sition regime. For weak electric fields F0 � F (0)

c and
low frequencies ω < �0/h̄ the intersubband tunneling time
τ0 = �0/eF0vF exceeds the half-cycle T/2 = π/ω (τ0 >

T/2, γ0 � 1), and the fast oscillating (ω > τ−1
0 ) field pre-

vents the tunneling and promotes the involvement of the
l � �0/h̄ω photons in the intersubband transitions. With the
growth of the electric field towards values exceeding the criti-
cal one F0 � F (0)

c , the opposite conditions τ0 < T/2, γ0 � 1
allow us to treat the intersubband transitions as a tunneling
process induced by the nearly constant (ω < τ−1

0 ) electric
field F (t ) = F0. The role of the time dependence of a rel-
atively weak F0 < F (0)

c electric field for the enhancement
of the pp rate, revealed here for the AGNR, is absolutely
analogous to that for the electrically biased graphene layer,
studied numerically in Ref. [36] (see also [38,39] for details).
However, we refrain from a detailed quantitative comparison
of our results to those presented for the graphene layer. The
reason for this is that the prefactor in Eq. (33) ∼F0 and the
states energy density factor in Eq. (27) ∼G−1/2

l differ from the
corresponding ones for the 2D structures, namely ∼F 3/2

0 [36]
and ∼const., respectively. Clearly accounting for the electron
interaction with the phonons and impurities, manifesting itself
in replacing the root singularity in Eq. (27) by a finite value,
would lead to a more adequate description of the electronic
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TABLE I. The dimensionless threshold p(l )
0thr = F (l )

0thr/F (0)
c and

balanced p(l )
0b = F (l )

0b /F (0)
c electric fields, delimiting the l-photon as-

sisted and tunneling regimes (γ (l )
N = 1) and providing the balance

between its rates (W0(l ) = W0tun), respectively. Fields scaled to the
critical electric field F (0)

c .

l p(l )
0thr p(l )

0b p(l )
0thr/p(l )

0b

3 0.74 0.24 3.0
5 0.45 0.15 3.0
7 0.32 0.11 2.9

and optical effects in AGNR. However, this problem is a
subject for further possible consideration.

Figure 8 allows us to reveal the relationship between the
key electric fields, characterizing the given N intersubband
transition. First one is the threshold field F (l )

0thr, determined
by the critical resonant Keldysh parameter γ

(l )
N = 1, in which

[see Eq. (21)] the frequency ω satisfies the resonant condi-
tion EN (0) = l h̄ω, where EN (0) is determined from Eq. (22).
The field F (l )

0thr qualitatively delimits the tunneling (F0 <

F (l )
0thr, γ

(l )
N < 1) and l-photon assisted (F0 > F (l )

0thr, γ
(l )

N > 1)
type transitions. On account of the elliptic integral of the sec-
ond kind, E [(1 + γ 2

N )−1/2] it changes smoothly in the vicinity
of γN � 1. and we set E (2−1/2) = 1.23 to obtain the resonant
Keldysh parameter γ

(l )
N [Eq. (21)],

γ
(l )2

N = 1

2
+

√
a2

4
+ a; a =

(
π

2l pN

)2

, pN = F0

F (N )
c

.

This equation links the resonant Keldysh parameter γ
(l )

N with
the electric field F0 and number of photons l in the inter-
mediate region γ

(l )
N � 1. For γ

(l )
N = 1 the exact value of the

threshold dimensionless electric field, calculated from the res-
onant condition, reads

p(l )
N thr = π√

2l
.

The second key, so-called balanced electric field F (l )
0b

, equal-
izes the tunneling and l-photon assisted rates. Calculating the
threshold p(l )

N thr = π√
2l

and balanced p(l )
Nb

dimensionless electric
fields for the ground transition N = 0 from the given above
equation and from Fig. 8, respectively, we present the result
of their comparison in Table I.

The ratio of the electric fields under discussion, being
p(l )

0thr/p(l )
0b = 3, does not depend on the number of photons l .

Thus, experimentally measuring the ratio of the rates W (l )
N and

WN tun as a function of the electric field, we find the balance
field p(l )

Nb and in the case of known p(l0 )
N thr for the specific l0,

physically important dimensionless electric fields for other
values of l can be found.

The effect of the oscillating character of the electric field
on the Rabi oscillations is qualitatively the same as that on
the above discussed intersubband transitions. For weak elec-
tric fields F0 � F (N )

c their time periodic resonant oscillations
significantly increase the multiphoton assisted Rabi frequen-
cies �

(R)
Nl , making them much greater than the corresponding

�
(R)
N tun, induced by the tunneling for approximately constant

electric field. With increasing electric field strength towards
the values F0 � F (N )

c these Rabi frequencies align (�(R)
Nl �

�
(R)
N tun), then the electric field time dependence becomes inef-

fective (�(R)
Nl < �

(R)
N tun). The electric fields, providing the Rabi

frequency balance (�(R)
Nl = �

(R)
N tun), decrease with an increas-

ing number of involved photons l . The dependence of the ratio
�

(R)
N tun/�

(R)
Nl on the dimensionless electric field F0/F (N )

c closely
resembles that presented in Fig. 8.

All aforementioned conclusions in this section, related to
the ground N = 0 e-h subband, apply qualitatively also for
excited ones with N �= 0. It is reasonable to note here that,
similar to works [6,17,36,60,64], our approach ignored the
collisions between the created pairs and backreaction of their
inherent electric field to the applied external one. However,
these effects might be expected to be insignificant due to the
relatively small density of the created e-h pairs, that in turn
depends not only on the electric field magnitude F0, but on the
exposure time T . In any case these phenomena require special
consideration, in particular, in the framework of a quantum
kinetic equation [16].

C. Estimates of the expected experimental values

Focusing on possible experiments, we estimate the ex-
pected values for the gapped AGNR for a width of 2 nm
exposed to a light wave of ω = 330 ps−1(λ = 5.4 μm) and
electric field F0 = 500 kV/cm. This corresponds to a light
intensity I = 6.5 × 105 kW/cm2 and obeys the resonant con-
dition Gl = 0 [Eq. (29)] for the number of photons l = 3 and
ground (N = 0) energy gap �0 = 2ε0 = 0.69 eV [Eq. (3)].
The multiphoton and tunneling rates W (3)

0 G1/2
3 and W0tun, cal-

culated from Eqs. (27) and (33), respectively, become 0.86 ×
10−4 and 1.4 × 10−4 1/nm ps, respectively. For the electric
field F0 = 470 kV/cm they reach a balance equal to 1.4 ×
10−3 1/nm ps and with increasing the electric field the tun-
neling mechanism dominates that of multiphoton transitions.
The “to remain” probability PN , calculated from Eq. (34) for
the ground N = 0 subbands and electric fields F0 = F (0)

c =
2.0 × 103 kV/cm, reads (LT )−1 ln P0 = −8.48 1/nm ps.

The chosen ribbon (d ) and electric field (F0, ω) charac-
teristics result in �

(R)
03 (0) � 1.21 ps−1 [Eqs. (23) and (24)]

for the Rabi frequency and �
(R)
03 (0)/ω � 3.7 × 10−3 � 1 for

the frequencies ratio. Note that the vacuum related break-
down electric field F (v)

c exceeds its counterpart F (0)
c = 2.0 ×

103 kV/cm for the ground gap �0 by a factor of 1010.
We believe that the analytical approach developed here

contributes to gaining insights into the physics of the inter-
subband transition in AGNR and QED vacuum decay, both
media being subject to a strong light wave. Also, we hope the
estimates of the expected experimental values could be useful
for further studies of graphene nanoribbons and their appli-
cations in opto- and microelectronics as well as the vacuum
phenomena.

IV. SUMMARY AND CONCLUSION

We have developed an analytical approach to the prob-
lem of the Rabi oscillations and intersubband absorption
of a strong light wave in an armchair graphene nanorib-
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bon (AGNR). Based on the Dirac equation, describing the
massless electron in the vicinity of the Dirac points, we
have derived analytical expressions for the length density of
the electron-hole differential pair production (pp) rate. The
resonant approximation, implying a balance between the pho-
tons energies and intersubband quasienergetic gaps, has been
employed. This rate in turn determines explicitly the Rabi
oscillation frequency and absorption coefficient for tunneling
and multiphoton assisted intersubband transition regimes. The
obtained results allow us to trace the explicit dependencies of
the Rabi frequency and pp rate on the ribbon width, electric
field strength, and parity of the involved photons. The odd-
photon absorption spectra demonstrate the reciprocal square
root singularities in the vicinity of the resonant frequencies.
With increasing the electric field and widening the ribbon
both the Rabi frequency and pp rate increase. For relatively
weak electric fields the oscillating character of the electric
field enhances the intersubband transitions and multiphoton
assisted effects contribute significantly stronger than the tun-
neling ones. With further increase of the electric field these

effects become equal and finally the tunneling mechanism
surpasses that of multiphoton processes. The latter depen-
dence completely correlates with the previously numerically
calculated one for the gapped graphene layer. Estimates of the
expected values show that the theoretically predicted depen-
dencies for the Rabi oscillations and multiphoton absorption
spectra can be observed experimentally for realistic AGNR
subject to readily available light fields. The results presented
above can be qualitatively extended to the quantum electrody-
namic vacuum decay in the presence of strong time-oscillating
electric fields and the AGNR can be treated as a condensed
matter medium for the study of particle-antiparticle creation
processes, induced by the intensive time-dependent electric
fields.
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