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Effects of microscopic scattering on terahertz third harmonic generation in monolayer graphene
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Due to its linear dispersion, monolayer graphene is expected to generate a third harmonic response at terahertz
frequencies. There have been a variety of different models of this effect and recently it has been experimentally
observed. However, there is still considerable uncertainty as to the role of scattering on harmonic generation in
graphene. In this paper, we model third harmonic generation in doped monolayer graphene at THz frequencies by
employing a nearest-neighbour tight-binding model in the length gauge. We include optical phonon and neutral
impurity scattering at the microscopic level, and examine the effects of scattering on the third harmonic response.
We also compare the results of a phenomenological semiclassical theory, using a field-dependent scattering
time extracted from the simulation, and find a significantly lower third-harmonic field than that found from the
microscopic model. This demonstrates that third harmonic generation is much more sensitive to the nature of the
scattering than is the linear response. We also compare the results of our full simulation to recent experimental
results and find qualitative agreement.
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I. INTRODUCTION

The energy-momentum dispersion of graphene, a zero-
bandgap two-dimensional semiconductor is linear near the
Dirac points; this leads to a constant carrier speed. The fact
that the speed of the carriers is independent of crystal momen-
tum results in an interesting nonlinear response of graphene to
terahertz (THz) radiation [1–4]. In particular, third harmonic
generation of THz radiation should occur both due to the
nonlinear relationship between the crystal momentum and the
current density and due to the interaction between interband
and intraband parts of the current densities [5–7].

Third harmonic generation in graphene can be enhanced
by employing configurations where the interaction time of
the THz fields with the graphene is increased. Once such
configuration is to place the graphene inside of a waveguide
structure, with the THz radiation incident parallel to the plane
of the graphene [8–10]. This increases the interaction time
of the radiation with the graphene and shows the potential to
obtain power conversion efficiencies up to 30%.

There have been only a few reports of the experimental
observation of third harmonic generation from monolayer
graphene at THz frequencies [11,12]. The experimental work
in 2014 by Bowlan et al. [13] reported THG from graphene
at THz frequencies for a 45-layer doped sample. In a recent
experiment by Hafez et al. [14], THz high harmonic gener-
ation in a single layer of graphene at room temperature was
reported. By using a low-noise, long-pulse, THz free-electron
laser [15] and frequency filtering, they were able to generate
the third, fifth, and seventh THz harmonics using THz fields of
a few tens of kV/cm. Although they did not employ a micro-
scopic model of the response, their semi-empirical analysis of
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the results indicated that scattering was playing an important
role in the generation of the harmonics.

There have been a number of theoretical approaches to
modeling harmonic generation in graphene. Some theoretical
investigations of the nonlinear response of graphene [11,12]
have ignored scattering effects. At optical frequencies, this is
a reasonable approximation. However, because typical scat-
tering times in graphene are only a few tens of femtoseconds
[16–20], this is not a valid approximation at THz frequencies,
since the scattering times are generally shorter than the period
of the field. Moreover, recent theoretical [14,21] and exper-
imental [14,22,23] results indicate that scattering can often
enhance the nonlinearity in graphene.

Al-Naib et al. [6] treated the nonlinear THz response
of graphene in a density matrix formalism, using a semi-
empirical model of carrier scattering and found that third
harmonic generation (THG) is strongly dependent on scat-
tering. Given its strong role in the nonlinear response of
graphene, it is therefore important to implement as accurate
a scattering model as possible when modeling the nonlin-
ear THz response of graphene. Although there have been a
number of theoretical and experimental papers incorporating
microscopic models of carrier scattering in graphene [21,24],
to date, there has not been a systematic investigation into the
relative roles of the intrinsic nonlinearity and different scat-
tering processes on third harmonic generation in monolayer
graphene at THz frequencies.

There are four important scattering processes in graphene:
neutral impurity scattering, charged impurity scattering,
phonon scattering, and carrier-carrier scattering. Hwang et al.
[16] have shown that the carrier-carrier scattering time for an
electron with an energy of 1 eV above the Dirac points is about
100 fs and is longer for energies close to the Dirac point. This
is quite long relative to the other scattering processes in many
samples, especially at room temperature. The scattering time
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of charged impurity scattering is proportional to the Fermi
energy and inversely to the density of impurities. Thus, one
finds that charged impurity scattering can be very strong for
low Fermi levels, while neutral impurity scattering is strongest
for high Fermi levels because the scattering time is inversely
proportional to the carrier energy.

E. Malic et al. [24] employed a microscopic approach
based on a many-particle density matrix formalism to model
carrier dynamics in optically-excited graphene. By using
this approach, it is possible to model time, momentum,
and angle-resolved relaxation dynamics of non-equilibrium
charge carriers during and after excitation by an optical pulse.
They considered the light-carrier interaction as well as carrier-
carrier and carrier-phonon scattering using their “graphene
Bloch equations”, which describe the time evolution of the
carrier populations as well as the interband microscopic po-
larization.

In this paper, we investigate the relative roles that the
intrinsic nonlinearity and scattering play on the nonlinear
response of doped monolayer graphene to THz fields. We
employ a density matrix formalism in the length gauge with
microscopic scattering due to neutral impurities and optical
phonons treated in the manner of E. Malic et al. [24,25].
We show that indeed the scattering mechanisms play a strong
role in third harmonic generation, but that their effect on the
generated field is quite subtle, with an important interplay oc-
curring between the elastic and inelastic scattering processes.
In addition, we model the experiments of Hafez et al. [14] and
obtain qualitative agreement.

The paper is organized as follows: In Sec. II A, we present
a semiclassical model of the nonlinear response of graphene
with phenomenological scattering. In Sec. II B, we discuss
our density matrix model with the inclusion of microscopic
scattering from neutral impurities and optical phonons. In
Sec. III, we present and analyze the results of our density
matrix simulations of the nonlinear response, compare it to the
results of our semiclassical model and investigate the effects
of different scattering mechanisms on the transmitted field at
the fundamental and the generated third harmonic field as a
function of THz field amplitude. In Sec. IV we compare our
results for the generated third harmonic electric field with
the results obtained in the experiments of Hafez et al. [14].
Finally, in Sec. V, we summarize our results.

II. THEORY

In this section, we present our model of nonlinear carrier
dynamics in graphene. We start with a simple semiclassical
perturbative model of the nonlinear response of graphene to
a harmonic THz field in the presence of phenomenological
scattering. Then, in Sec. II B, we present our more complete
nonperturbative microscopic theory that models the nonlinear
response to THz pulses in the presence of scattering due to
neutral impurities and optical phonons.

A. Simple semiclassical model

A very simple model of the intrinsic nonlinearity of
graphene can be obtained using a semiclassical theory. The
semiclassical equation for the statistical average of the elec-

tron wave vector is

dk(t )

dt
= e

h̄
Et (t ) − k(t )

τ
, (1)

where e is the charge on an electron, τ is a phenomenological
scattering time, and Et (t ) is the THz electric field at the
graphene (i.e., the transmitted field). In a nearest-neighbor
tight-binding model, for energies less than about 800 meV,
the conduction band energy for monolayer graphene is given
by Ec(k) = h̄vF k, where vF = 1.0 × 106m/s is the Fermi ve-
locity and k ≡ |k|. At zero temperature, for a Fermi energy of
EF , all states in a disk in k space with radius kF = EF /(h̄vF )
are occupied.

Let us now consider that the system is driven by a har-
monic field such that the electric field at the graphene (the
transmitted field) is given by Et (t ) = x̂Etoe−iωt + c.c. At time
t = −∞, the Fermi disk is centered at the origin. Solving
Eq. (1), we see that the center of the disk at time t is given
by kc(t ) = kcx(t )x̂, where

kcx(t ) = e

h̄

Etoe−iωt

(1/τ − iω)
+ c.c. (2)

Now, assuming that the Fermi energy is high enough such that
2EF � h̄ω, there will not be any interband transitions and the
x component of the current density is given simply by

Jx(t ) = 4e

A

∑
k,occ

vx(k), (3)

where A is the area of the graphene, the factor of 4 accounts
for the two spins and two valleys and

vx(k) ≡ 1

h̄

dEc(k)

dkx
= vF cos (θ ) (4)

is the x component of the carrier velocity, where θ is the angle
of the k relative to the x axis. Thus, converting the sum to an
integral, the current density becomes

Jx(t ) = 4evF

(2π )2

∫ 2π

0
dθ cos (θ )

∫ ∞

0
dk k �(kF − |k − kc(t )|),

(5)
where �(k) is the Heaviside function. If we assume that
|kc(t )| << kF , then we can expand the Heaviside function
about kc = 0, which gives

�(kF − |k − kc(t )|) ≈ �(kF − k) + kcx(t ) cos (θ )δ(kF − k)

+ k2
cx(t )

2!

[
− sin2 (θ )

k
δ(kF − k) + cos2 (θ )δ(1)(kF − k)

]

− k3
cx(t )

3!

{
3 cos (θ ) sin2 (θ )

k2
[δ(kF − k) + kδ(1)(kF − k)]

− cos3 (θ )δ(2)(kF − k)
} + O

(
k4

cx

)
, (6)

where δ(k) is the Dirac delta function and δ(n)(k) is its nth
derivative. Using this in Eq. (5) and performing the inte-
gral over k and omitting the terms that are even in kcx(t )
(which will go to zero when we integrate over θ ), we
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obtain

Jx(t ) = 4evF k2
F

(2π )2

∫ 2π

0
dθ cos (θ )

[
k̃cx(t ) cos (θ )

− 3k̃3
cx(t )

3!
cos (θ ) sin2 (θ )

−15k̃5
cx(t )

5!
cos (θ ) sin4 (θ ) + O(k̃7

cx )

]
, (7)

where k̃cx(t ) ≡ kcx(t )/kF and we have now also included the
fifth-order term. In the limit that there is no scattering, it is
straightforward to show that Eq. (7) agrees with the result of
Mikhailov and Ziegler [11]. The advantage of this expression,
however, is that it explicitly shows which regions of k space
give the largest contributions to the linear and nonlinear re-
sponse. In particular, we see that while the main contributions
to the linear part of the current occur for θ near 0 and π ,
the main contribution to the third-order response occurs when
θ is near odd multiples of π/4, and the main contribution
to the fifth order arises when θ = mπ ± arccos(1/

√
3). We

shall return to this point when we discuss the results of our
microscopic simulations of THG in Sec. II B.

Finally, we can perform the integrals over θ in Eq. (7) and
insert our expression for kcx(t ), to obtain expressions for the
linear, third order, and fifth-order conductivities. The linear
conductivity is given by

σ (1)
xx (ω) = e2EF

π h̄2(1/τ − iω)
, (8)

which agrees with the standard results at T = 0 [26–28]. The
diagonal element of the third-order conductivity is

σ (3)
xxx(3ω) = −e2v2

F

8E2
F (1/τ − iω)2

σ (1)
xx (ω) (9)

for the third harmonic response and

σ (3)
xxx(ω) = −3e2v2

F

8E2
F (1/τ 2 + ω2)2 σ (1)

xx (ω) (10)

for the response at the fundamental. In the limit that τ → ∞,
these expressions for the third-order response agree with the
results found by Mikhailov [1]. Finally, the diagonal element
of the fifth-order conductivity is

σ (5)
xxx(5ω) = −e4v4

F

64E4
F (1/τ − iω)4

σ (1)
xx (ω) (11)

for the fifth harmonic response,

σ (5)
xxx(3ω) = −5e4v2

F

64E4
F (1/τ 2 + ω2)(1/τ − iω)2

σ (1)
xx (ω) (12)

for the third harmonic response, and

σ (5)
xxx(ω) = −10e4v2

F

64E4
F (1/τ 2 + ω2)2 σ (1)

xx (ω) (13)

for the response at the fundamental.
Note that up to fifth order, the current density at the fun-

damental will be given by Jx(ω; t ) = Re{2σNL(ω)Et0e−iωt },

where

σNL(ω) ≡ σ (1)
xx (ω)

[
1 − 3

∣∣∣Etm

ES

∣∣∣2

− 10
∣∣∣Etm

ES

∣∣∣4]
(14)

is the effective nonlinear conductivity, where

ES ≡ EF

√
32(1/τ 2 + ω2)

|e|vF
(15)

is a saturation field, and Etm ≡ 2Eto is the amplitude of the
transmitted field. Similarly, the current density at the third har-
monic will be given by Jx(3ω; t ) = Re{2σNL(3ω)E3

t0e−i3ωt },
where

σNL(3ω) ≡ σ (3)
xxx(3ω)

[
1 + 5

∣∣∣Etm

ES

∣∣∣2]
. (16)

Note that for the conductivity at the fundamental fre-
quency, the nonlinear components add out of phase with the
linear component and so decrease the current density at the
fundamental, which results in an increase the transmission
as the field amplitude increases. As we will see later, for
the doping densities, THz frequency, and field amplitudes
we will consider in this paper, if there is no scattering, then
the intrinsic nonlinear reduction in the transmission at the
fundamental frequency as predicted by this model can be
appreciable for large field amplitudes. However, for small
scattering times on the order of a few tens of femtoseconds,
it has a very modest effect. For example for a Fermi energy of
354 meV, a frequency of 1.0 THz, and a THz field amplitude
of 30 kV/cm, the nonlinearity only lowers the conductivity
by 1.5% for τ = 50 fs. In contrast, for a scattering time of
200 fs, it lowers the conductivity by 10%, which is quite
significant. This means that if the scattering times are say 100
fs or longer, then one cannot neglect the intrinsic nonlinearity
when calculating the dependence of the transmitted power as
a function of the incident pulse amplitude.

In the next section, we present the results of a full dynamic
model, including a microscopic treatment of scattering. As
we shall see, in this model the transmission is predicted to
change considerably with field amplitude due in large part
to the energy dependence of the scattering times as well as
scattering-induced carrier redistribution.

B. Full microscopic theory

As in the previous section, we model n-doped graphene
where THz-field-induced interband transitions can be ne-
glected. We consider samples where short-range neutral
impurity scattering dominates over charged-impurity scatter-
ing and scattering from acoustic phonons [29,30]. However, in
addition to neutral impurity scattering, we include scattering
from optical phonons, as this is the dominant inelastic scatter-
ing mechanism for electrons that are exited to high energies.
For simplicity, we neglect carrier-carrier scattering, which
is a reasonable approximation when the doping is not too
heavy. Omitting field-driven interband transitions, the dynam-
ical equation for the conduction band carrier density matrix is
[5,6]

dρcc(k)

dt
= −eEt (t )

h̄
· ∇kρcc(k) −

(dρcc(k)

dt

)
scatt

, (17)
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where ( dρcc (k)
dt )scatt represents the time variation of carrier den-

sity due to the scattering and Et (t ) is the THz field at the
graphene.

We again take the electron dispersion relation to be
Ec(k) = h̄vF k, where vF is (= 1.0 × 106 m/s) the Fermi ve-
locity and we take the origin to be at the Dirac point. We
include the electron-phonon, and electron-neutral-impurity
scattering in the dynamic equations in the Born-Markov ap-
proximation. Thus, the electron scattering term is given by
[21,24](dρcc(k)

dt

)
scatt

= −
out
c (k)ρcc(k) + 
in

c (k)[1 − ρcc(k)].

(18)

In this equation, 
out
c (k) is the scattering-out rate, and 
in

c (k)
is the scattering-in rate, which is given by


in
c (k) = 2π

h̄

∑
q

{∑
j

∣∣gkcc
q j

∣∣2
ρcc(k + q)[n j (q) + 1]

× δ[εc(k + q) − εc(k) − h̄ω j (q)]

+
∑

j

|g(k−q)cc
q j |2ρcc(k − q)n j (q)

× δ[εc(k − q) − εc(k) + h̄ω j (q)]

+ ∣∣hkc
q

∣∣2
ρcc(q)δ[εc(q) − εc(k)]

}
, (19)

where j labels the phonon branch, nj (q) is the phonon occu-
pation number, and h̄ω j (q) is the phonon frequency. The first
and second terms in Eq. (19) respectively represent scattering
due to optical phonon emission and absorption. In the case
of phonon absorption, the electrons are scattered to higher
energy states in the conduction band due to the absorption of
an optical phonon and in the second case, the electrons that
have enough energy to stimulate the emission of a phonon are
scattered to a lower energy state. The third term in Eq. (19)
represents neutral impurity scattering. The scattering-out rate
can be obtained from 
in

c (k) by replacing ρcc(q) with (1 −
ρcc(q)) and interchanging n j and (n j + 1).

In Eq. (19), we include scattering due to longitudinal and
transverse optical phonon with wave vectors close to the 


point as well as transverse optical phonons near the K point.
The squares of the coupling constants to these phonons are
given respectively by∣∣gkcc

q
−LO

∣∣2 = 1

N
g2


[1 − cos(θq,k + θq,k+q)], (20)∣∣gkcc
q
−T O

∣∣2 = 1

N
g2


[1 + cos(θq,k + θq,k+q)], (21)∣∣gkcc
qK

∣∣2 = 1

N
g2

K [1 − cos(θk,k+q)], (22)

where N is the number of unit cells, θk,q is the angle between
k and q, and g2


 and g2
K are the squares of the amplitudes of

the coupling constants. There is still uncertainty in the experi-
mental and theoretical literature [31,32] as to what one should
use for the values for these coupling constants. However, we
use the values g2


 = 0.0405 eV2, and g2
K = 0.0994 eV2 given

in Ref. [24] to be consistent with the calculations of Helt et al.

[21]. We take the optical phonons to be dispersionless near
the symmetry points, so that for the phonons near the 
 point,
h̄ω
−LO(q) ≈ h̄ω
−TO(q) ≈ h̄ω
 ≈ 196 meV, while for op-
tical phonons near the K point, h̄ωK (q) ≈ h̄ωK = 160 meV
[29]. As the THz pulses are relatively short, we do not cal-
culate the phonon dynamics, but rather assume that they are
in thermal equilibrium, such that n j = [exp[β h̄ω j] − 1]−1,
where β ≡ [kBT]−1, where T is the lattice temperature and kB

is the Boltzmann constant.
In the final term in Eq. (19), the square of the carrier-neutral

impurity coupling element is given by [16]∣∣hkc
q

∣∣2 = nimpv
2
0

A
[1 + cos(θk,q)], (23)

where nimp is the neutral impurity density and v0 is a constant
interaction strength as appropriate for short-range point defect
scatters. In what follows, we take v0 = 1 keV Å2, as given in
Ref. [20].

We take the incident THz field to be a single-cycle sinu-
soidal pulse with a Gaussian envelope given by

Êi(t ) = E0

NE
exp

{
−4ln(2)(t − t0)2

T 2
FWHM

}
sin[2π f0(t − t0)] êx,

(24)
where E0 is the peak field amplitude, TFWHM is the full width
at half maximum of the pulse, t0 is the time offset, and f0 is
the pulse carrier wave frequency. The constant NE depends on
the pulse duration and is chosen such that E0 is the peak THz
field amplitude.

Because we consider n-doped graphene in this paper, the
only current is the intraband current in the conduction band,
which is given by [33]

J = 4evF

∑
k

ρcc(k) k̂. (25)

The electric field transmitted through the monolayer graphene
sheet on a substrate with refractive index n is given by

Et (t ) = 2Ei(t ) − Z0J[Et (t )]

1 + n
, (26)

where J[Et (t )] is the total current density calculated using the
transmitted field as the driving field and Z0 is the impedance of
free space. Thus, solving the dynamic equations for the den-
sity matrix requires that the field at the graphene is calculated
self-consistently, as described by Al-Naib et al. [5].

To solve Eq. (17), we discretize k on a hexagonal grid [21]
and solve the coupled dynamic equations using the Runge-
Kutta algorithm. Because the Dirac points at K and K ′ are
identical, we only need to perform our calculations about the
K point. We find that a grid size of 601 × 601 is required
for convergence of our results for the Fermi energies and THz
field pulse amplitudes considered. The most computationally
intensive part of the calculation is the evaluation of the scat-
tering terms. The numerical approach used to evaluate these is
described by Helt and Dignam [21]. To ensure that no carriers
are driven outside of the simulation grid due to the scattering
processes or applied field, we set the grid edge, Max{|k|}, to
be 1.5 times the maximum displacement of the edge of the
electron disk when driven by the strongest incident field Ei(t )
(in the absence of scattering) [21]. We take the time duration
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of the simulation to be long enough to obtain convergence and
sufficient frequency resolution of the transmitted field.

Helt and Dignam [21] studied the effect of scattering on
the nonlinear transmission close to the fundamental frequency
as a function of the THz field amplitude. In this paper, we
are primarily interested in the effect of scattering on third
harmonic generation. In the following section, we investigate
the nonlinear response of graphene with microscopic scatter-
ing. To better understand the effects of the different scattering
mechanisms, we present results for the frequency spectrum of
the transmitted electric field when there is no scattering, only
phonon scattering, only impurity scattering, both phonon and
impurity scattering, and when we use an empirical scattering
model with an energy-independent scattering time. We also
compare our simulation results with the results of the simple
semiclassical model of Sec. II A. In Sec. IV, we model the
experiments of Hafez et al. [14] and discuss the generated THz
fields and the carrier distributions for that system.

III. RESULTS

We now present the results of our simulations of the non-
linear THz response for n-doped monolayer graphene. In this
section, we take the central frequency of the incident THz
pulse to be f0 = 1.0 THz and take the pulse duration to be
1.0 ps. We take the graphene to be suspended (such that
n = 1), the temperature to be 300 K, the chemical potential
to be μc = 354 meV and the neutral impurity density to be
nimp = 3 × 1010 cm−2. We have chosen these values because
they correspond approximately to the field frequencies, car-
rier densities and low-field scattering times in a number of
recent experiments on the nonlinear response of graphene
[22,23,30]. In addition, they are the parameters use in a recent
paper of ours on the effects of neutral impurity and optical
phonon scattering on the nonlinear transmission of graphene
[21].

To better understand the effect of the different scattering
mechanisms, it will be useful to compare our results to that
using a semi-empirical model of scattering involving only one
energy-independent scattering time τ . The model that we shall
use is one where the carriers relax back to thermal equilibrium
over this time. Thus we use(dρcc(k)

dt

)empirical

scatt
= − [ρcc(k) − fFD(k)]

τ
, (27)

where fFD is the Fermi-Dirac distribution for conduction
band electrons. Solving the dynamic equations with this
semi-empirical scattering term to first order in the THz field
gives the standard temperature-dependent Drude conductivity,
[26–28]

σ (ω) = 2e2 ln
[
2 cosh( βμc

2 )
]

πβ h̄2(1/τ − iω)
. (28)

At room temperature, for our Fermi energy, this expression
agrees with Eq. (8) derived in Sec. II A to better than one part
in 107.

At room temperature and for low-field amplitudes, neutral
impurity scattering is the dominant mechanism. Although the
scattering rates are k dependent, we can estimate the effective
low-field scattering rate by evaluating the scattering out rate

FIG. 1. Normalized transmitted field for different scattering
mechanisms when the incident field peak amplitude is (a) 5 kV/cm,
(b) 15 kV/cm, and (c) 30 kV/cm. The black-solid curve in (a) shows
the normalized incident field with central frequency of 1 THz. The
black curve in (a) is the normalized incident field. The other curves
represent the normalized transmitted field with no scattering (dashed-
dotted blue curve), only phonon scattering (solid-dark green), only
impurity scattering (dashed-pink curve), impurity and phonon scat-
tering (dotted-red curve), and the results of the semi-empirical model
(solid light-green curve).

for carriers at the energy of the chemical potential. From
Eq. (19) and including only the neutral impurity scattering
term, with |k| = μc/(h̄vF ) and ρcc = 1/2, we find the low-
field scattering time to be given by

1

τ
= nimpv

2
0

2π h̄2vF

∫ 2π

0
dθq

μc

h̄vF

1

2
= nimpv

2
0μc

2h̄3v2
F

. (29)

This is the scattering time that we shall use in our semi-
empirical model. It should give good agreement for the linear
response at low-field amplitudes. For our choice of chemical
potential and impurity density, we obtain τ = 52 fs.

In this section, we examine the effect of the different
scattering mechanisms on the nonlinear transmission at the
fundamental frequency and on the generated third harmonic.
Thus, we simulate the transmitted fields as a function of
time for different scattering mechanisms and also for differ-
ent input field strengths and Fourier transform the results to
obtain the incident and transmitted fields [Ei(ω) and Et (ω)]
as a function of frequency. To make clear the role of each
scattering process, we perform separate simulations under the
following conditions: (1) no scattering; (2) only impurity scat-
tering; (3) only optical phonon scattering; and (4) both phonon
and impurity scattering. We also compare these results with
those found using our semi-empirical model of scattering.

In Fig. 1, we plot the transmitted field normalized to the
peak of the incident field at ω = ω0 = 2π f0, |Et (ω)|/|Ei(ω0)|,
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as a function of frequency for the different scattering
mechanisms (as indicated in the caption) for incident field
amplitudes of (a) 5 kV/cm, (b) 15 kV/cm, and (c) 30 kV/cm
respectively. For reference, the solid black curve in Fig. 1(a)
gives the normalized incident field with central frequency
of 1 THz. We see that the incident field only has a peak at
f = f0 = 1 THz. However, the transmitted field for all the
scattering mechanisms also has a peak near 3 THz. This peak
represents the third-harmonic field, in which we are primarily
interested. As can be seen, the generated third-harmonic field
amplitude is strongly dependent on the scattering mechanism,
while the transmitted field at f0 has a weaker dependence,
in large part because it is dominated by the transmission of
the incident field. In Fig. 1, the dashed-blue curve gives the
result when there is no scattering, which is obtained by setting

in

c (k) = 
out
c (k) = 0. The solid-green curve represents the

normalized transmitted field including only phonon scatter-
ing, i.e., we omit the last term in Eq. (19). The dashed-purple
curve gives the normalized transmitted field when only neutral
impurity scattering is included. The dotted-red curve shows
the normalized transmitted field when both neutral impurity
scattering and optical phonon scattering are included. Finally,
the light-blue curve gives the result obtained using the semi-
empirical model. For the semi-empirical model we set the
phenomenological scattering to be 52 fs so that it agrees with
the time obtained from neutral impurity scattering for low-
field amplitudes.

A. Transmitted field at the fundamental frequency

Before examining in detail the effects of scattering on the
third harmonic, we first examine the nonlinear transmission
of the graphene at the fundamental frequency ω0. This was
examined by Helt and Dignam [21] for a few different field
amplitudes. In that paper, it was demonstrated that the model
we are using with neutral impurities and optical phonons
gives agrees qualitatively with recent experiments as to the
dependence of the THz transmission on field amplitude [22].
Our goal here, however is to compare the results of our sim-
ulations with the results from our semiclassical model and to
thereby extract effective scattering times as a function of field
amplitude for a range of amplitudes.

In Fig. 2 we plot the ratio of the transmitted field at ω0

to the incident field at ω0 as a function of the amplitude of
the input field for different scattering mechanisms. We note
first that, as expected, this ratio depends both on the input
field and the scattering mechanisms. This is because the trans-
mission depends on the conductivity of the graphene, which
in turn depends on the scattering and field amplitude. We
first consider the effect of the different scattering mechanisms
on the low-field (E0 = 5 kV/cm) transmission. To extract the
low-field scattering times, we use the Drude model, but with
a scattering time that depends on the particular scattering
mechanism. From Eq. (26), with Jx(ω) = σ (ω)Et (ω), with
σ (ω) given by the Drude model of Eq. (28), we can solve for
the transmitted field to get the standard thin film result,

Et (ω) = Ei(ω)

1 + 1
2 Zoσ (ω)

. (30)

FIG. 2. Ratio of the transmitted field at ω0 to the peak value
of the incident field as a function of input field for different scat-
tering treatments; only phonon scattering (solid-dark green), no
scattering (dashed-dotted-blue curve), impurity and phonon scatter-
ing (dotted-red curve), impurity scattering (dashed-pink curve), and
semi-empirical model (solid light-green curve).

Using this equation and the Drude model, we calculate the
transmission, and in Fig. 3, we plot |Et (ω0)/Ei(ω0)| as a
function of τ for the chemical potential and temperature that
was used in the simulations. We can use this model to extract
the effective low-field scattering time for each of the different
scattering mechanisms.

When there is only phonon scattering, we expect to obtain
very similar transmission to the no-scattering case at low-field
amplitudes, since the phonon emission and absorption are
negligible. This is due to the fact that all of the electron states
below the occupied states are full, so scattering due to phonon
emission is forbidden. In addition, because the phonon pop-
ulations at room temperature are very small (n
 = 0.00051,
nK = 0.0021), scattering via phonon absorption is also very
weak. Thus, as expected, the transmission with only optical
phonons is similar to what we obtained with no scattering.

FIG. 3. Normalized transmitted field as a function of scattering
time using the Drude model.
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FIG. 4. Ratio of the transmitted field at ω0 to the peak value of
the incident field as a function of input field as calculated using the
simple nonlinear, semiclassical model for scattering times of τ = ∞
(solid black curve), τ = 4 ps (dashed-dotted-blue curve), τ = 200 fs
(dashed-pink curve), τ = 100 fs (dotted-red curve), and τ = 52 fs
(solid-green curve).

From Fig. 3, we extract an effective low-field scattering time
due to optical phonons alone of about τ = 4.4 ps.

When we include only neutral impurity scattering, the
transmission is considerably increased, due to the strong
damping of the carrier response. From Fig. 3, we extract an
effective low-field scattering time due to neutral impurities
alone of about τ = 52 fs, as expected.

When both phonon and impurity scattering are included,
the transmission essentially is the same as with only neutral
impurity scattering, since the effect of phonon scattering is
small in the case both neutral impurity and phonon scattering
are present.

The results using the semi-empirical model are also almost
identical to the results found with neutral impurity scattering
because we have chosen a scattering time based on low-field
neutral impurity scattering.

Now let us examine what happens to the transmission at
the fundamental frequency when we increase the input field
amplitude. There are two effects at play here: the intrinsic
nonlinearity and the energy-dependent scattering rates. First,
as we discussed in Sec. II A, due to the linear dispersion of
the electron bands, the electron velocity is not proportional
to the crystal momentum and so there will be “clipping” of
the THz-induced current at high-field amplitudes [1,7,11–13].
Second, as we shall see, the scattering mechanisms can both
dampen the amplitude of carrier oscillation, while introducing
a nonlinearity due to the energy dependence of the scattering
rate.

To aid in the discussion of the nonlinear effects due to scat-
tering, in Fig. 4, we plot (for five different scattering times),
the transmission calculated using Eq. (30) with σ (ω) replaced
by the nonlinear semiclassical conductivity given by Eq. (14).
Note that because the nonlinear conductivity depends on the
transmitted field, we need to iterate this to convergence. Note
also that this result is for monochromatic fields and so we

do not expect perfect agreement with the results of the full
simulations, even when the scattering mechanism is the same.

When there is no scattering, the semiclassical saturation
field [see Eq. (15)] is ES ≈ 126 kV/cm and the intrinsic
nonlinearity is expected to have a significant effect at the
higher fields. The simple semiclassical model predicts that the
transmission at the highest field of 30 kV/cm will be about
4.8% higher than at 5 kV/cm. This is in good qualitative
agreement with the results from the simulation, which give
a 3.9% increase (see Fig. 2).

For the semi-empirical model, where the scattering time is
52 fs, the semiclassical saturation field is 405 kV/cm and so
the nonlinear effect is much smaller. The semiclassical model
gives a 0.23% increase in the transmitted field for an input
field amplitude of 30 kV/cm relative to that at 5 kV/cm,
which is in qualitative agreement with the full simulation,
which gives an increase of 1.1%. The agreement in this case
is not as good because in the semiclassical model, we do not
account for the scattering-in to low energy states. The change
in the transmission with field is very small because scattering
greatly limits how far in k space the carriers are driven and we
have assumed that the scattering time is energy independent.

The results for the change in transmission with field when
there is microscopic scattering is not described at all well
by the simple semiclassical model with a field-independent
scattering time. For example, when there is only impurity
scattering, when we compare the highest input field to the
lowest, the transmission increases by 12% in the simulation
results, but if we keep the scattering time at the low field
value, the semiclassical model predicts an increase of only
0.23%. Even more striking is the very different behavior
of the transmission simulation results when there is optical
phonon scattering from any results found using a constant
scattering time. In the simulation, the transmission first de-
creases and then increases as the field amplitude is increased,
while in the semiclassical model, there is always an increase
in the transmission as the input field amplitude is increased.

To aid in the understanding of the nonlinear transmission
in the presence of microscopic scattering, let us consider the
effects of the field amplitude on the microscopic scattering
rates of the electrons. Increasing the input field amplitude
pushes the electrons to higher energy states. From Eq. (19),
we see that this will lead to an increase in scattering due
to neutral impurities and optical phonons. We now examine
what happens for three different scattering scenarios. We use
Eq. (30) with the nonlinear conductivity of Eq. (14) to obtain
the nonlinear transmission as a function of input field am-
plitude and scattering time. Then comparing these results to
our simulation results, we extract an effective field-dependent
scattering time for the different scattering scenarios and field
amplitudes. The resulting effective scattering times are plotted
as a function of field amplitude in Fig. 5. Neutral impurity
scattering increases when the field amplitude is increased be-
cause the number of states into which the electrons can scatter
increases linearly with the electron energy and as electrons
are driven to higher energy, there are more unoccupied states
at the same energy into which they can scatter. When there is
only neutral impurity scattering, the average scattering time
decreases from τ = 51 fs at a field of 5 kV/cm to τ = 30 fs
at a field of 30 kV/cm.
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FIG. 5. Extracted effective scattering rate (1/τ ) as a function of
input field for different scattering treatments; only phonon scatter-
ing (solid-dark green), impurity scattering (dashed-pink curve), and
impurity and phonon scattering (dotted-red curve).

When there is only optical phonon scattering, the situation
is somewhat different. The number of states into which the
electrons can scatter due to interactions with phonons also
increases as the electron energy increases. Thus, up to a field
of about 20 kV/cm, there is a slow increase in the scattering
rate and at 20 kV/cm the scattering time reaches about 420
fs. However, as the field amplitude is increased further, some
of the electrons have an energy that is at least an optical
phonon energy above an empty state and phonon emission can
suddenly occur. Thus, the scattering rate increases rapidly as
the field is increased beyond 20 kV/cm and at the maximum
field of 30 kV/cm, the effective scattering time is reduced to
about τ = 145 fs.

The response when there is both neutral impurity and
phonon scattering is somewhat more complicated. For low
fields, neutral impurity scattering is dominant and the trans-
mission is almost the same as what is found when there is only
neutral impurity scattering. However, for fields above about
20 kV/cm, phonon emission processes kick in. This results in
the average electron energy being lower than it would have
been if only neutral impurity scattering were present. As a
result, neutral impurity scattering rate decreases below what
it would have been in the absence of phonon scattering, and
so the transmission does not increase as much as it did when
there was only impurity scattering present. At the highest field
amplitude, the effective scattering time is about τ = 37 fs.

B. Third harmonic generation

We now examine the dependence of the third harmonic
response on scattering, which is the central aim of this paper.
As seen in Fig. 1(a), even for a relatively low input field of
5 kV/cm, scattering has a strong effect on the generated third-
harmonic field. Optical phonon scattering leads to the highest
third-harmonic field and impurity scattering yields the lowest
third-harmonic field of the microscopic models, independent
of the input field amplitude. At low input field amplitudes, the
third-harmonic field when there is both phonon and impurity

FIG. 6. Ratio of the transmitted third-harmonic field to the peak
value of the incident field as a function of input field for different
scattering treatments; only phonon scattering (solid-dark green), no
scattering (dashed-dotted-blue curve), impurity and phonon scatter-
ing (dotted-red curve), impurity scattering (dashed-pink curve), and
semi-empirical model (solid-light-green curve).

scattering is slightly greater than the one with no scattering.
However, as the input field amplitude increases, as shown in
Figs. 1(b) and 1(c), the third harmonic is considerably lower
when both impurity and phonon scattering are included.

To see the trends more clearly, in Fig. 6, we plot
|Et (3ω0)|/|Ei(ω0)| as a function of input field amplitude for
all the scattering scenarios. In all cases, we see an increase
in the ratio of the generated third-harmonic field to the peak
value of the incident field as we increase the input field
amplitude. In a perturbative model in which the response is
only calculated to third order in the field, the third-harmonic
field amplitude should increase with the cube of the input
field amplitude, which is not what we see in Fig. 6. This
difference arises from the field-dependence of the scatter-
ing times as well as higher-order nonlinearities that reduce
the total field at the graphene, which results in a reduction
in the third harmonic response [6]. Let us now consider each
of the different scattering cases separately.

When there is no scattering, the entire electron disk moves
without distortion. Thus, it is in this case that the electrons
are pushed to the highest energies. Therefore, one expects
that perhaps this is when the largest nonlinear response would
occur. We find that in this situation, the third harmonic is
larger than in every other case, apart from when there is only
optical phonon scattering.

The generated third-harmonic field is the smallest when
we employ the semi-empirical model of scattering. This is
expected for two reasons. First, the process involves inelastic
scattering, resulting in the carriers, on average, being scattered
from higher energies back into the lower-energy thermal equi-
librium distribution. This means that carriers are not driven
as far from equilibrium, which in-turn reduces the generated
third-harmonic field. As a result, the third-harmonic field am-
plitude is almost an order of magnitude lower than it was
when there was no scattering. Now, when there is only neutral
impurity scattering (which is elastic), carriers are scattered
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FIG. 7. Normalized transmitted field for different scatter-
ing treatments: phonon emission and absorption (dotted-green
curve), only phonon absorption (dashed-dotted-purple curve), only
phonon emission (solid-red curve), and no scattering (dashed-blue
curve) when the incident-field peak amplitude is (a) 5 kV/cm,
(b) 15 kV/cm, and (c) 30 kV/cm.

to different points with the same |k|. We know from our
examination of the transmission at the fundamental that in this
case, as we increase the field amplitude, there is an increase
in the scattering rate. Thus, we might expect that we would
obtain similar results to those found for the semi-empirical
model. However, we find that although there is a significant
decrease in the third harmonic relative to that found when
there was no scattering, the signal is much greater than that
found for the semi-empirical model. This clearly shows that
the effective scattering time itself is only part of the story
and that the nature of the scattering is critical in determining
its effect on third harmonic generation. The key here is that
because the neutral impurity scattering is elastic, over time
the Fermi disk gets larger and larger [21], which means there
are still many carriers that are driven to high energies by the
field.

Now, let us consider the case of optical phonon scattering
alone. Surprisingly, we see from Fig. 6 that this is the case in
which the third-harmonic field is the largest, particularly for
the lower fields. This is a clear indication that the scattering
process itself is resulting in a nonlinear component to the
current that is even greater than that arising from the intrinsic
band structure.

To better understand the third harmonic response in the
presence of only optical phonon scattering, in Fig. 7 we plot
the normalized transmitted field for the case where there is
only optical phonon scattering, but we examine the relative
effects of phonon absorption and emission. Thus we plot
the results under four different conditions: only phonon ab-
sorption, only phonon emission, both phonon emission and

absorption, and no scattering. We see that at the low input
field of 5 kV/cm, the effects of phonon emission are neg-
ligible and the result with only phonon emission is almost
the same as when there is no scattering. However, at the
low field, phonon absorption significantly affects the third-
harmonic field, even though the phonon populations at room
temperature is very small (n
 = 0.00051 and nK = 0.0021).
The origin of the nonlinearity in this case seems to be the
excitation of carriers to high-energy states, where the non-
linear relationship between the carrier crystal momentum and
the velocity has the most pronounced effect. Although there
are not many carriers with such high energies, because the
intrinsic nonlinearity is so small at this low field amplitude,
any small change in the current can have a large effect on the
third harmonic. However, at the higher field amplitudes, the
intrinsic nonlinearity is much stronger and it dominates over
this phonon-induced contribution. As the input field amplitude
increases, we see in Figs. 7(b) and 7(c) that phonon emission
becomes the dominant scattering mechanism in determining
the generated third-harmonic field. As we discussed earlier,
when the incident field amplitude is large enough, carriers can
be driven to high enough energy such that they can scatter
into lower energy states by emitting an optical phonon. This
will result in a clipping of the current similar to the intrinsic
current clipping and the result is a larger third-harmonic field
than when there is no phonon scattering.

The reason why THG is strong in the presence of op-
tical phonon scattering even though the linear response is
suppressed can be understood by considering the carrier dy-
namics in k space. The carriers that have the largest energy
will be the ones that scatter to lower energy with the emission
of an optical phonon. These carriers will be the mostly close
to the kx axis (i.e., close to θ = 0, π ). From Eq. (7), we see
that the scattering of these carriers will reduce the linear con-
ductivity. However, from the same equation, we see that this
scattering does not significantly affect the third-order current,
as the main contribution to that occurs for θ = ±π/4,±3π/4.
If these carriers near θ = 0 are scattered into those regions in
k space, it can actually increase the nonlinear response.

In the case that both neutral impurity and phonon scat-
tering are included in the microscopic model, we see from
Fig. 6 that for a low input field amplitude, the third-harmonic
field is considerably larger than the case with only impurity
scattering. This is because, as discussed above, the process of
phonon absorption adds a significantly nonlinearity at these
low fields that counter balances the reduction coming from
impurity scattering. However, as the input field increases, the
effect of the optical phonons is diminished. This is because at
high fields, the elastic scattering due to neutral impurities is
so much faster than the optical phonon scattering, many of the
carriers that have been driven by the field to high energies are
redistributed by neutral impurity scattering to k states away
from the leading edge of the Fermi disk before they are driven
to energies high enough to emit an optical phonon. It is appar-
ent from the results and the above discussion that the effects
of scattering on THG cannot simply be captured by an effec-
tive scattering time and that the detailed carrier dynamics are
crucial to understanding the results. To emphasize this point,
we have calculated the third-harmonic field found using the
semiclassical model given in Sec. II A, but using the effective
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FIG. 8. Ratio of THG field amplitude from simulations to
that obtained from semiclassical theory for different treatments
of scattering; only phonon scattering (solid-dark green), no scat-
tering (dashed-dotted-blue curve), impurity and phonon scattering
(dotted-red curve), impurity scattering (dashed pink curve), and
semi-empirical model (solid-light-green curve).

field-dependent scattering time given in Fig. 5. In Fig. 8, we
plot the ratio of the third-harmonic field calculated from the
simulations to that calculated using this semiclassical model.
The first thing to note is that the results using the two methods
agree quite well when there is no scattering (as expected).
When we consider the case where the scattering time is 52 fs
for all fields (semi-empirical model), the simulation predicts
a stronger third harmonic, but the dependence on field is very
similar in both models. This is in contrast to the results when
we include microscopic scattering. For these cases, although
the results are similar at low field amplitudes, they are very
different at higher fields. In particular, the results with neutral
impurity scattering (with and without optical phonon scatter-
ing) differ by almost an order of magnitude at the highest field
amplitude of 30 kV/cm. This is clear evidence that if one
is to accurately calculate THG in graphene at THz fields, a
microscopic model of the scattering is essential.

IV. COMPARISON TO EXPERIMENT

In this section, we model the recent experiments of Hafez
et al. [14] using our microscopic model. In these experiments,
they measured the THz harmonics in graphene in the time
domain. The sample was monolayer graphene deposited on
a silicon dioxide (SiO2) substrate with a carrier density of
Nc = 2.1 × 1012 cm−2 (chemical potential of μc = 170 meV)
at room temperature (T = 300 K). The THz source used was
the superconducting radio-frequency accelerator-based sup-
perradiant THz source, TELBE [15], with a pulse duration of
about 14 ps (or less), a central frequency of f0 = 0.68 THz
and a peak electric field amplitude of 12 kV/cm to 85 kV/cm.
In this section we compare the results of our simulation in the
presences of neutral impurities and optical phonons to these
experimental results.

FIG. 9. The Fourier transformed incident field and transmit-
ted field as a function of frequency for input field amplitude of
(a) 13 kV/cm, (b) 39 kV/cm, and (c) 78 kV/cm using microscopic
model (solid red curve) and semi-empirical model (dashed-green
curve). The dotted-blue curve represents the incident filed. The fun-
damental frequency of the incident field is 0.68 THz and both neutral
impurity scattering and optical phonon scattering are included.

In our simulations, we set f0 = 0.68 THz, TFW HM = 7
ps, t0 = 20 ps. The pulse duration is somewhat shorter than
that used in the experiment as the longer pulse simulations
were too computationally-intensive: A typical calculation to
produce one curve in Fig. 9(c) takes 30 processors 5 days at
the Centre for Advanced Computing. We have found, how-
ever, that our results do not change much when the pulse
duration is increased. We take the index of refraction of the
substrate to be n = 1.9, which is the index of silicon diox-
ide at THz frequencies. We use a neutral impurity density
of nimp = 0.713 cm−2, chemical potential of μc = 170 meV,
room temperature of T = 300 K, and carrier density of Nc =
2.1 × 1012 cm−2, which yields a low-field scattering time of
47 fs, in agreement with the estimated scattering time in the
experiment [14].

In Fig. 9, we plot the calculated transmitted field amplitude
as a function of frequency field for input field amplitudes of
13 kV/cm, 39 kV/cm, and 78 kV/cm using the microscopic
model with both scattering mechanisms included, as well as
the results using the semi-empirical model with τ = 47 fs.
As can be seen, in addition to the large peaks at the third
harmonic, we find peaks at the fifth harmonic. In table I, we
present the extracted field amplitudes at the third harmonic
from the experimental results and from our simulations for
the three different input field amplitudes. As can be see, there
is quite good agreement between the experimental results
and the results from the semi-empirical model. There is also
qualitative agreement for the input field of 78 kV/cm between
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TABLE I. Third-harmonic electric field amplitude for three dif-
ferent input field amplitudes found from experiment (column 2),
using our full simulation with microscopic scattering (column 3) and
with semi-empirical scattering (column 4).

Input electric field Experiment Microscopic Semi-empirical

13 kV/cm 4.0 V/cm 110 V/cm 5.0 V/cm
39 kV/cm 70 V/cm 480 V/cm 110 V/cm
78 kV/cm 200 V/cm 600 V/cm 370 V/cm

the experimental results and the results from our microscopic
model. However, the results from the microscopic model seem
to significantly overestimate the third-harmonic field for the
two lower input fields. Although the semi-empirical model
gives better agreement with the experimental results, one
should not read too much into this; this is clearly an overly-
simplified model and the good agreement is likely fortuitous.
There are a number of possible reasons why our results differ
from the experimental results. First, there are some scatter-
ing mechanisms, such as electron-electron scattering, charged
impurity scattering, acoustic phonon scattering that we have
not included in our model, that may be important. The dif-
ference may also arise partly due to the particular estimates
that we made for the phonon coupling constants and energies,
on which there is no clear agreement in the literature [24].
Finally, uncertainties in the incident field and third-harmonic
field in the experiment likely give some uncertainties in their
results, which are not clearly identified in the paper.

V. CONCLUSION

In this paper, we have examined the effects of differ-
ent scattering mechanisms on the nonlinear THz response
of graphene. To make clear the effect of each scattering
mechanism, we have investigated neutral impurity and optical
phonon scattering individually and in combination. We have

also compared these results to a model with constant scatter-
ing and a simple semiclassical model.

We have seen that the highest third-harmonic field is gen-
erated when there is only the optical phonon scattering, while
neutral impurity scattering causes a decrease in the generation
of the third-harmonic field. We have shown that even if one
extracts a field-dependent effective scattering time from the
nonlinear transmission at the fundamental frequency, this does
not accurately capture the effect of the scattering on the gener-
ated third harmonic. This clearly shows that the microscopic
details of scattering processes have a strong effect on third
harmonic generation in graphene and must be taken into ac-
count if one is to obtain accurate predictions. Because the third
harmonic signal is sensitive to the type of scattering, third
harmonic generation in graphene at THz frequencies might
be a very good way to characterize the type and strength of
scattering in graphene.

We have used our microscopic model to model the experi-
ment recently done by Hafez et al. [14] and obtain qualitative
agreement for higher field amplitudes. To improve our model,
in future work we plan to include other scattering mecha-
nisms, such as electron-electron scattering and scattering from
acoustic phonons. We then hope to perform a more systematic
study of the transmitted THz field as a function of doping,
substrate, impurity type, and field frequency and amplitude
to allow us to compare with the experimentally-obtained
transmitted THz spectrum for a variety of different graphene
samples and substrates.
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