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Isolated and hybrid bilayer graphene quantum rings

M. Mirzakhani ,1,2,* D. R. da Costa,3,4,† and F. M. Peeters5,‡

1School of Physics, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa
2Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, South Korea

3Departamento de Fisica, Universidade Federal do Ceará, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
4Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional

Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
5Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

(Received 4 November 2020; revised 14 March 2022; accepted 18 March 2022; published 28 March 2022)

Using the continuum model, we investigate the electronic properties of two types of bilayer graphene (BLG)
quantum ring (QR) geometries: (i) An isolated BLG QR and (ii) a monolayer graphene (MLG) with a QR put
on top of an infinite graphene sheet (hybrid BLG QR). Solving the Dirac-Weyl equation in the presence of a
perpendicular magnetic field and applying the infinite mass boundary condition at the ring boundaries, we obtain
analytical results for the energy levels and corresponding wave spinors for both structures. In the case of isolated
BLG QR, we observe a sizable and magnetically tunable band gap which agrees with the tight-binding transport
simulations. Our analytical results also show the intervalley symmetry EK

e (m) = −EK ′
h (m) between the electron

(e) and the hole (h) states (m is the angular momentum quantum number) for the energy spectrum of the isolated
BLG QR. The presence of interface boundary in a hybrid BLG QR modifies drastically the energy levels as
compared with that of an isolated BLG QR. Its energy levels are tunable from MLG dot to isolated BLG QR
and to MLG Landau energy levels as the magnetic field is varied. Our predictions can be verified experimentally
using different techniques such as by magnetotransport measurements.

DOI: 10.1103/PhysRevB.105.115430

I. INTRODUCTION

Over the past years, a family of two-dimensional (2D)
graphene nanostructures, including graphene nanoribbons
[1–6], quantum rings (QRs) [7–12], quantum dots (QDs)
[13–27], and antidots [28–32] with different type of geome-
tries, edge types, and stackings of graphene layers, have
received increasing interest. These studies showed that the
electronic and optical properties of graphene QDs can be
modified by size, shape, edge type, and electrostatic gating;
see also, e.g., Refs. [13,16,17,20,26]. The effect of twisting
on the electronic and transport properties of bilayer graphene
(BLG) nanostructures has also been recently addressed in
Refs. [33–39]. Within today’s technology, such as nanolithog-
raphy, it is possible to realize such 2D nanostructures on a
scale of a few tens [40,41] or even only a few [42,43] nanome-
ters as well as in different types of graphene layer stackings
[44,45].

Furthermore, band-structure engineering can be performed
by creating periodic arrays of holes in both monolayer
graphene (MLG) [29,30,32,40] and BLG [46] sheets, known
as graphene antidot lattices. Depending on the size and the
period of the holes, such graphene nanostructures render
graphene semiconducting with a sizable band gap which
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displays a wide range of electronic and optical properties
[46–48]. Very recently, a related system has been investigated
where a MLG sheet consists of highly regular triangularly
arranged holes [32]. The results showed that the structure
displays both insulating behavior and ballistic transport in ex-
cellent agreement with analytical calculations which describe
the structure as a quantum system consisting of connected
“Dirac rings” [32,49]. In this model, Dirac fermions are
strongly confined in a MLG QR geometry using an infinite
mass (IM) potential. While in the case of MLG such holes can
act as scattering centers, several experimental works [50,51]
demonstrated that in the case of BLG, the adjacent layers
can connect with each other thus resulting in the formation
of periodic arrays of connected edgeless Dirac rings in BLG
structure.

Here we aim to investigate the electronic properties of
such rings in BLG as an individual QR defined by an IM
potential (isolated ring) as shown in Fig. 1(a). Of course in
graphene nanostructures, the type of edge plays an impor-
tant role and their effects are well known, in particular the
existence of a zero-mode state at zigzag edges [13,52,53].
Using the IM boundary condition removes the edge effects
and has the advantage that analytical results can be obtained
while still representing a real system [27]. Theoretically, the
IM boundary condition for confining neutrinos in a hard-
wall billiard was derived by Berry and Modragon [54]. This
boundary condition was previously employed to investigate
the electronic properties of MLG nanostructures (dot, antidot,
ring) [27,31,49,55], BLG QDs [56], and trilayer graphene
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FIG. 1. Schematic pictures of the proposed circular BLG QRs
with inner and outer radii of R1 and R2, respectively. (a) Isolated
BLG QR and (b) hybrid BLG QR sandwiched between MLG QD
and MLG sheet.

QDs [25]. Previous studies of BLG QRs based on the Dirac
equation include electrostatically defined BLG QRs [10,57]
which were solved numerically in Ref. [57] and were mod-
eled as zero-width-ring geometry in Ref. [10]. However, at
present there is, to our knowledge, no theoretical study on the
energy spectrum of BLG QRs with IM boundary condition
that models a realistic ring.

In the present work, we solve the Dirac-Weyl equation in
the presence of a perpendicular magnetic field and apply IM
boundary condition at the ring boundaries to obtain analyt-
ical results for the energy levels and corresponding wave
functions. In the case of isolated BLG QR, we find an ex-
cellent agreement between the analytical predictions for the
size of the band gap as a function of the magnetic field
with that found in the conductance for a two-terminal QR
device simulated using the KWANT package [58] based on
Landauer-Büttiker formalism and the tight-binding model
(TBM). This is in contrast with previous studies of zero-width
BLG QR [10] showing a fixed energy-band gap as a func-
tion of magnetic field. Our analytical results also show that
the energy spectrum of the isolated ring exhibits intervalley
symmetry EK

e (m) = −EK ′
h (m) for the electron (e) and hole (h)

states where m is the angular momentum quantum number.
The agreement between the obtained analytical results and

the TB simulations prompted us to also consider a hybrid
BLG QR where a MLG ring is put on top of an infinite
MLG sheet [Fig. 1(b)]. Experimental realization of such 2D
heterostructures can be challenging but is doable within to-
day’s technology. Defining the ring layer by a staggered
site-dependent IM potential (e.g., using an antiring-shaped
hexagonal boron nitride as a substrate) is a way that can be
used to realize the hybrid BLG QR. The hybrid structure can
also be realized by (accidental) nanostructuring one of the
graphene layers in BLG. For instance, topographic images
have revealed that multilayer samples exfoliated from graphite
often contain atomic steps and islands of one or few layers
of graphene [59–63]. They have been previously investigated
both theoretically and experimentally in different configura-
tions such as a single MLG-BLG junction [64–70], double
MLG-BLG junctions (MLG-BLG-MLG) [71,72], and hybrid
QD structures [73]. In all these studies, the interface between
MLG and BLG regions was considered as zigzag or armchair

junctions which modify considerably the electronic properties
of such structures.

A striking feature of the hybrid BLG QR is that the energy
levels of the ring seem to interplay among the MLG dot,
the isolated BLG QR, and the MLG Landau energy levels
as magnetic field increases. In addition, as a function of the
magnetic field, the energy spectrum of both structures exhibits
Aharonov-Bohm (AB) oscillations. We also investigate the
dependence of the energy spectrum on the ring width for both
structures.

Finally, we analyze the valley- and layer-resolved local
density of states (LDOS) for both proposed structures and our
findings show that, at a given magnetic field, the contributions
of the valleys as well as those of the layers in the LDOS
can be different. This feature can be used in valleytronics
applications of such graphene-based nanostructures if valley
mixing is precluded.

II. THEORY AND MODEL

We consider two different BLG nanostructures in the pres-
ence of a perpendicular magnetic field: (i) Isolated BLG QR
defined by a site-dependent staggered media [Fig. 1(a)] and
(ii) hybrid BLG QR sandwiched between a MLG QD and
an infinite MLG region, as shown in Fig. 1(b). The latter
can also be regarded as an infinite MLG sheet on which a
second MLG ring is sitting on top of the first, thus realizing
a BLG QR in the AB-stacking (Bernal) configuration. The
Dirac equation is solved for both MLG and BLG regions,
with appropriate boundary conditions. By employing the IM
boundary condition, we obtain analytical results for the energy
levels and corresponding wave functions in each structure.

Experimentally, such a mass potential can be induced by
sandwiching the BLG sheet between substrates such that the
A and B sublattices in each graphene sheet feel different
potentials [74,75]. Equivalently, graphene nanostructures that
are etched out of graphene sheets exhibit a strong confinement
that can be modeled with an IM boundary condition.

In the presence of a perpendicular magnetic-field B =
Bêz, the dynamics of carriers in the honeycomb lattice of
carbon atoms of MLG can be described by the following
Hamiltonian [7],

H = vF � · σ + �(r)σz, (1)

where vF ≈ 106 m/s is the Fermi velocity, � = p + eA is the
2D kinetic momentum operator with p = −ih̄ (∂x, ∂y), −e is
the electron charge, and A = (B/2)(−yêx + xêy) is the vec-
tor potential taken in the symmetric gauge; σ = (σx, σy, σz )
denotes the Pauli matrices and �(r) is a position-dependent
mass term. In polar coordinates (r, ϕ), the Hamiltonian (1)
reduces to the form

H = E0

(
δ �−

�+ −δ

)
, (2)

where E0 = √
2h̄ vF /lB is the cyclotron energy with lB =√

h̄/eB the magnetic length, δ = �(ρ)/E0, and the momen-
tum operator

�± = �x ± i�y = −ie±iτϕ 1

2

[
∂

∂ρ
± iτ

ρ

∂

∂ϕ
∓ τρ

]
. (3)
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Here ρ = r/
√

2 lB is a dimensionless radial coordinate and
τ = ±1 distinguishes the K and K ′ valleys. Because of cir-
cular symmetry, the two-component spinor wave function
becomes 
τ (ρ, ϕ) = eimϕ[φτ

A(ρ), iφτ
B(ρ)eiτϕ]T , where the ra-

dial dependence of the spinor components is described by

1

2

[
∂

∂ρ
+ (τm + 1)

ρ
+ τρ

]
φτ

B(ρ) = (ε − δ)φτ
A(ρ), (4a)

1

2

[
∂

∂ρ
− τm

ρ
− τρ

]
φτ

A(ρ) = −(ε + δ)φτ
B(ρ), (4b)

where m = 0,±1,±2, . . . denotes the angular momentum
label and ε = E/E0 is the dimensionless carrier energy. De-
coupling the above equations and using the ansatz for φτ

A(ρ) =
ρ−me−ρ2/2 f (ρ2), one arrives at the associated Laguerre differ-
ential equation (ρ̃ = ρ2)

ρ̃ f ′′(ρ̃) + (−m + 1 − ρ̃ ) f ′(ρ̃) + λ f (ρ̃) = 0, (5)

where

λ = 1
2

[ − (τ + 1) + 2(ε2 − δ2)
]
. (6)

The general solution to the associated Eq. (5) is

f (ρ2) = C1L−m
λ (ρ2) + C2U (−λ, 1 − m, ρ2), (7)

where the constants C1 and C2 are determined by the boundary
conditions. U (a, b, x) is the confluent hypergeometric function
of the second kind and Lb

a(x) is the generalized Laguerre
polynomial which can be defined in terms of the confluent
hypergeometric function of the first kind M(a, b, x) [an alter-
natinig notation is 1F1(a, b, x)] as

Lb
a(x) =

(
a + b

a

)
M(−a, b + 1, x), (8)

where (a + b
a ) is the generalized binomial coefficient. No-

tice that ρ−me−ρ2/2L−m
λ (ρ) and ρ−me−ρ2/2U (−λ, 1 − m, ρ)

converge to finite values in the limits ρ → 0 and ρ → ∞,
respectively. So, depending on the geometry of the graphene
nanostructures (dot or antidot), one can choose the appropriate
wave functions to satisfy the corresponding boundary condi-
tions.

The other spinor component of the wave function, φτ
B(ρ),

can be obtained using Eq. (4b) and by employing the prop-
erties of U (a, b, x) and Lb

a(x). Thus the spinor components
become

φτ
A(ρ) = ρ−me−ρ2/2

[
C1L−m

λ (ρ2) + C2U (−λ, 1 − m, ρ2)
]
,

(9a)

and

φτ
B(ρ) = −τ

ε + δ
ρ−m−τ e−ρ2/2

[
C1(λ + τ+)τ+L−m−τ

λ+τ (ρ2)

− C2(λ + τ+)τ−U (−λ − τ,−m + 1 − τ, ρ2)
]
,

(9b)

where we have defined τ± = (1 ± τ )/2.
The BLG region can be described in terms of four sublat-

tices labeled A1, B1, for the lower layer and A2, B2, for the

upper layer. We only include the coupling between two atoms
stacked on top of each other, e.g., B1 and A2, and ignore the
small contributions of the other interlayer couplings. Addi-
tional terms only cause small effects such as trigonal wrapping
and electron-hole asymmetry on the energy levels [76]. The
effective Hamiltonian is [76,77]

HB = E0

⎛
⎜⎝

δ �− 0 0
�+ −δ γ̃1 0
0 γ̃1 δ �−
0 0 �+ −δ

⎞
⎟⎠, (10)

where γ̃1 = γ1/E0, with γ1 ≈ 0.4 eV as the nearest-neighbor
interlayer coupling term. Solving the Dirac equation HB� =
E� for the four-component wave function

�τ (r, ϕ) = eimϕ
[
e−iτϕφA1(ρ), iφB1(ρ), iφA2(ρ), eiτϕφB2(ρ)

]T
,

(11)

the radial dependence of the spinor components in BLG is
described by

1

2

[
d

dρ
+ τm

ρ
+ τρ

]
φτ

B1(ρ)

= (ε − δ)φτ
A1(ρ), (12a)

1

2

[
d

dρ
− τm − 1

ρ
− τρ

]
φτ

A1(ρ) − γ̃1φ
τ
A2(ρ)

= −(ε + δ)φτ
B1(ρ), (12b)

1

2

[
d

dρ
+ τm + 1

ρ
+ τρ

]
φτ

B2(ρ) − γ̃1φ
τ
B1(ρ)

= −(ε − δ)φτ
A2(ρ), (12c)

1

2

[
d

dρ
− τm

ρ
− τρ

]
φτ

A2(ρ)

= (ε + δ)φτ
B2(ρ). (12d)

Decoupling the system of equations (12) and using φτ
A2(ρ) =

ρ−me−ρ2/2g(ρ2), we arrive at the following associated La-
guerre differential equation (ρ̃ = ρ2)

ρ̃g′′(ρ̃) + (−m + 1 − ρ̃ )g′(ρ̃) + α±(ε)g(ρ̃) = 0, (13)

where α±(ε) is given by

α±(ε) = 1
2

[
2(ε2 − δ2) − 1 ±

√
1 + 4γ̃ 2(ε2 − δ2)

]
. (14)

Accordingly, similar to the MLG region, φτ
A2(ρ) can be ex-

pressed in terms of Lb
a(x) and U (a, b, x) as follows:

φτ
A2(ρ) = ρ−me−ρ2/2

∑
μ=±

[
Cμ

1 L−m
αμ

(ρ2)

+ Cμ
2 U (−αμ, 1 − m, ρ2)

]
, (15)

where the constants Cμ
1 and Cμ

2 are determined by the bound-
ary conditions. The other spinor components of the wave
function can be obtained using Eqs. (12) by inserting φτ

A2(ρ)
and employing the properties of U (a, b, x) and Lb

a(x) func-
tions. It is possible to express the other components in a
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compact form as follows:

φτ
A1(ρ) = −τ ρ−m+τ e−ρ2/2

γ̃1(ε2 − δ2)

∑
μ=±

ημ

[
Cμ

1 (αμ + τ−)τ−L−m+τ
αμ−τ (ρ2) − Cμ

2 (αμ + τ−)τ+U (−αμ + τ,−m + 1 + τ, ρ2)
]
, (16a)

φτ
B1(ρ) = ρ−me−ρ2/2

γ̃1(ε + δ)

∑
μ=±

ημ

[
Cμ

1 L−m
αμ

(ρ2) + Cμ
2 U (−αμ,−m + 1, ρ2)

]
, (16b)

φτ
B2(ρ) = τ ρ−m−τ e−ρ2/2

ε + δ

∑
μ=±

[
Cμ

1 (αμ + τ+)τ+L−m−τ
αμ+τ (ρ2) − Cμ

2 (αμ + τ+)τ−U (−αμ − τ,−m + 1 − τ, ρ2)
]
, (16c)

where ημ = [ε2 − δ2 − (αμ + τ+)].
Berry and Modragon derived the IM boundary condition

for the confinement of neutrinos in a hard-wall billiard de-
scribed by the Dirac-Weyl equation [54]. Let us consider
a particle restricted in the plane r = (x, y) subjected to a
mass term potential �(r), which is vanishing inside a certain
domain and equal to � → ∞ outside it. Solving the Dirac
equation, Eq. (1), for a two-component spinor [ψ1(r), ψ2(r)]T

leads to the following relation at the domain edge [54,55]

ψ2(r)/ψ1(r) = ieiτθ , (17)

where θ is the polar angle of the normal vector pointing
outward from the domain boundary. Within the next section,
we will calculate the energy spectrum of both ring structures
using the above-mentioned boundary condition.

It is worth mentioning that the IM boundary condition
[Eq. (17)] does not necessarily imply that the total wave
function, as well as the wave-function components, go to
zero at the boundaries of the quantum confined system. The
use of similar Berry and Mondragon-like boundary condi-
tion to explain experimental measurements in graphene-based
quantum confinement nanostructures has been reported in the
literature [7,32,42,55], showing a good agreement between
the predicted theoretical results and the electronic properties
measured experimentally. Furthermore, BLG-based quantum
systems with reconstructed edges present different types of
edges in addition to the conventional armchair and zigzag ter-
minations, leading to different boundary conditions different
than those assumed here [78–82].

III. NUMERICAL RESULTS

A. Analytical calculations

In the case of isolated BLG QR, applying the IM boundary
condition (17) for each layer, the spinor components at the
radial distances R1 (θ = π + ϕ) and R2 (θ = ϕ) satisfy the
conditions

φτ
B1(ρ1) + φτ

A1(ρ1) = 0, (18a)

φτ
B2(ρ1) − φτ

A2(ρ1) = 0, (18b)

and

φτ
B1(ρ2) − φτ

A1(ρ2) = 0, (19a)

φτ
B2(ρ2) + φτ

A2(ρ2) = 0, (19b)

respectively, with ρi = Ri/
√

2 lB (i = 1, 2). The eigenvalue
condition is determined by inserting the obtained spinors for

BLG, Eqs. (15) and (16), with δ = 0 into the above four
equations. Note that the effect of IM potential � → ∞ is now
expressed by the boundary conditions in Eqs. (18) and (19).

For the hybrid BLG QR, the spinors corresponding to
the sublattices in the lower layer are continuous at the ring
boundaries, while the spinor components of the upper (ring)
layer, φτ

A2(ρ) and φτ
B2(ρ), satisfy the IM boundary condition

expressed by Eqs. (18) and (19). Thus, in this case, the bound-
ary conditions at R1(2) read

φτ
A(ρ1(2)) − φτ

A1(ρ1(2)) = 0, (20a)

φτ
B(ρ1(2)) − φτ

B1(ρ1(2)) = 0, (20b)

φτ
B2(ρ1(2)) ∓ φτ

A2(ρ1(2)) = 0, (20c)

where −(+) is used at the R1(2) boundary.
Here we have to stress that using the above boundary con-

ditions when implementing them numerically gives two sets
of energy levels. A set of levels corresponds to the pristine
BLG Landau levels (LLs), which mathematically originate
from the proportionality of Lb

a(x) and U (a, b, x) functions
when a [≡ α±(ε)] becomes an integer number n. In this case,
Lb

n(x) = (−1)n

n! U (−n, b + 1, x) and the wave spinors become
finite in both limits r → 0 and ∞ as for bulk BLG LLs [66].

In Figs. 2(a) and 2(b), we plot the energy spectrum of both
valleys as a function of the angular momentum m. The results
are presented for two different magnetic fields (a) B = 5 T
and (b) B = 10 T with solid blue (open red) circles for the
K (K ′) valley. The inner and outer ring radii, respectively, are
R1 = 30 nm and R2 = 40 nm. Irrespective of the magnetic-
field strength, the energy spectra exhibit intervalley symmetry
EK

e (m) = −EK ′
h (m) between the electron and the hole states,

indicating that valley degeneracy is lifted. Lifting the val-
ley degeneracy, due to the presence of the magnetic field,
has also been noticed before in other graphene nanostruc-
tures [7,25,56] and is of great interest because it could make
them promising candidates for valleytronics applications. One
can see that decreasing the field B suppresses the above-
mentioned intervalley symmetry and the valley degeneracy
is restored at B = 0 [cf. Figs. 2(a) and 2(b)]. In the case of
zero-width BLG QR [10], the energy spectrum shows only
two energy levels for each m, and the spectrum versus m is
very similar to the band structure of a biased BLG sheet (see
Fig. 10 in Ref. [10]). However, here we find several energy
levels as a function of m and the number depends on the width
of the ring.

The energy spectrum of an isolated BLG QR, as a function
of magnetic field, is shown in Fig. 2(c) for several values of the
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FIG. 2. [(a), (b)] Energy levels of an isolated BLG QR with inner and outer radii R1 = 30 nm and R2 = 40 nm, respectively, as a function
of the angular momentum m for the K (solid blue circles) and K ′ (open red circles) valleys at the two different magnetic fields (a) B = 5 T
and (b) B = 10 T. The symmetry EK

e (m) = −EK ′
h (m) is clearly visible. (c) K-valley energy spectrum for the same ring as a function of

the magnetic-field B. The results are plotted for several angular momenta m = −13, ±10, ±2, ±1, 0. Background colored plot shows a 2D
conductance of the same ring as functions of B and energy E using KWANT package within the Landauer-Büttiker formalism using the TBM.

angular momenta, m = −13, m = ±10, m = ±2, m = ±1,
and m = 0 at the K valley for the same ring parameters
as in Figs. 2(a) and 2(b). For a single valley, as seen in
Fig. 2(a), two broken symmetries are clearly visible in the
presence of the magnetic field: (i) For a specific angular mo-
mentum m, the electron-hole (e-h) symmetry is broken, i.e.,
Ee(m) 	= −Eh(m) and (ii) Ei(m) 	= Ei(−m) (i = e, h), since
time-reversal symmetry (TRS) is broken by the magnetic
field [7]. Both symmetries are restored at B = 0 as expected.
For large field strength, the magnetic-field dependence of
the spectrum becomes approximately linear which was also
observed for the MLG ring and antidot spectra [49]. Note
that, as function of the magnetic field, the lowest electron
and hole energy levels show a “Mexican hat” shape similar
to the Mexican hat-shaped low-energy dispersion for a bi-
ased AB-stacked BLG [83], which is due to the fourth-order
character of the dispersion relation [Eq. (14)]. Including the
energy levels of both valleys see Fig. 6(b) we can see that the
confinement-induced band gap closes with increasing mag-
netic field. This is in contrast with the previous study of the
zero-width BLG QR [10], which shows a constant energy-
band gap as a function of the magnetic field. A similar result
for the strong dependence of the energy gap on the magnetic
field in the finite-width MLG QR as well as a comparative
study with the ideal zero-width one were also discussed in
Ref. [11].

To see the connection between the obtained analytical
energy levels and the observable physical quantitylike con-
ductance, we show in Fig. 2(c) a 2D color plot of two-terminal
conductance G of the same ring as functions of B field and
energy using the KWANT package [58] within the Landauer-
Büttiker formalism using the TBM (for details of the the
TB simulation, see Sec. III B). We find excellent agreement
between the analytical results and the tight-binding transport
simulations. Specifically, the closing of the band gap as a
function of B field in both calculations is seen to agree remark-
ably well. In addition, one can see high conductance values
for large energies (|E | � 0.2 eV) indicating the presence of a
large number of conducting channels at these energies. This

is consistent with the analytical results where we find a high
concentration of energy states at high energies. Notice that, in
Fig. 2(c), we plotted only the energy levels for a few values of
m and only for one K valley [a complete spectrum is shown in
Fig. 6(b)].

Results for the energy spectrum of a hybrid BLG QR,
of radius R1 = 30 nm and R2 = 40 nm as a function of
magnetic-field B at both valleys K and K ′ are shown in
Figs. 3(a) and 3(b), respectively. The angular momenta are
m = −1 (blue), m = 0 (green), and m = 1 (red). The B-field
dependence of the hybrid BLG QR energy spectrum is strik-
ingly different from that of the isolated BLG QR. Here for
B = 0, the spectrum is continuous because of the presence
of the infinite MLG, and with increasing magnetic field the
degeneracy of the states is lifted. The discrete levels (reflect-
ing the confined states) depend on the angular momentum
and the B-field strength. The spectra for both valleys show
anticrossings, which are due to the influence of the MLG
dot and BLG QR interface [see the inset of Fig. 3(b)]. As
a result of this interface, the symmetry condition EK

e (m) =
−EK ′

h (m) (which holds for an isolated ring) is no longer
preserved here as shown explicitly in Fig. 3(c). At high mag-
netic fields, i.e., lB < R1, the energy levels merge into the
LLs of pristine MLG [En = ±√

2n h̄vF /lB with n = 0, 1, . . .,
shown by dashed black curves in Figs. 3(a) and 3(b)] indi-
cating that magnetic confinement dominates and the carriers
become localized at the center of the dot region (see Fig. 4
and the corresponding discussion). It is also worth noting
that here the states with m < 0 contribute to the zero LL
(n = 0) only in one valley (K). This is in contrast with the
other graphene nanostructures such as MLG [27] and BLG
QDs [56] with IM boundary condition in which the states
from both valleys form the zero LL. Notice that, unlike to
the isolated BLG QR, it is not straightforward to calculate the
conductance of the hybrid QR in the TBM, since its bottom
layer consists of an infinite graphene layer sheet. However, in
Sec. III B, we will compare explicitly the analytical energy
levels with those obtained within the TBM for both ring
structures.
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FIG. 3. Energy spectrum of a hybrid BLG QR as a function of magnetic-field B, with inner and outer radii R1 = 30 nm and R2 = 40 nm,
respectively, for the (a) K and (b) K ′ valleys. The results are plotted for three different angular momenta m = ±1, 0. The dashed black curves
show the LLs (n = 0, 1, . . . 4) of a pristine MLG sheet. The inset in panel (b) shows an enlarged view of the spectrum showing the anticrossings
for angular momentum m = −1 and the K ′ valley. (c) Energy levels as a function of the angular momentum m for the same hybrid ring at
B = 10 T for the two valleys K (solid blue circles) and K ′ (open red circles). The dashed green lines pertain to the bulk MLG LLs at B = 10 T
for n = 0, 1, . . . 6.

Figure 3(c) shows the energy spectrum as a function of the
angular momentum at a specific magnetic field (B = 10 T)
for both valleys K (solid blue circles) and K ′ (open red
circles). As seen, there is no symmetry between the e-h en-
ergies as well as between the valleys. For a given magnetic
field, the energy levels at both valleys are affected by the
ring interface for a particular range of m and converge to
the MLG LLs for larger m’s (green lines), indicating carrier
localization inside the dot region. Note that at the K (K ′)
valley, the maximum value of the angular momentum mmax

that is converged to the nth electron LL of MLG is mmax =
n − 1 (mmax = n, n 	= 0). Further, in both valleys, the electron
states show a smooth oscillatory behavior as a function of
magnetic field and strong anticrossings are also visible for
hole states. Similar behavior was also noted for the double
MLG-BLG junctions studied in Ref. [72] when the spectra are

plotted as a function of the center coordinate of the cyclotron
orbit.

To better understand the behavior of the energy levels in the
spectrum of the hybrid ring, we plot in Fig. 4 the energy levels
of both types of rings and MLG dot for a specific angular
momentum, m = −1 [Fig. 4(a)], as well as the correspond-
ing spinor components [φν (ρ), ν = A, B, . . .] and probability
densities [φ2

A(ρ) + φ2
B(ρ), . . .] for the representative energy

states marked by (b), (c), and (d) in Fig. 4(a), panels (b)–(d).
As seen, the energy levels of the hybrid ring seem to be
tunable from the MLG dot to isolated BLG QR and to MLG
Landau energy levels as B increases. At the representative
state (b), the energy level (blue circles) resembles that of
the MLG dot (dashed green curves), and the corresponding
quantum state is mostly confined inside the dot region with a
substantial probability density in the ring region; see Fig. 4(b)
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(red) curves.
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the inner radius of the ring is R1 = 20 nm and the outer one R2 =
R1 + W . The (horizontal) solid green and gray lines indicate, respec-
tively, the bulk MLG and BLG LLs at B = 20 T.

panels. When the energy level approaches the one of the
isolated ring (red curves), e.g., point (c), the carrier is mostly
confined inside the ring region [Fig. 4(c)]. For strong magnetic
field, e.g., point (d), the energy level converges to the MLG LL
(magenta curve), and the state is completely confined inside
the dot region, as seen in Fig. 4(d).

It is also interesting to investigate the effect of ring width
on the energy spectrum of both structures. For this purpose,
we plot in Fig. 5 the lowest energy levels as a function of
the width of the ring W (= R2 − R1) for (a) isolated and (b)
hybrid BLG QRs. In both cases, for the sake of clarity, the
results are presented only for particular angular momentum
m = −20 at B = 20 T. In the case of an isolated ring, the
energy levels are separated by a gap depending on the angular
momentum and ring width, which closes when W increases
and the energy levels for both valleys approach the LLs of
bulk BLG as depicted by the horizontal gray lines. In the
hybrid ring, Fig. 5(b), at small ring widths, the energy levels
correspond to the LLs of MLG. When W increases, the elec-
tron (hole) energy levels, due to the influence of MLG-BLG
interface, exhibit a flat plateau (strong anticrossing) feature
for certain ranges of W and eventually merge into the LLs of
bulk BLG. The plateaulike and oscillatory features appearing
in the energy spectrum can be understood as hybridization of
the energy levels of the terminated systems, MLG QD and
BLG antidot. Similar behavior was found for previous studies
of MLG-BLG junctions [24,66,72,73].

B. Comparison with TBM

In order to check the validity of the continuum approx-
imation, we compare explicitly our analytical results with
the energy levels calculated within a nearest-neighbor TB
approach. We include only the nearest-neighbor hopping pa-
rameters γ0 = −2.7 eV and γ1 = 0.4 eV as intralayer and

interlayer couplings, respectively. The effect of an exter-
nal magnetic field can be introduced into the calculations
via the Peierls substitution ti j → ti jei2π�i j , where �i j =
(1/�0)

∫ R j

Ri
A(r) · dr is the Peierls phase [84] with �0 =

h/e ≈ 4.14 × 10−15 Wb as the magnetic flux quantum. The
vector potential corresponding to the external magnetic-field
B = Bẑ perpendicular to the BLG flakes is chosen in the
Landau gauge A(r) = (0, Bx, 0) for which one finds that �i j

is only nonzero in the y direction and is given by �i j =
sign(y j − yi )

x j+xi

2
√

3a0

�
�0

, where � = B(
√

3a2
0/2) is the magnetic

flux threading one carbon hexagon (a0 is the graphene lattice
constant). Here the QRs are defined by a staggered site-
dependent potential such that the atoms belonging to the
sublattices A1 (A2) and B1 (B2) have a mass-term poten-
tial of +M0 (+M0) and −M0 (−M0), respectively, as shown
in Fig. 6(a). This simulates the substrate effect and can be
regarded as the IM boundary condition in the TBM. More
details of the geometries are provided in the caption of Fig. 6.
Furthermore, our calculations show that in the Dirac model,
adopting the same radius used to define the atomic geometries
in TBM results in the energy levels which are slightly larger
(i.e., shifted up) than those obtained by TBM. Two possible
explanations for this discrepancy can be considered. First, in
the TBM to simulate the IM boundary, we have used a narrow
ribbon of �r containing atoms with different finite on-site
potentials in addition to the ring radii as shown in Fig. 6(a).
The second, which has also been proposed in Ref. [85], can
be attributed to the π electrons that in the TBM extend over
the whole geometry. Accordingly, to compensate for this dif-
ference, we use a larger width for the rings in the Dirac
model. Also note that, due to the computational limitation of
the TBM, we have considered the small sizes of the rings,
and the applied magnetic field in our calculations is too large
to be achievable in experiments. However, for the study of
the electronic properties of graphene nanostructures in the
presence of a perpendicular magnetic field, one can define a
scaling factor and thus extend the results to lower magnetic
field and larger sample sizes, e.g., see Refs. [12,49,86].

In Figs. 6(b) and 6(c), we compare the results obtained
within the TB and Dirac approaches for the lowest energy
levels of both rings as a function of magnetic-field B; see the
figure caption for details. Notice that the Dirac results agree
with those of the TB, especially for the lower-energy states.
In the case of an isolated ring, there are some discrepancies
between the two models for the hole energy levels. This
is due to the fact that in the TBM, applying IM boundary
at the edge boundary which is now not a perfect circle, breaks
the e-h symmetry. This symmetry, however, is preserved in
the Dirac model as a result of its perfect circular geometry.
Moreover, in the TBM results of the hybrid ring [solid blue
curves in Fig. 6(c)], we see a bunch of energy levels de-
creasing in energy and approaching the zero energy. They are
known as the quantum Hall edge states [87] and are confined
at the edges of the graphene flakes and are a result of the
finite size of the flake. These Hall edge states are absent in
the Dirac model for which the first layer is considered as an
infinite graphene sheet. In general, we expect good agreement
between the Dirac and the TB models for the low-energy
states. For the higher energy levels and high magnetic field,
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where a0 = 0.246 nm is the lattice constant. The coordinates x and y are defined along the armchair and zigzag directions, respectively (Fig. 1).
The upper (lower) panel depicts the isolated (hybrid) BLG QR geometry. The atoms of the two layers are represented by blue (layer 1) and
red (layer 2) circles. The ring regions are surrounded by a site-dependent staggered potential (yellow areas), where the atoms belonging to
the sublattices A1 (A2) and B1 (B2) have mass-term potentials of +M0 (+M0) and −M0 (−M0), respectively. In the case of the hybrid ring,
to simulate the lower layer as an infinite graphene sheet we consider it as a large circular flake (layer 1) on which a second MLG ring (layer
2) is sitting on top of it. Further, to eliminate the specific edge effects of layer 1, here also, we apply the staggered potential on the atoms
located within the ribbon width of �r = 2a0 at the edge of the flake (yellow region). (b, c) Energy levels of (b) an isolated BLG QR and (c) a
hybrid BLG QR as a function of the magnetic-field B calculated within the Dirac (red circles) and the TB (solid blue curves) models. For both
cases, the results are presented for rings with inner andouter radii of R1 = 8 a0 = 1.97 nm and R2 = 18a0 = 4.43 nm. The mass potential is
M0 = 2 eV. In the hybrid ring, we use a circular flake of radius R0 = 38a0 = 9.35 nm for the lower layer.

discrepancy between the Dirac and TB results becomes more
significant. The reason is that the linear spectrum invoked in
the Dirac equation is no longer valid.

We also notice that the energy spectra in both cases exhibit
periodic oscillations as the magnetic flux varies. This is a
direct consequence of the AB effect [88] which is well known
and has been investigated for QRs (metallic, semiconductor
as well as graphene) [8,89–92]. Similar to the AB effect in
semiconductor QRs, the energy oscillation manifests itself in
AB oscillations in the persistent current j(�) = − ∂

∂�
E .

Finally, we consider the valley- and layer-resolved LDOS
for the studied structures which can be probed by quantum
capacitance measurements and by scanning tunneling mi-
croscopy. We consider the LDOS in the energy window of
� ≡ [E1, E2] which can be obtained using

ρτ
� (r) =

∑
Ei∈�

δ(E − Ei )
∣∣ψEi

� (r)
∣∣2

, (21)

where ψ
Ei
� (r) = [φEi

A�(r), φEi
B�(r)]T denotes the quantum state

of the two layers (� = 1, 2) with energy Ei. The components
φA�(r) and φB�(r) correspond, respectively, to the differ-
ent sublattices A� and B� in each layer at the given valley
(τ = K, K ′).

In Fig. 7, we show the valley- and layer-resolved LDOS
of the lowest electron-energy states for both ring structures
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FIG. 7. Valley- and layer-resolved LDOS (arbitrary units) of
(a) an isolated BLG QR and (b) a hybrid BLG QR with the inner
and outer radii of R1 = 30 nm and R2 = 40 nm, respectively. The
magnetic field is B = 10 T. Layer 1 (2) is represented by the blue
(red) curves. The solid (dashed) curves correspond to the K (K ′)
valley. For the isolated BLG QR, the LDOS is computed in the
energy range of [0, 0.2] eV, while for that of the hybrid the states in
the energy window of [0, 0.11] eV [states between the lowest MLG
LLs, n = 0 and n = 1 in Fig. 3(c)] are sampled.
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at B = 10 T. In the case of isolated BLG QR [Fig. 7(a)],
for which the LDOS is computed in the energy range of
[0, 0.2] eV, one can see that the LDOS of layer 1 (blue curves)
is mostly centered inside the ring whereas in layer 2 the LDOS
has its maximum value at the inner side of the ring. This
behavior happens for both valleys, K and K ′ (solid and dashed
curves, respectively). Besides, in each layer, the maximum
contribution in the LDOS belongs to the K ′ valley. The lower
panel of Fig. 7(a) shows the LDOS for each valley separately.
We see that the LDOS contribution of the K ′ valley at the inner
boundary of the ring is dominant which decreases with radial
distance and at the outer side of the ring, contributions of both
valleys in the LDOS are almost equal. Shown in panel (b)
of Fig. 7 is the LDOS of the hybrid BLG QR. In this case,
we compute the LDOS over the electron-energy states located
between the lowest MLG LLs, n = 0 and n = 1. Here too the
contribution of the K ′ valley in the LDOS is dominant in both
layers. While the LDOS of the lower layer (blue curves) is
centered in the middle of the ring, in the upper layer (red
curves) the LDOS form rings with maximums at the inner
and outer boundaries of the ring. Thus the difference between
the valley contributions as well as from the different layers
in the LDOS at a given magnetic field can open up novel
ways for applications of such graphene-based nanostructures
in valleytronics.

IV. SUMMARY AND CONCLUDING REMARKS

In summary, based on continuum (Dirac-Weyl equation)
and TBMs, we studied the electronic properties of BLG QR,
defined by IM potential, in two different configurations: An
isolated BLG QR and a hybrid one where a MLG ring is
put on top of an infinite MLG sheet. By using the Dirac
approximation and applying the IM boundary condition, we
first obtained analytical results for the energy levels and cor-
responding wave spinors for both structures as function of a
perpendicular magnetic field.

In contrast with the previously investigated zero-width
BLG QR, here the isolated BLG QR features a sizable and
magnetically tunable band gap that decreases as the magnetic-
field strength is increased. Our analytical findings are in
excellent agreement with the tight-binding transport simu-
lations. Further, the theoretical results show the intervalley
symmetry EK

e (m) = −EK ′
h (m) between the electron and the

hole states for the energy levels of the isolated BLG QR,

where m is the angular momentum quantum number and K, K ′
refer to the two Dirac valleys.

The results for hybrid BLG QRs showed that the presence
of an interface boundary in a hybrid BLG QR modifies dras-
tically the energy levels as compared with that of an isolated
BLG QR and its energy levels interplay between the MLG
dot, isolated BLG QR, and MLG Landau energy levels as
magnetic field varies. No symmetry between the energy levels
is found in this case.

Further, the energy spectrum of both structures exhibits
AB oscillations as the magnetic field varies. We also explic-
itly confirmed the validity of our results by simulating the
QRs by a staggered site-dependent potential in the TBM. We
found good agreement between our analytical results obtained
in the continuum approximation and those calculated within
the TBM. Finally, we analyzed the spatial dependence of
the valley- and layer-resolved LDOS for the proposed BLG
QRs. Our findings are relevant for valleytronics applications.
Our results can be realized experimentally using different
techniques such as magnetotransport measurements similar
to those reported in Refs. [12,32] for a MLG ring or using
scanning probe techniques such as Scanning Tunneling Spec-
troscopy and Scanning Gate Microscopy [12] to probe the
LDOS.

Although many-body effects, such as those coming from
electron-electron and electron-phonon interactions, may ap-
pear in some experiments in certain regimes and initial
conditions, thus affecting the confinement properties in
BLG-based nanostructures [18,93,94], the analytical solution
proposed here allows us to have physical insights into the
basic mechanisms behind the results, which is of fundamental
importance for a theoretical understanding of some electronic
properties in BLG nanostructures. Moreover, recent experi-
mental measurements of quantum confined states in BLG QDs
by using scanning tunneling microscope [95–100] have been
confirmed by single-particle tight-binding calculations, even
in the presence of charge defects, impurities, dopants, and
adatoms [97,99,100].
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[27] M. Grüjić, M. Zarenia, A. Chaves, M. Tadić, G. A. Farias, and
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