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Why the first magic-angle is different from others in twisted graphene bilayers:
Interlayer currents, kinetic and confinement energy, and wave-function localization
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The chiral Hamiltonian for twisted graphene bilayers is analyzed in terms of its squared Hamiltonian which
removes the particle-hole symmetry and thus one bipartite lattice, allowing us to write the Hamiltonian in terms
of a 2×2 matrix. This brings to the front the three main physical actors of twisted systems: kinetic energy,
confinement potential, and an interlayer interaction operator which is divided in two parts: a non-Abelian
interlayer operator and an operator which contains an interaction energy between layers. Here, each of these
components is analyzed as a function of the angle of rotation as well as in terms of the wave-function localization
properties. It is proved that the non-Abelian operator represents interlayer currents between each layer of
triangular sublattices, i.e., a second-neighbor interlayer current between bipartite sublattices. A crossover is seen
between such contributions, and thus, the first magic-angle is different from other higher-order magic-angles.
Such angles are determined by a balance between the negative energy contribution from interlayer currents and
the positive contributions from the kinetic and confinement energies. A perturbative analysis performed around
the first magic-angle allows us to explore analytically the details of such an energy balance.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) exhibits unconventional
superconducting phases and Mott insulating states [1]. This
discovery was made by working upon previous theoretical
efforts which suggested a path to increase many-body inter-
actions [2–4]. Bistritzer and MacDonald [2] found that, at
certain twisting angles, TBG presents flat bands where the
Fermi velocity goes to zero. Several works confirmed the
existence of such flat bands at certain magic-angles where the
electron-electron interactions are maximized [1,5].

However, there are still many open questions concerning
this problem [6–11], even in the one-particle operator limit.
For example, the wave function of TBG has been found to be
reminiscent of a quantum Hall wave function in a torus, and
this opens analogies to the physics of Landau levels [12–15],
the Hofstadter butterfly [16–19], or the fractional quantum
Hall effect [20]. There is also an interesting connection to
topological phases, Moiré edge states, and Weyl semimetals
[21–26].

Also, as the Moiré pattern generates a high electron
density localization, interest in making quantum dots with
TBG has been steadily increasing [27,28]. Other interesting
applications have been found [13,29–37] as well as op-
tical/electrical signatures [38,39]. The mobility/stability of
electrons is influenced by the triangular geometry of the TBG
[40–43]. Previous papers have studied nematicity [44–46],
phonons/plasmons [6,47], disorder effects [48–50], and other
important related properties [4,51–57]. However, a direct ana-
lytic connection with the presence of superconducting phases
at magic-angles has not yet been achieved completely. As
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expected, the interacting behavior of electrons in the Hubbard
model is important to characterize the electronic correlations
and their fermionic behavior [40,58–61].

An important mechanism in the properties of Moiré sys-
tems is the superlattice relaxation [62–64]. This is especially
important near AA stacking points, where interlayer hopping
tends to be reduced. Theoretically, when the hopping that
couples layers in AA regions is tuned off, the system becomes
exactly chiral symmetric [65]. This model shows a recurrence
at magic-angles and reduces the problem to a more ana-
lytically manipulable Hamiltonian operator. For this reason,
among others, the chiral Hamiltonian reduces the complex-
ity of the continuum model and captures all the important
symmetries and physics of TBG [65]. The mathematical prop-
erties and structure of the wave function have been rigorously
studied in several works [14,66–69]. As one can imagine,
the graphene layer has two triangular sublattices, each one
with an equal magnetic flux but with opposite sign; therefore,
TBG consists of coupled magnetic fluxes with opposite signs
between layers [11,70,71]. This produces a strong skyrmion
behavior in which electrons form vortices, reflected in the
presence of strong electron-electron correlation on specific
locations across the Moiré superlattice [72].

To further understand the physics behind the problem, in a
previous work, we considered the squared Hamiltonian (SH)
of the chiral model [73]. There are several interesting works
in the literature on the SH in tight-binding models where
important physical relationships have been found [74–80].
This procedure can be interpreted as transforming the Dirac
equation into the Klein-Gordon equation. Relations with topo-
logical invariants in many-body systems [76] and higher-order
topological phases [74,75] have also been studied, and more
recently, the square-root topological phases related to SH have
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been experimentally measured [81–83]. In the TBG model,
the SH represents a renormalization that removes one of
the bipartite triangular sublattices for each graphene layer
[73,84–86]. In general, the physics of the SH is the same as
that of the original Hamiltonian, but the renormalized operator
allows us to see properties that in the original model were
hidden or difficult to identify. For example, it reveals three
physical driving mechanisms: kinetic energy, an effective con-
finement potential, and a non-Abelian gauge field leading to
magnetic fields. It also allows us to write the Hamiltonian as
a simple 2×2 operator and then use Pauli matrices in which
topological properties are more evident. More importantly, it
gives a direct physical interpretation of magic-angles in terms
of the wave function geometrical frustration, i.e., we showed
that such renormalization folds the spectrum around zero en-
ergy, and thus, zero-mode states correspond to antibonding
ground states in a triangular lattice [73]. As is well known,
antibonding states in triangular lattices are frustrated, as the
wave function cannot achieve a phase difference of π between
sites. This costs energy and usually pushes states into highly
degenerate spectral regions and thus to a nearby depletion
of states seen as gaps or pseudogaps [85–88]. In Ref. [73],
we showed that magic-angles occur whenever the interlayer
frustration is exactly zero. Then at magic-angles, a highly
degenerated state is formed and separated by a gap from the
rest of the spectrum. This effect is achieved by a very precise
fine tuning of the wave function Fourier coefficients akin to
the Hall effect. Notice that, although previous works showed
some peculiarities about frustration properties [9,89,90], it
was not clear why such states were at the middle of the band.
The same happens with the analytical form of zero modes,
which were identified as reminiscent of a Hall effect ground
state without a clear explanation of why the lowest Landau
level was found at the middle of the spectrum and not at its
bottom end [11,65].

However, several spectral analyses hinted that the first
magic-angle is different from the others [11,65,91]. For exam-
ple, numerically, it was found that the spectrum of the TBG
chiral model shows a remarkable 3

2 recurrence rule for the
magic-angles [65]; however, the first angle does not follow it,
and the reason is not known. As we will see here, their wave
function charge density and phases are remarkably different
from others. Thus, it would be very useful to understand the
reason why such behaviors differ from other magic-angles.
For this reason, here, we present such an study. Also, this
paper allows us to discern how the physical mechanisms scale
between each other as the twist angle is changed.

The layout of this paper is the following. In Sec. II, we
present the model to be studied and the identification of the
main physical contributions to the problem. Then in Sec. III,
we study the zero mode wave functions and their localization.
In Sec. IV, we study the expectation values of each energy
contribution and discuss the interlayer current contribution. In
Sec. V, we show why the first magic-angle is different from
the others. Finally, conclusions are given in the last section.

II. SQUARED TBG CHIRAL HAMILTONIAN

The chiral Hamiltonian of TBG is a variant of the original
Bistritzer-MacDonald Hamiltonian in which the AA tunneling

FIG. 1. (a) Moiré Brillouin zones (mBZs) in reciprocal space,
b1,2 are the base vectors. (b) Real-space Moiré unit cell, a1,2 are two
Moiré lattice vectors. Point r0 = (a1 − a2)/3 is the BA stacking point
where all components of the wave function vanish at magic α.

is set to zero [11]. We use as a basis the wave vectors �(r) =
[ψ1(r), ψ2(r), χ1(r), χ2(r)]T , where the index 1, 2 represents
each graphene layer, and ψ j (r) and χ j (r) are the Wannier
orbitals on each inequivalent site of the unit cell of graphene.
The chiral Hamiltonian is given [65,92,93]:

H =
[

0 D∗(−r)
D(r) 0

]
, (1)

where the zero-mode operator is defined as

D(r) =
[ −i∂̄ αU (r)
αU (−r) −i∂̄

]
, (2)

and

D∗(−r) =
[ −i∂ αU ∗(−r)
αU ∗(r) −i∂

]
, (3)

with ∂̄ = ∂x + i∂y, and ∂ = ∂x − i∂y. The potential is

U (r) = exp(−iq1 · r) + exp(iφ) exp(−iq2 · r)

+ exp(−iφ) exp(−iq3 · r), (4)

where the phase factor φ = 2π/3, the Moiré lattice vec-
tors are given by q1 = kθ (0,−1), q2 = kθ (

√
3

2 , 1
2 ), and q3 =

kθ (−
√

3
2 , 1

2 ), the Moiré modulation vector is kθ = 2kD sin θ
2 ,

kD = 4π
3a0

is the magnitude of the Dirac wave vector, and a0

is the lattice constant of monolayer graphene, see Fig. 1. The
physics of this model is captured by the parameter α, defined
as α = w1

v0kθ
, where w1 is the interlayer coupling of stacking

AB/BA with value w1 = 110 meV, and v0 is the Fermi ve-
locity with value v0 = 19.81eV

2kD
. Notice that the Hamiltonian

in Eq. (1) was originally written in Ref. [65] using units
where v0 = 1, and kθ = 1; thus, the operators ∂ and ∂̄ are
dimensionless. This allows us to treat the system with a fixed
geometry for any twist angle as in these units q1 = (0,−1),
q2 = (

√
3

2 , 1
2 ), and q3 = (−

√
3

2 , 1
2 ). The twist angle thus only

enters in the dimensionless parameter α.
By a renormalization procedure which consists of taking

the square of H , we found that [73]

H2 =
[−∇2 + α2|U (−r)|2 αA†(r)

αA(r) −∇2 + α2|U (r)|2
]
. (5)
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FIG. 2. Contour plot of the confinement potential |U (r)|2 show-
ing minima at AA (green) and AB (red) stacking points and maxima at
BA stacking points (yellow). As a reference, the Wigner-Seitz cell of
the Moiré lattice is indicated. For the first magic-angle, the K wave
function tracks this potential.

The squared norm of the potential is an effective confinement
potential:

|U (r)|2 = 3 + 2 cos(b1 · r − φ) + 2 cos(b2 · r + φ)

+ 2 cos(b3 · r + 2φ), (6)

where b1,2 = q2,3 − q1 are the Moiré Brillouin zone (mBZ)
vectors, and b3 = q3 − q2. In Fig. 2, we plot |U (r)|2 in real
space, with the Wigner-Seitz indicated. This effective poten-
tial has a hexagonal structure where the r0 point in the BA
stacking lays in the maximum point of this potential and
the minimums lay in the AA and AB stacking points. The
off-diagonal terms in H2 are

A(r) = −i
3∑

μ=1

exp(iqμ · r)(2q̂⊥
μ · ∇ − 1), (7)

and

A†(r) = −i
3∑

μ=1

exp(−iqμ · r)(2q̂⊥
μ · ∇ + 1), (8)

where ∇† = −∇ with ∇ = (∂x, ∂y) and μ = 1, 2, 3. This is
an essential point, as eigenvalues must be real [notice that
−A†(−r) = A(r)].

We also define the following operator which contains all
the nondiagonal contributions:

Â(r) =
[

0 αA†(r)
αA(r) 0

]
. (9)

Also, q̂⊥
μ is a set of unitary vectors perpendicular to the set

qμ:

q̂⊥
1 = (1, 0), q̂⊥

2 =
(

−1

2
,

√
3

2

)
,

q̂⊥
3 =

(
−1

2
,−

√
3

2

)
. (10)

The importance of this renormalization is that now we can
see the three main ingredients of the problem: (i) the kinetic
contribution via the ∇2 term (which leads to frustration), (ii)
a confinement potential |U (r)|2 and, (iii) the interlayer inter-
action A(r).

An important feature that we will further analyze is that
A(r) is made from two terms, and therefore, it is convenient
to define separately the quantities:

Ag(r) = −2i
3∑

μ=1

exp(iqμ · r)q̂⊥
μ · ∇

= 2
3∑

μ=1

exp(iqμ · r) p̂μ, (11)

and

A f (r) = i
3∑

μ=1

exp(iqμ · r), (12)

where the dimensionless projected momentum operators are
p̂μ = (q̂⊥

μ · p̂), as the dimensionless momentum operator is
p̂ = −i∇. See how Eq. (11) is akin to a Lorentz force term.

Let us also comment on some useful symmetries of H, as
they play important roles in the presence of flat bands [66,94].
For our purposes, the most important symmetry is the exact
intravalley inversion symmetry [91] that produces flat bands
and the chirality. The exact intravalley inversion symmetry
operator is [91]

I = σzτy, (13)

where the σ and τ operators are acting on the sublattice
and layer degrees of freedom, respectively, and given by two
different sets of Pauli matrices [91]. Using this definition, we
have

IH(r)I† = H(−r). (14)

Our renormalized Hamiltonian also preserves this symmetry
as

IH2(r)I† = H2(−r). (15)

For the chiral TBG, intravalley inversion follows from the
C2T group symmetry, where T represents time reversal, and
C2 is the cyclic group of order 2. The action of C2T is that
of complex conjugates and exchanges the two sublattices. In
the following section, we will further analyze the interplay
between the different terms in H2 and the role played by the
symmetries.

III. WAVE FUNCTIONS: LOCALIZATION PROPERTIES

In this section, we discuss the localization properties of
the zero-mode wave functions for different angles to see if
there are differences between the first and higher-order magic-
angles. We start with the Schrödinger equation H�(r) =
E�(r). Considering only the first spinor component of �(r),
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the explicit form of the zero-mode wave function is [65][
ψk,1(r)
ψk,2(r)

]
=

∑
m,n

[
amn

bmn exp(iq1 · r)

]

× exp[i(Kmn + k) · r], (16)

where amn and bmn represents the Fourier coefficients of each
spinor component representing layers 1 and 2, respectively,
and Kmn = mb1 + nb2, where b1,2 = q2,3 − q1 are the Moiré
Brillouin zone vectors, and b3 = q3 − q2.

For the flat bands, it has been proved that [65][
ψk,1(r)
ψk,2(r)

]
= fk(z)

(
ψK,1

ψK,2

)
, (17)

where z = x + iy. Here, fk(z) is given in terms of Jacobi ϑ

functions [65] or alternatively as a Weierstrass σ function
[91]. Therefore, the electronic density for layer j = 1, 2 is
ρk, j (r) = | fk(z)|2ρK, j (r) with ρK, j (r) = ψ

†
K, j (r)ψK, j (r).

As the analytic form of fk(z) is known, our interest here
is focused on the study of �K (r) which corresponds to the
ground state of H2 at all angles.

In Fig. 3, we present the resulting ρK(r) plots in real
space at the first magic-angles and for each layer component,
obtained by plugging Eq. (16) into H to obtain recurrence
relations for amn and bmn. As expected, ρK(r) present the
rotational C3 symmetry. Several features are worth noticing:
(i) the first magic-angle is different from the others, as the
amplitude is centered at the AA stacking points; (ii) it tracks
the form of the |U (r)|2 confining potential; and (iii) at other
angles, the density is confined at somewhat similar locations
but never at AA points as in the first one.

At the first magic-angle α1 = 0.586, one can use perturba-
tion theory [65] to obtain the density (see the Appendix):

ρK,1(r)

= 1 + 4α2

√
3

3∑
μ=1

sin [φ + (−1)μ−1bμ · r]

+ 2α4

3

{
3 + 2C(r) −

3∑
μ=1

cos [2φ + 2(−1)μ−1bμ · r]

+ 2 cos [2φ + (−1)μbμ · r]

}
, (18)

where C(r) = cos [(b1 + b2) · r] + cos [(b1 − b3) · r] + cos
[(b2 + b3) · r], and the other component

ρK,2(r) = α2

[
3 + 2

3∑
μ=1

cos (bμ · r)

]
, (19)

This solution allows us to understand the coincidence be-
tween Fig. 2 and the first angle in Fig. 3, as basically the
ρK,2(r) is proportional to the confinement potential.

In Fig. 4, the real and imaginary parts of the wave func-
tion for each layer are shown, and the Wigner-Seitz cell is
indicated as well. The wave functions present vortices, but the
most important feature to be seen in Fig. 4 is the lack of vor-
tices for the component 1 at the first magic-angle as well as for
the component 2 in the AA stacking point. Such features are
in agreement with the perturbative solution for such an angle.

FIG. 3. Density in real space for the Dirac point K wave
function on each layer for the first four magic-angles α =
0.586, 2.221, 3.751, and 5.276 in the unit cell of the real space rep-
resentation. The AA (green), AB (red), and BA (yellow) points are
indicated. As a reference, the Wigner-Seitz cell of the Moiré lattice
is indicated. Notice how the first angle is different from the others,
as the AA stacking points concentrate the density.

Although at this moment there are not published figures of the
phases to compare with, intralayer currents present vortices
[91]. However, the vortices of such currents do not coincide
with the wave function vortices, a feature to be expected
since they are made from a sum of different k points wave
functions. Theoretically, it has been suggested that the pairing
of the wave function vortices is a special signature of the
TBG from which superconductivity arises [70]. Here, what
is most important for us is the very different behavior of the
phases and density associated with the first magic-angle when
compared with others.

To further highlight such differences, in Fig. 5, we plot
the amplitude of the Fourier coefficients amn and bmn for each
layer. Again, we see that the first magic-angle is remarkably
different from the others, as its main Fourier component con-
tributions are around the origin. However, for the second,
third, and fourth magic-angles, there is a hole at k ≈ 0. This
hole appears at α ≈ 1. Also, when α → ∞, both layers have
nearly the same spectral behavior of the Fourier components.
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FIG. 4. Phases in real space where the vertical component of the
vectors corresponds to Im(ψ1,2) and the horizontal component to
Re(ψ1,2), in the Dirac point K wave function on each layer, for the
first four magic-angles α = 0.586, 2.221, 3.751, and 5.276 in the
unit cell of the real space representation. The color code is the corre-
sponding wave function amplitude. The AA (green), AB (red), and BA
(yellow) points are indicated. As a reference, the Wigner-Seitz cell of
the Moiré lattice is indicated. Notice how the first angle is different
from the others, as the localization occurs at the AA stacking points.

The Fourier components of �(r) in general form complex
patterns. However, as seen in Fig. 5, at the K, K ′ points most
of the coefficients amn and bmn are negligible, and the Fourier
spectrum consists of six localized peaks forming hexagonal
patterns for high values of α. Moreover, we find that, at the lth
magic-angle αl , the main contributions of the coefficients amn

are given by (m, n) = (±l, 0), (0,±l ), and (±l,∓l ). No-
tably, l has been associated with a Landau-level index [91].

As the wave functions in reciprocal space change but keep
a well-localized peak, this means that the localization behav-
ior is far from trivial. To test numerically this observation,
here, we measure the localization by using a inverse partic-
ipation ratio (IPR) [95–97]:

IPRl (α) =
∫

m
|ψl (r)|4d2r, (20)

where l = 1, 2 is the index of the top and bottom component
of the spinor.

FIG. 5. Fourier coefficients of the two spinor components for the
K valley wave function. Right and left columns correspond to the
layer 1 (amn) and layer 2 (bmn) coefficients, respectively. The color
represents the amplitude of the coefficient |am,s|2 or |bm,s|2 in the
hexagonal reciprocal lattice centered at location (kx, ky ). Here, we
plot their spectral square magnitude for the first five magic-angles
α1 = 0.586, α2 = 2.221, α3 = 3.751, α4 = 5.276, and α5 = 6.795.

In Fig. 6, we present the IPR for each layer, analyzing the
behavior of the IPR for the top and bottom component. In the
limit α → 0, the IPR reproduces the expected solution (1, 0).
In the interval α ∈ [0, α1], the wave function ψ1 becomes
less delocalized, while ψ2 becomes more localized. When
α increases, there is an oscillation in the IPR1 and IPR2.
Magic-angles occur at inflexion points or at minima, and there
is a tendency to increase the overall localization in both layers
when α → ∞.

Surprisingly, the IPR for magic-angles is the same for all
states in the flat band as, except at the poles,

| fk(z)|2 = 1, (21)
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FIG. 6. Inverse participation ratio (IPR) as a function of α for
the top (blue) and bottom (brown) components of the twisted bilayer
graphene (TBG) wave function at k = K. The red vertical lines
indicate the first four magic-angles. Notice how the first magic-angle
is different from the others, as in fact, the IPR of both layers is nearly
the same.

even though fk(z) is a complex meromorphic function. The
reason for this relation comes from the normalization of any
state corresponding to the flat band, as we must have∫

m
ρk(r)d2r =

∫
m

| fk(z)|2ρK(r)d2r = 1, (22)

where m denotes integration over the mBZ. Then we ob-
serve that the wave function for k = K is also normalized,
from which it follows that, to be consistent, we must have
| fk(z)|2 = 1 [notice that the poles of fk(z) are canceled out
by the zeros of ψK(r)]. We have verified numerically that this
condition is true.

To summarize the results of this section, again, there are
clear signatures in the wave functions that the first magic-
angle is different from the others.

IV. EXPECTATION VALUES AND INTERLAYER
CURRENTS

To understand the contribution of each physical driving
term in the SH and why the first magic-angle is different,
we next calculate the expected value of each corresponding
operator in H2. From the eigenvalue equation H2�k(r) =
E (k)2�k(r), where � = [ψk,1(r), ψk,2(r)], and using Eq. (5):

2∑
j=1

(〈Tj〉 + 〈Vj〉) + 〈Â〉 = E2(k), (23)

where the expected values for a given layer j = 1, 2 are

〈Tj〉 ≡ −
∫

m
ψ

†
k, j (r)∇2ψk, j (r)d2r, (24)

〈Vj〉 ≡ α2
∫

m
|U (∓r)|2ρk, j (r)d2r, (25)

and 〈Â〉 = 〈A†〉 + 〈A〉, with

〈A†〉 ≡ α

∫
m

ψ
†
k,1(r)A†(r)ψk,2(r)d2r, (26)

and

〈A〉 ≡ α

∫
m

ψ
†
k,2(r)A(r)ψk,1(r)d2r. (27)

Notice that 〈A†〉 and 〈A〉 are not exactly properly defined
expected values, as they involve the bracket of two different
wave function components, and thus, they can becomplex val-
ues or not. However, the total contribution expected value of
the whole off-diagonal terms is real. The total kinetic energy
is 〈T 〉 = 〈T1〉 + 〈T2〉, while the total confinement energy is

〈V 〉 = 〈V1〉 + 〈V2〉 � 8π2

√
3

α2, (28)

where the last bound is obtained using the wave function
normalization.

To understand how 〈Â〉 depends on the two contributions
coming from the off-diagonal terms in H2, we will define
the space-dependent expected value of the gradient terms in
Eq. (5) as

Ag(r) = (ψ∗
1 ψ∗

2 )

[
0 αA†

g(r)
αAg(r) 0

](
ψ1

ψ2

)
, (29)

which come from the nondiagonal, gradient part of H2:

Âg =
[

0 αA†
g(r)

αAg(r) 0

]
. (30)

Therefore,

Ag(r) = −2iα
∑

μ

q̂⊥
μ

· [exp(iqμ · r)ψ1∇ψ∗
2

+ exp(−iqμ · r)ψ∗
2 ∇ψ1]. (31)

By adding its complex conjugate, we obtain that

Ag(r) + A∗
g(r) = 2α

m

eh̄

∑
μ

q̂⊥
μ

· [exp(−iqμ · r)j12

+ exp(iqμ · r)j21], (32)

where we defined the interlayer currents as

j12 = ieh̄

2m
(ψ1∇ψ∗

2 − ψ∗
2 ∇ψ1), (33)

and

j21 = ieh̄

2m
(ψ2∇ψ∗

1 − ψ∗
1 ∇ψ2). (34)

Such definitions are unusual, as they involve two different
wave functions from each layer and only one sublattice. Thus,
this requires some comments and thoughts. In recent papers,
Wang et al. [91,98] and Wang and Liu [99] proposed a some-
what analogous definition for a second-neighbor intralayer
current, i.e., these authors defined

jss = ieh̄

2m
(ψs∇ψ∗

s − ψ∗
s ∇ψs), (35)

where s = 1, 2. This definition is required, as the usual current
is obtained from ∂xH , which turns out to be zero in the ground
state. Therefore, they defined a current in one of the bipartite
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FIG. 7. E 2(k) obtained from the squared Hamiltonian in Eq. (5)
at the Dirac K (black), � (red), and a generic ζ (purple) point where
the red vertical lines indicate the first four magic-angles.

lattices, as can be seen by performing a tight-binding calcula-
tion of the intralayer orbital current. Here, we do not need to
appeal to such a recourse, as the square Hamiltonian initially
renormalized the hexagonal lattice in a triangular lattice, and
therefore, the second neighborhood interaction is implicit in
the renormalization procedure. In Ref. [91], it was argued
that, if jss is discretized in a tight-binding Hamiltonian, we
have that jss = i(a†

s,ias, j − a†
s, jas,i ), where a†

j and a j create
and annihilate, respectively, electrons in site j. In a simi-
lar way, if in Eq. (31) we discretize the spinor component
gradient, we have that i(ψ1∇ψ∗

2 − ψ∗
2 ∇ψ1) → i(a†

2, ja1,i −
a†

2,ia1, j ) and the other current component as i(ψ2∇ψ∗
1 −

ψ∗
1 ∇ψ2) → i(a†

1, ja2,i − a†
1,ia2, j ). Therefore, this leads to the

interpretation of an interlayer current.
Let us now integrate over the primitive cell to get the

expected value of the current. By noting that 〈Âg〉 = 〈Âg〉∗,
it follows that

〈Âg〉 = 2α
∑

μ

q̂⊥
μ · 〈j̃12(qμ) + j̃21(−qμ)〉, (36)

where j̃12(qμ) = ∫
e−iqμ·rj12(r)d2r, and j̃21(−qμ) =∫

eiqμ·rj21(r)d2r. Therefore, 〈Âg〉 is just the sum of the
Fourier components of the current at the points q1, q2, and
q3. In a similar way, the space-dependent expected value of
the second ingredient of 〈A(r)〉 is

A f (r) = iα
∑

μ

[ψ∗
2 ψ1 exp(iqμ · r) − ψ∗

1 ψ2 exp(−iqμ · r)],

(37)
where A f (r) = A∗

f (r), and we define the operator:

Â f =
[

0 αA†
f (r)

αA f (r) 0

]
. (38)

V. EXPECTATION VALUES AND CURRENTS
AT DIFFERENT k POINTS

In this section, we study all contributions defined in the
previous section as a function of the twist at representative
points in k space. One is the � point, which reveals how
magic-angles arise, and the other is the K point, which is
the ground state for all α. Figure 7 shows such behavior as
obtained from the numerical simulation, i.e., the top of the

FIG. 8. Expected values in the � point vs α. The numerical
results are indicated with dashed lines and points. The kinetic energy
〈T 〉 is in blue, confinement energy 〈V 〉 green, 〈Â†

g〉 black, and 〈Â†
f 〉

orange. The solid lines are the perturbative solutions (see Appendix).

band E2(�) goes to zero at the magic-angles, while E2(K) is
the ground state. The k = ζ point, chosen at random in the
mBZ, lies inside this interval.

A. Revealing the magic-angles: � point expected values

From Fig. 7, we see that E2(�) can be used to reveal the
magic-angles, as it always gives the highest energy of the first
H2 band. For a flat band to exist, the energy E2(�) must be
zero.

For the � point, it is very illustrative to use perturbation
theory in the limit α → 0. As shown in the Appendix, up to
linear order in α, we have that

〈T 〉 = 1, 〈V 〉 = 0, (39)

〈Âg〉 = −3α, 〈Â f 〉 = −α. (40)

It follows that

〈T + V 〉 + 〈Â f 〉 + 〈Âg〉 = 1 − 4α ≈ E2(�). (41)

In Fig. 8, we present a comparison between these expected
values and the numerical results, showing a good agreement
for 〈T 〉, 〈Â f 〉, and 〈Âg〉, as α → 0. For 〈V 〉, the agreement is
not so good, as this requires higher-order perturbation terms.
The previous approximation allows us to make a crude esti-
mate of the first magic-angle as

E (�) ≈ ±
√

|1 − 4α|. (42)

Therefore, α1 ≈ 1
4 , a value below α1 = 0.586. Higher-

order terms in the expansion are needed to increase the
accuracy, but the main principle behind a magic-angle is al-
ready present in this simple approach. Further confirmation is
provided in Fig. 9, where we show numerically how magic
angles arise whenever the curve 〈T + V 〉 intersects |〈Â〉|.

Then we conclude that, in going from α = 0 to α1, the
confinement potential starts to contribute and reaches the ki-
netic energy at the magic-angle. The off-diagonal operators
always diminish the energy. As expected, the first magic-angle
is thus produced when the sum of the kinetic plus confinement
energies are equal in magnitude to the expected values of the
off-diagonal operators. The particularity here is that, for α1,
we have 〈Ag〉/〈A f 〉 ≈ 3.
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FIG. 9. Numerical calculation of 〈T + V 〉 − |〈Â〉| vs α at the �

point for the first four magic-angles. For all magic-angles, |〈Â〉| =
〈T + V 〉.

The numerical results in Fig. 9 show how the same princi-
ple applies for other magic-angles, as 〈T + V 〉 − |〈Â〉| goes to
zero. However, as seen in Fig. 10, for α � α1, the current term
〈Âg〉 dominates over 〈Â f 〉, and in fact, 〈Â f 〉 can be neglected,
as we will discuss in the following subsection. Notice also
the jumps associated to each αn, possibly related with Landau
levels. The other particularity is that 〈T 〉 ≈ 〈V 〉, as α → ∞;
thus, in Fig. 9, one cannot distinguish one from the other in
this scale.

B. Ground state: K point

The point k = K is a ground state for any α. Let us have
some general considerations about it. As 〈Tj〉 � 0 and 〈Vj〉 >

0, it follows that, for E2 = 0, we have that 〈A†〉 � 0 and
〈A〉 � 0. Figure 11 numerically confirms these results. Other
interesting features are seen. The first is already clear from
Eq. (23): for the ground state E2 = 0 and due to symmetry,
we obtain

〈T1〉 + 〈V1〉 = −〈A†〉, (43)

FIG. 10. Expected values in the � point vs α. Kinetic energy
〈T 〉 (blue), confinement energy 〈V 〉 (green), 〈Â†

g〉 (black), and 〈Â†
f 〉

(orange). Notice that the kinetic and confinement energies are of the
same order; thus, it is not possible to distinguish the blue curve in
this scale. The vertical red lines are the second, third, and fourth
magic-angles.

FIG. 11. Expected value contributions of the energy as a function
of α at the Dirac point k = K, 〈T 〉 (blue), 〈V 〉 (green), and 〈Â〉 (red).
As for any angle 〈T 〉 = 〈V 〉, the blue symbols are hidden by the green
ones. The conservation of energy implied by Eq. (47) is satisfied
as the kinetic, confinement, and interlayer contributions always sum
zero.

and

〈T2〉 + 〈V2〉 = −〈A〉. (44)

The derivation that follows is made by considering a sym-
metrized basis [73]. In this case, there is no way to distinguish
the upper and lower layers except for a relative phase; it
follows that we must have 〈T1〉 = 〈T2〉 and 〈V1〉 = 〈V2〉. As
the general flat-band solutions are given by [91]

�(r) =
[
ψ1(r)
ψ2(r)

]
=

[
g(r)

ig(−r)

]
× �k (r), (45)

where g(r) is a Bloch wave function, and �k (r) is the quantum
Hall wave function of the lowest Landau level, we replace this
wave function into the expressions for 〈A〉 and 〈A†〉 to show
that

〈A†〉 = 〈A〉. (46)

This is a reminiscent condition of the intravalley symmetry
of Eq. (1). Therefore, for the total kinetic energy and total
confinement energy, we have that

〈Â〉 = 2〈A†〉 = 2〈A〉 = −〈T 〉 − 〈V 〉. (47)

Using the bound for the confinement energy, we find that
〈Â〉 is bounded by

|〈Â〉| � 〈T 〉 + 8π2

√
3

α2. (48)

Figure 11 further confirms Eqs. (47) and (48). Also, in
Fig. 12, we compare the numerical results with the pertur-
bative approach up to second order in α, as detailed in the
Appendix. The agreement is excellent and allows us to (i)
further confirm analytically Eq. (47) in the limit α → 0 and
(ii) test the validity of the numerical approach.

From the previous results, it is clear that 〈A〉 will always
diminish with α to compensate the increased value of the
confinement and kinetic terms. However, this interlayer inter-
action depends on two terms, as in the � point. This requires
further analysis.

In Fig. 13, we present the interlayer current for k = K in
real space. The vector directions represent the polar angle
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FIG. 12. Zoom of the operator expected values vs α for the
region α << 1. The filled circles were obtained from the numerical
simulation at the Dirac point K = 0, corresponding to kinetic energy
〈T 〉 (blue), confinement 〈V 〉 (green), interlayer current 〈Âg〉 (black),
and averaged interlayer interaction〈Â f 〉 (orange). Notice that the nu-
merical data for 〈T 〉 are the same as 〈V 〉, and thus, blue circles are not
seen. The solid curves were obtained from the analytic perturbative
expressions for the operator expected values up to second order in
α (see Appendix). The same color code as in the numerical data
was used for the curves. The red vertical line indicates the first
magic-angle α1 = 0.586.

defined by the real and imaginary parts of A f (r) or Ag(r).
For the first magic-angle α = 0.586, A f (r) has more density
in the AA stacking point, while Ag(r) has more current around
the BA/AB stacking points. On the other hand, for the second
magic-angle α = 2.221, A f (r) and Ag(r) have three points of
high intensity inside the Wigner-Seitz cell. Also, it is interest-
ing to note that, in the AA/AB stacking points, there is a vortex
behavior, as those seen in Fig. 4.

FIG. 13. Interlayer contributions in the real space at the Dirac
point k = K corresponding to (a) and (b) Ag(r) and (c) and (d) A f (r)
for the two first magic-angles α = 0.586 and 2.221. The arrows in-
dicate the direction of the field and the color code the intensity. The
stacking points AA (red), AB (green), and BA (yellow) are indicated
in the Moiré Wigner-Seitz unit cell.

FIG. 14. Components of the interlayer operator 〈Â(α)〉 as a
function of α at the K point. The two first magic-angles α =
0.586 and 2.221 are indicated with the red vertical lines. At α ≈
1 〈Âg〉 = 〈Â f 〉, while the blue dashed line indicates the theoretical
lower bound for 〈Â f 〉 � −6α.

Using the spinor symmetry in Eq. (45) and integrating over
the primitive cell, it follows that

〈Â f 〉 = −2α�
∑

μ

∫
ψ∗

2 ψ1 exp(iqμ · r)d2r

= −α
∑

μ

Im
[
ψ̃∗

2 (qμ) � ψ̃1(qμ)
]
, (49)

where � means a convolution, and ψ̃s is the Fourier transform
of ψs.

In Fig. 14, we show the evolution of Eqs. (36) and (49).
Clearly, for the first magic-angle, 〈Âg〉 and 〈Â f 〉 have simi-
lar magnitudes but become radically separated after the first
magic-angle, i.e., 〈Âg〉 � 〈Â f 〉. Therefore, the term 〈Â f 〉 is
only relevant for α < 1, making the first magic-angle different
from others, as in the � point. The reason for this change
is easy to see, as 〈Â f 〉 is bounded by the norm of the wave
functions, and thus,

|〈Â f 〉| � 6α, (50)

a fact further corroborated by using Eq. (45) to find its explicit
form:

〈Â f 〉 = −α
∑

μ

∫
g∗(r)g(−r)|�k (r)|2 cos (qμ · r)d2r. (51)

Meanwhile, 〈Âg〉 is proportional to the gradient ∇ψ j which
is not bounded by ρ(r).

Further confirmation is obtained by looking at the pertur-
bative solution (see Appendix). Here, 〈T 〉 = 〈V 〉 ≈ 3α2(1 −
α2), while 〈Âg〉 = −6α4(1 + 2α2), and 〈Â f 〉 = −6α2(1 +
2α2). Then 〈Âg〉/〈Â f 〉 ≈ α2. This ratio goes from zero at
α = 0 to 1 at α = 1.

C. Comparison between different k points

The previous analysis was made for k = K. In Figs. 15 and
16, we extend the analysis for other flat-band states at magic-
angles. Figure 15 presents 〈Âg〉 and 〈Â f 〉 in reciprocal space.
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FIG. 15. Components of the interlayer current mean values as a
function of momentum. (a) corresponds to 〈Âg〉, and (b) corresponds
to 〈Â f 〉 at the first magic-angle α = 0.586. The Moiré Brillouin zone
(mBZ) is indicated where q1, q2, and q3 are the Moiré lattice vectors,
and the high symmetry points � (red), K′ (yellow), and K (green)
also are indicated.

For the first magic-angle α = 0.586, the term 〈Âg〉 is maximal
where 〈Â f 〉 is minimal; both have similar magnitude range.
On the other hand, for higher magic-angles, the reciprocal
space structure of 〈Âg〉 and 〈Â f 〉 preserve the same behavior;
however, 〈Âg〉 has a substantially increased magnitude com-
pared with 〈Â f 〉. If α → ∞, 〈Âg〉 � 〈Â f 〉. As a consequence,
the analysis made for k = K can be safely extended for all
flat-band states.

Therefore, 〈Â f 〉 is only relevant for α < 1 making the first
magic-angle different from the others. As said before, 〈Â f 〉 is
limited by ρ(r), while 〈Âg〉 is proportional to the wave func-
tion gradient. Moreover, as the IPR baseline increases, as seen
in Fig. 6, gradients grow. However, in principle, the overlap
between the gradient in one layer and the other layer wave
function can diminish. As 〈Âg〉 is proportional to α, to test the
gradient effects, in Fig. 16, we plot 〈Âg〉/α. This indicates that
currents jss due to gradients are the responsible for the effect.
This behavior is also reflected in Fig. 5, as in the crossover
α ≈ 1, the Fourier coefficients develop a hole around k = 0.
Notice in Fig. 16 that the magic-angles fall inside basins. This
effect is especially prominent for non-high-symmetry points,
as the ζ point, a fact that will be discussed in a forthcoming
publication.

FIG. 16. Scaled interlayer current mean values 〈Âg〉/α vs α for
different representative points in k space: � (red curve), K (black
curve), and ζ (magenta curve). This last point is chosen at the rim
of the black spots of Fig. 15. Notice that 〈Âg〉 is made from two
elements: an overall decreasing behavior and, at the same time,
basins separated by local maxima. Each magic-angle is associated
with a basin.

Summarizing, the term 〈Âg〉 is an energy associated with
interlayer current leakage between bipartite sublattices, i.e., at
second neighbors. Meanwhile, 〈Â f 〉 is a weighted average en-
ergy associated with overlaps between layers. The interlayer
current magnitude grows as the rotation angle goes to zero, a
fact due to the ever-increasing spatial gradients of the electron
wave function.

VI. CONCLUSIONS

In this paper, we presented a theoretical and numerical
analysis of the chiral TBG Hamiltonian using a renormal-
ized Hamiltonian that removes the particle-hole symmetry,
allowing us to identify the main physical elements of the
problem and leading to a simple 2 × 2 matrix operator. Then
we studied the electron localization in the TBG. We found
numerically that the first magic-angle is different from the
others, as the ground state wave function basically tracks
the shape of the confinement potential. We calculated the
localization using the IPR where magic-angles are revealed.
Interestingly, we proved that all states in the flat band for
magic-angles have the same participation ratio. We also eval-
uated the contributions from the kinetic energy, confinement
energy, and interlayer interaction for the � and K points.
These contributions were found using perturbation theory and
numerically. A good agreement between both was found. Our
analysis shows that the � point reveals how a magic-angle
arises.

We found that the first magic-angle in the � point oc-
curs when (1) the confinement and kinetic energies are the
same, (2) the off-diagonal operator is the sum of kinetic and
confinement energy, and (3) the intralayer current is bigger
that the off-diagonal interaction energy term although not
negligible. At other magic-angles, the balance is dictated only
by the kinetic, confinement, and interlayer current. Therefore,
interlayer currents are mainly responsible for bands to shrink.

In other works, the magic-angle effects have been asso-
ciated with the effects of a space-dependent magnetic field
[91,93,100,101]. Our results are in agreement with this idea,
as the interlayer current can also be interpreted as a Lorentz
force too. However, H2 allowed us to identify the source
of this field: the current between the underlying triangular
sublattices of graphene.

It is tempting to try to identify our results with some geo-
metrical feature of the twist angle. However, α contains both
the geometry and the scale of the energy interaction. Here,
we found that both are needed to make the confinement reach
the kinetic energy and produce a strong interlayer current.
For very big angles, confinement is just too weak. This is
confirmed by the IPR which, at the first magic-angle, has the
same value on each layer. We can also argue that the remark-
able 3

2 rule in the recurrence of α happens in the limit when
〈Âg〉 � 〈Â f 〉, as for higher magic-angles the nodal structure
of the lowest Landau level does not depend significantly on
the Moiré unit cell flux.
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APPENDIX A: PERTURBATIVE ANALYSIS
OF EXPECTED VALUES

1. H2 at the � point

Consider the limit α → 0 for the � point. The correspond-
ing wave function was found in Ref. [65]:

ψ�,1(r) = U (−r) + α

3
U (2r)

+ α2

18

[
(2 − eiφ )U (−

√
7Rγ r)

+ (2 − e−iφ )U (−
√

7R−γ r) − 4U (2r)
]

+ · · · (A1)

and ψ�,2(r) = iμαψ�,1(−r), where Rγ r is a counterclockwise

rotation on angle γ , with tan(γ ) =
√

3
5 , and μα = ±1; the

minus sign is used for odd magic-angles. The normalization
factor is

N =
2∑

j=1

∫
m

ψ∗
�, j (r)ψ�, j (r)d2r. (A2)

In this case, it is instructive to analyze first how H2 oper-
ates on the wave function. Consider, for example, one of the
differential equations resulting from Eq. (5):

[−∇2 + α2|U (−r)|2]ψ�,1(r)

+αA†(r)ψ�,2(r) = E2ψ�,1(r), (A3)

where the square of energy E2 is also expanded in powers
of α, i.e., E2 = E2

0 + αE2
1 + α2E2

2 + .... Next, we use the
relationship between wave functions on different layers:

[−∇2 + α2|U (−r)|2]ψ�,1(r)

+iμααA†(r)ψ�,1(−r) = E2ψ�,1(r), (A4)

If we collect terms up to order α using Eq. (A1), two
equations are obtained. The zero order equation is

−∇2U (−r) = E2
0 U (−r), (A5)

and at order α,

− 1
3∇2U (2r) + iμαA†(r)U (r)

= E2
0

1
3U (2r) + E2

1 U (−r). (A6)

From Eq. (A5), we recover E0 as

−∇2U (−r) = −∇2
3∑

l=1

exp(iqlr) exp[i(l − 1)φ]

=
3∑

l=1

|ql |2 exp(iqlr) exp[i(l − 1)φ], (A7)

and using |ql |2 = 1, we prove that Eq. (A5) is indeed true
whenever E0 = 1, in agreement with Ref. [65].

Now consider Eq. (A6). As we did for the order zero
component, is easy to show that

−∇2U (2r) = 4U (2r). (A8)

Next, we compute A†(r)U (r) using the two operators A†
g(r)

and A†
f (r). Using the definition for A†

f (r) and U (r), we have

A†
f (r)U (r) = −i

∑
l,s

exp[−i(ql + qs)r] exp[i(s − 1)φ],

(A9)
and the sum term is then divided in terms with l = s and l �= s:∑

l,s �=l

exp[−i(ql + qs)r] exp[i(s − 1)φ]

+
∑

l

exp(−i2qlr) exp[i(l − 1)φ]. (A10)

Using that q1 + q2 + q3 = 0 and defining a new index n =
6 − (l + s):∑

l,s �=l

exp[−i(ql + qs)r] exp[i(s − 1)φ]

= −
∑

n

exp(iqnr) exp[i(n − 1)φ]. (A11)

From the definition of U (r), we finally obtain

A†
f (r)U (r) = −i[U (2r) − U (−r)]. (A12)

Let us now consider the operator A†
g(r) action. We have

A†
g(r)U (r) = −i

∑
l

exp(−iqlr)2q⊥
l

×∇
{∑

s

exp(−iqsr) exp[i(s − 1)φ]

}
, (A13)

from which

A†
g(r)U (r) = −

∑
l,s �=l

exp[−i(ql + qs)r]

× exp[i(s − 1)φ](2q⊥
l · qs). (A14)

Next, we use that q⊥
l · qs = (−1)ζP(l,s)

√
3

2 , where ζP(l,s) is the
sign of the permutation of the indices l and s, +1 for even and
−1 for odd. Each pair permutation is obtained from the usual
cyclic order {1, 2, 3}, so for example, q⊥

1 · q2 =
√

3
2 , while

q⊥
2 · q1 = −

√
3

2 . Again, we use q1 + q2 + q3 = 0:

A†
g(r)U (r) =

√
3

∑
l,s>l

(−1)ζP(l,s)

× exp(iqnr){exp[i(s − 1)φ]

− exp[i(l − 1)φ]}, (A15)

where n = 6 − (l + s). Finally,

A†
g(r)U (r) = 3iU (−r). (A16)

Then we collect all the previous results inside Eq. (A6) using
μα = −1 to confirm that the wave vector is an eigenvector
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of H2:

4
3U (2r) − [U (2r) − U (−r) − 3U (−r)]

= E2
1 U (−r) + 1

3U (2r), (A17)

i.e., comparing terms, we get E2
1 = 4.

The previous analysis confirms that the solutions of H are
also eigenfunctions of H2. Now we find the expected values of
each operator and for the corresponding differential equation.
We start with the kinetic energy in the first layer:

〈T1〉 = − 1

N

∫
m

d2r
[
U ∗(−r) + α

3
U ∗(2r)

]
×∇2

[
U (−r) + α

3
U (2r)

]
. (A18)

Using Eqs. (A5) and (A8) and that U ∗(2r) and U (−r) are
orthogonal due to symmetry, the contribution of order α is
zero, from which 〈T1〉 = 1

2 . Now considering the contribution
from the equation that results from the second row of Eq. (5),
we have 〈T1〉 = 〈T2〉. Then up to order α:

〈T 〉 = 〈T1〉 + 〈T2〉 = 1. (A19)

In a similar way, as U ∗(2r) and U (−r) are orthogonal:

〈V 〉 = 〈V1〉 + 〈V2〉 = 0. (A20)

Finally, the other operators are

〈Â†
f 〉 = −α, (A21)

while

〈Â†
g〉 = −3α. (A22)

It follows that

〈T 〉 + 〈V 〉 + 〈Â†
f 〉 + 〈Â†

g〉 = 1 − 4α ≈ E2. (A23)

In Fig. 8, we compare the previous results with the numerical
simulation, obtaining a good agreement, as α → 0.

2. H2 at the K point

Here, we consider a perturbative solution of Eq. (A24) for
α → 0 in the K point, as was found in Ref. [65]:

�K(r) =
[
ψK,1(r)
ψK,2(r)

]

=
[

1 + α2u2(r) + α4u4(r) · · ·
αu1(r) + α3u3(r) + · · ·

]
. (A24)

Considering only terms up to order α2, we get

u1(r) = −i[exp(iq1 · r) + exp(iq2 · r)

+ exp(iq3 · r)], (A25)

u2(r) = −i√
3

exp(−iφ)

× [exp(−ib1 · r) + exp(ib2 · r)

+ exp(−ib3 · r)] + c.c. (A26)

These functions must be normalized before calculating the
expected values. The normalization factor is

N = 8π2

3
√

3

(
1 + 3α2 + 2α4 + 6

7
α6 + 107

98
α8 + · · ·

)
.

(A27)
With these expressions for ψ1 and ψ2, we obtain∫

ψ∗
2 (r) exp(iqu · r)ψ1(r)d2r = 8iπ2(α + α3)

3
√

3N
, (A28)

and∫
ψ∗

1 (r) exp(−iqu · r)ψ2(r)d2r = −8iπ2(α + α3)

3
√

3N
, (A29)

for μ = 1, 2, 3. Therefore, considering an extra α and i factor
from the operator definition, we have

〈Â f 〉 ≈ −6(α2 + α4)

1 + 3α2 + 2α4 + 6
7α6 + 107

98 α8
. (A30)

This result is in agreement with the predicted bound found
in Eq. (50). Consider in the same limit the other operator. We
have that

−2i
∫

ψ∗
2 (r) exp(−iqu · r)q̂⊥

μ · ∇ψ1(r)d2r = −8π2α3

3
√

3N
,

(A31)
and the terms containing exp(iqu · r)ψ∗

1 (r)q̂⊥
μ · ∇ψ2(r) give

the same result. This confirms Eq. (46), i.e., 〈A〉 = 〈A†〉. By
collecting terms, we finally obtain that

〈Âg〉 ≈ −6α4(
1 + 3α2 + 2α4 + 6

7α6 + 107
98 α8

) . (A32)

Next, we find the expected values of the kinetic and
confining potential operators to confirm the theoretical and
numerical analysis. Using that∫

ψ∗
1 (r)∇2ψ1(r)d2r = −16π2α4

√
3N

, (A33)∫
ψ∗

2 (r)∇2ψ2(r)d2r = −8π2α2

√
3N

, (A34)

and ∫
ψ∗

1 (r)|U (−r)|2ψ1(r)d2r = 8π2(3 + 2α2)

3
√

3N
, (A35)∫

ψ∗
2 (r)|U (r)|2ψ2(r)d2r = 16π2α2

√
3N

, (A36)

it follows that

〈V 〉 ≈ 3α2 + 6α4 + 2α6

1 + 3α2 + 2α4 + 6
7α6 + 107

98 α8
, (A37)

and for the kinetic energy term,

〈T 〉 ≈ 3(α2 + 2α4)

1 + 3α2 + 2α4 + 6
7α6 + 107

98 α8
. (A38)

By expanding the denominators, we arrive to the final pertur-
bative expectation values:

〈T 〉 ≈ 3α2 − 3α4, (A39)

〈V 〉 ≈ 3α2 − 3α4, (A40)
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and

〈Â f 〉 ≈ −6α2 + 12α4, (A41)

〈Âg〉 ≈ −6α4 + 18α6, (A42)

in agreement with 〈V 〉 = 〈T 〉 > 0. Also, 〈V 〉 + 〈T 〉 + 〈A〉 ≈
0 up to order α4. In Fig. 12, we plot Eqs. (A40)–(A42) and
compare them with the numerical results obtained from find-
ing numerically the eigenstates of the Hamiltonian.
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